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Abstract: In this work, we propose to use an artificial neural network to classify limited data of
clinical multispectral and autofluorescence images of skin lesions. Although the amount of data is
limited, the deep convolutional neural network classification of skin lesions using a multi-modal
image set is studied and proposed for the first time. The unique dataset consists of spectral reflectance
images acquired under 526 nm, 663 nm, 964 nm, and autofluorescence images under 405 nm LED
excitation. The augmentation algorithm was applied for multi-modal clinical images of different
skin lesion groups to expand the training datasets. It was concluded from saliency maps that the
classification performed by the convolutional neural network is based on the distribution of the major
skin chromophores and endogenous fluorophores. The resulting classification confusion matrices, as
well as the performance of trained neural networks, have been investigated and discussed.

Keywords: multispectral reflectance imaging; autofluorescence imaging; convolution neural network;
skin lesion diagnostics

1. Introduction
1.1. Prevalence of Melanoma and Present Diagnostic Approach

Melanoma represents the most aggressive and lethal form of skin cancer. The inci-
dence of melanoma has shown a continuous and dramatic increase over the last several
decades, rendering it a significant health burden [1]. While 13 new melanoma cases are
diagnosed annually per 100,000 people in Europe, wide variation is seen among different
countries, with a higher incidence in Scandinavian countries, the United Kingdom, and
Switzerland [2]. The highest incidence rates are reported in New Zealand and Australia,
with 50 and 48 per 100,000 people, respectively [2]. The risk of melanoma increases with
age. In Caucasians, the overall lifetime risk of developing melanoma is about 2.4% [2]. In
the early stages, melanoma can be successfully treated with surgical excision. However, the
prognosis is inferior once it metastasizes, and survival rates are considerably lower. Thus,
early detection would be crucial improving patient outcomes and reducing mortality [3].
The 2019 update of the European consensus-based guideline for melanoma recommends
using dermoscopy for the clinical assessment of skin lesions to diagnose melanoma [4].
However, it notes that dermoscopy requires training and expertise and is not always
available, due to a lack of access to dermatologists [4].

1.2. An Overview of the Applications of Artificial Neural Networks in the Classification of
Skin Lesions

The most promising approaches for image processing are methods that use deep
learning (DL) and convolutional neural networks (CNN). Recent studies show that deep
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neural networks are capable of the differentiation of RGB images of melanomas and
nevi with greater sensitivity (82.3%) and specificity (77.9%) than experienced specialists
(sensitivity in the range 58–73% and specificity in the range 53–69%) [5]. These results were
obtained using the International Skin Imaging Collaboration (ISIC) [6] archive of skin lesion
dermoscopic images under white light illumination. In another study, it was demonstrated
that a CNN trained using dermoscopy images could augment the diagnostic performance
of physicians in the detection of acral lentiginous melanoma [7].

Although many studies on the classification of skin lesions with artificial neural
networks have been published recently [8–13], more and more new articles appear that
correct previous mistakes, improve architecture, etc. These publications and projects mainly
use the ISIC archive [6]. Examining the ISIC archive images, artifacts such as a ruler placed
on the skin’s surface, colored circle markers, gel bubbles, a black frame, and unique signs
drawn by doctors were observed. Such artifacts can cause a false correlation effect. For
example, the colored circle markers are the elements that appear in approximately two
hundred images with melanocytic nevi only. The effect of colored markers on classification
accuracy was described in [14] but not investigated in detail. Natural artifacts, such as
hair, shadows, unfocused image effects, jewelry, or tattoos, are permissible, as they occur
randomly and should not cause false correlations between the feature and class.

One of the shortcomings of studies is that the results are not transparent enough to
evaluate the proposed method. Numerous works [15–17] use the area under the receiver
operating characteristics (AUROC) metric for evaluating trained (not validated) classifier
performance. In such a case, a reduction in performance is possible if the classifier is tested
on an alternative validation dataset generated to be the opposite-way imbalanced [18].
The AUROC is not suitable for an imbalanced dataset because false-negative and false-
positive diagnoses will impact classification results differently. As well as the change in
AUROC has little direct clinical meaning for clinicians [19]. An objective representation
of the classification is a confusion matrix, from which sensitivity, specificity, F1 score, and
other metrics suitable for assessing classifier performance on imbalanced datasets can be
calculated for each classification group [20,21].

Some great works suffer from a lack of k-fold cross validation when they train their
models [21–23]. Very high classification accuracy may not give a reliable result if it was
measured for only one but a lucky data split.

Computer-based analyses such as CNN on RGB skin lesion images under white
light illumination have been extensively studied. Although the results are ambiguously
explained and interpreted, they have reached an upper limit in their performance [24]. It
can mainly be explained by the properties of RGB images, which in generally represent
superficial information about lesion texture, color, and shape. RGB images are captured
by the CCD matrix (limited by the infrared cut-off filters) under broadband white light
illumination. Moreover, the sensitivity curves of the individual R, G, and B channels
integrated into the CCD matrix overlap leading to the low spectral resolution of the system.
The constructive properties of conventional RGB image acquisition have severe limitations
for the selective visualization of tissue chromophores determined by absorption spectra. On
the other hand, the spectrally resolved imaging modalities such as multispectral reflectance
(MSR) and autofluorescence (AF) may further significantly improve the sensitivity and
specificity of skin lesions classification.

1.3. Multimodal Spectral Imaging and Its Potential for Deep Learning

The use of deep learning to classify spectrally resolved reflectance and AF clinical
images seems to be very promising. Spectral imaging approaches provide spectral infor-
mation of examined tissues by visualization of tissue chromophores (spectrally resolved
reflection imaging) and endogenous fluorophores (filtered AF imaging under selected
excitation wavelengths) distribution among the tissue surface. However, due to the lack of
available training datasets of spectral images, deep learning approaches’ efficiency is still
not presented in the available literature.
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Multispectral imaging provides morphological and physiological information of exam-
ined lesions, related to the absorption and scattering properties of skin chromophores, such
as hemoglobin, melanin and bilirubin content, tissue oxygenation, etc. [25]. MSR imaging
for skin cancer diagnostics has been repeatedly demonstrated and clinically proven [26].
Additionally, many of the authors had shown spectral signatures of melanoma in visible
and near-infrared regions. Rey-Barroso et al. had demonstrated significant spectral differ-
ences between skin melanoma and benign nevi of reflectance spectra at the near-infrared
region [27]. Such differences between the reflectance spectra of melanoma and benign nevi
have also been studied in our previous research. The most informative wavebands for
melanoma diagnostics were defined [28,29].

Another imaging modality based on the visualization of endogenous skin fluorophores
under UV/VIS excitation could also provide additional information for increasing skin
lesions’ diagnostics accuracy. Fluorescence techniques enable the estimation of skin en-
dogenous fluorophores content presented by a mixture of metabolic coenzymes (NAD(P)H
and FAD), lipids, structural proteins, vitamins, amino acids, and porphyrins [30]. In
malignant tumors, the composition of tissue fluorophores is substantially changed by
altered metabolic activity and structural changes [31]. Moreover, in some clinical cases,
the AF imaging technique would significantly enhance the primary diagnostics accuracy
by differentiating lesions with high AF intensity, such as seborrheic keratosis [32]. It is
also known that decreased AF under violet/blue excitation characterizes malignant skin
lesions. Recent studies have described notable fluorescence features of pigmented skin
lesions under near-infrared excitation. Borisova et al. have demonstrated increased AF
intensity of melanocytic lesions in comparison to non-pigmented lesions under 785 nm
laser excitation [33].

To summarize, the AF and MSR imaging techniques provide additional information
beyond conventional clinical photography under white light illumination. Classical pro-
cessing of MSR and AF image processing followed by subjective interpretation repeatedly
has been demonstrated for skin cancer diagnostics. Such “classical” data processing demon-
strates a wide range of diagnostics accuracy, mainly dependent on operator experience
significantly complicating the routine use in clinical practice. This can be explained by
the need to use intensive image processing resources and complex lesion segmentation
algorithms that constantly require improvement/tuning due to the wide range of exam-
ined lesion types. The use of deep learning for spectroscopic data classification could
significantly improve computer-aided diagnostics accuracy, thereby reducing subjective
influence on data analysis and interpretation. Moreover, trained CNN could be potentially
integrated into the cost-effective spectral imaging devices providing effective screening and
diagnostics of skin cancer without any subjective interpretation. An even more valuable
effect could be reached in the application of deep learning to estimate the diagnostics
efficiency of MSR and AF imaging modalities for their testing and improvement.

However, due to the lack of the available number of clinical cases investigated by
spectroscopic modalities, research on optimal CNN training is limited and still not pre-
sented in the available literature. The main contribution of this study is to estimate the
diagnostics performance of machine learning approaches for the classification of spectral
clinical images. The research is aimed at the CNN architecture search to classify limited
AF and spectral reflectance data of skin lesions. Within the presented study, we have
demonstrated the first results of the classification of MSR and AF clinical images by using a
deep learning approach. Obtained CNN training and validation results are presented and
discussed below.

2. Materials and Methods
2.1. Proposed Approach

In our previous studies, using the optical density images taken at 51 wavelengths, the
three most sensitive (540 nm, 650 nm, and 950 nm) were selected according to the optical
properties of the skin. Additionally, melanoma differentiation parameter p’ was devel-
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oped to distinguish melanoma from nevus with high sensitivity and specificity [28]. Later,
discovering that using AF (induced by 405 nm) can distinguish seborrheic keratosis from
melanoma [32], the diagnostic method was supplemented with more skin lesion groups [34].
To make the classification more objective and automated, it was decided to create a skin
lesion classifier using CNN. First, to distinguish melanoma from other skin lesions, the
most sensitive waveband triplets from 51 (450–950 nm) channels were identified [29]. Ex-
periments using InceptionV3, VGG16, and ResNet50 pre-trained networks were performed.
InceptionV3 was chosen because of the good balance between the reported classification
performance and the complexity. VGG16 and ResNet50 architectures are simpler but faster
models. All the mentioned architectures were pre-trained on the ImageNet dataset. Then,
the output (their fully connected layers) was dropped entirely and replaced with global
average pooling, followed by the one or several fully connected layers. Several options for
added “tail” layer structure were tried: presence or absence of batch normalization and
dropout layers followed by the obligate sigmoid layer. Binary cross-entropy was used as a
loss function in the training procedure. All original filters learned during pre-training were
frozen and remained intact during our training procedure. Our training procedure adjusted
only the added mentioned layers. Only InceptionV3 architecture showed promising results.
Experiments with other pre-trained networks were abandoned. In the case of InceptionV3
additional experiments were conducted. The first 250 layers were frozen, and the rest
were trained with the “tail” of the network with fully connected layers. The model with
all original frozen weights and two dense layers interconnected with dropout and batch
normalization showed the best performance. However, the handmade CNN performance
was better.

Using a custom multispectral dataset, a simple six-layer CNN (ConvNet) was com-
pared to a fine-tuned (both fully connected classification layers and CNN filters with
varying learning rates) InceptionV3 network. Handmade CNN model had the following
structure: input layer accepting 150 × 150 × 3 tensor, followed by four pairs of ReLU con-
volutional 2D layers with the same kernel size (3 by 3) and with 32, 64, 128, and 128 filters,
respectively, followed by 2D max pooling layer with pool size 2 by 2 without padding, all
of that followed by flatten layer, then by dense layer with 512 ReLU neurons and conclud-
ing sigmoid layer with 1 neuron. The mediocre performance of the simpler VGG-16 and
ResNet50 could be explained by the smaller amount, complexity, and hierarchy of their
filters; therefore, they were excluded from further experiments. The success of the simple
CNN trained from scratch could be explained by the fact that InceptionV3 was trained on
feature-rich (texture-rich) RGB images (photos of the surrounding world), and trained RGB
filters did not apply to our dataset. It is a known fact that CNNs are relying on textures for
successful classification [35]. In our case, we assume that the data contains mainly spectral
information, not texture. Having described results, we opted for a training-from-scratch
approach and decided to look for an architecture fine-tuned to our small dataset with the
help of neural architecture search, which would produce CNN of simpler (in comparison to,
e.g., InceptionV3) structure. In addition to CNN, we have conducted 5-fold cross-validation
over 5-fold cross-validation of the visual transformer architecture adapted for rather small
datasets [36], which showed mean validation F1-score of only 67.64%, compared to 75.38%
for best DARTS architecture (experimental setup was the same as for the following ex-
periments and will be described below, the parameters of the ViT was: image_size = 128,
patch_size = 16, num_classes = 5, dim = 1024, depth = 6, heads = 16, mlp_dim = 2048,
dropout = 0.1, emb_dropout = 0.1, channels = 4). In addition to transformer architecture,
we have evaluated current state-of-the-art ConvNext architecture [37] (preliminary exper-
iments using stratified 5-fold cross-validation with default parameters using image size
224 × 224) which produced average (over 5-fold) weighted F1 scores of 0.618 and 0.559 for
training and test datasets accordingly. ConvNext saliency maps exploration showed signs
of overfitting, as in many cases the model was paying attention to the black markers placed
on skin for subsequent images alignment (registration). This seems to result from the high
resolution of images and high capacity of the architecture, which led to overfitting. We
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decided to utilize a differentiable architecture search (DARTS) [38] CNN with only several
hidden meta-layers. Network architectures of depths from 1 to 5 meta-layers with inner
channels equal to 10, 12, 14, 16, and 18 were searched, trained, and evaluated.

In the current work, we chose early data aggregation; otherwise, the relationships
between signal strength across different channels will be lost (as each channel would be
processed separately). As a result, we fused separate single-channel images into four-
channel images (3D tensors) that were used to train a classification model.

Currently, three main approaches for deep learning systems training are: manual
architecture construction, transfer-learning, and neural architecture search [39–41]. We
used transfer learning alongside manually created networks to assess the importance of
wavebands triplets in previous research. Transfer learning (Inception V3) showed lower
performance than manually constructed architectures. However, even manually created
models have not been able to attain greater than 50% F1 classification score. All latest
state-of-the-art results from the International Conference on Learning Representations
(ICLR) image classification competitions were acquired using so-called neural architecture
search approaches. Considering the multi-spectrality of our dataset, its small size, and the
fact that we are dealing with non-RGB images, we opted for the neural architecture search.

DARTS algorithm was applied to search for the best possible architecture capable of
performing skin lesions classification. We hypothesize that simpler Deep Neural Network
architecture (compared to existing pre-trained architectures) is required as there is no rich
visual diversity within our dataset composed of registered stacks of four images taken at
different wavebands. These images mainly do not contain any textures. A combination of
absolute pixel intensity values across all available channels can be used for the classification.
Any intensity-related augmentation disrupts the relationship between channels (reduces
spectral resolution) and causes poor classification performance. In contrast, classification
by CNN in regular photos is based mainly on textures [35]. As a result, a five meta-layer
neural network architecture was found and trained for five class discrimination, containing
only ~32,000 trainable parameters. Models were composed of dilated and separable
convolutions. Both are focused on computational cost reduction. Found architectures
include many computationally simple 1 × 1 convolutions blocks combined with 3 × 3 and
5 × 5 convolutions and organized in several parallel pipelines merging at different depths.
Experiments have shown that 350 training epochs are sufficient, which can be explained by
the dataset’s small size. Manually created architectures always delivered a worse training
performance due to the higher number of training parameters.

2.2. Description of Multispectral Data

Multispectral data of different skin lesion diagnoses were used in this work (break-
down by diagnosis is shown in Table 1). The multispectral image sets were obtained by a
previously developed portable multispectral imaging device [42]. The multispectral device
was equipped with narrow-band LEDs: 526 nm (green), 663 nm (red), and 964 nm (infrared)
to obtain diffuse reflectance images, and 405 nm for the acquisition of filtered (515 nm
long-pass filter) skin AF images. To avoid artifacts caused by specular reflection from the
skin surface, the polarization of the illuminating light was orthogonal to the orientation
of the polarizer located in the camera lens. Images were acquired by an IDS camera. For
instance, one dataset that has been analyzed consists of four images: a green (G) channel
from an RGB image obtained under 526 nm illumination, a red (R) channel from an image
obtained under 663 nm illumination, an R channel from an image obtained under 964 nm
illumination and G channel from AF image. All sets of images were registered (aligned)
using an optical-flow-based registration routine.
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Table 1. Distribution of skin lesion groups and the size of multispectral image sets.

Lesion Group Seq. No. Lesion Diagnosis
Size of

Multispectral
Datasets (N)

Size of
Augmented

Multispectral
Datasets (Naug)

The Total Size
of Multispectral
Datasets (Ntot)

Melanoma-like
lesions, MLL

1 Malignant melanoma, MM (C43) 70 1050 1120
2 Lentigo maligna (D03.9) 4 60 64

Pigmented benign
lesions, PBL

3 Melanocytic nevus, MN (D22) 394 5910 6304

4 Ephelides (L81.2) 1 15 16

5 Lentigo solaris (L81.4) 7 105 112

6 Congenital nevus (Q82.5) 3 45 48

Hyperkeratotic
lesions, HKL

7 Seborrheic dermatitis (L21) 3 45 48

8 Actinic keratosis (L57 + L57.0) 12 180 192

9 Seborrheic keratosis (L82) 129 1935 2064

10 Hyperkeratosis (L85) 89 1335 1424

11 Cornu Cutaneum (L85.5) 2 30 32

12 Anogenital warts (A63) 6 90 96

13 Ichthyosis vulgaris (Q80) 6 90 96

14 Papilloma (B07) 41 615 656

15
Skin changes due to chronic

exposure to nonionizing
radiation (L57.9)

35 525 560

Non-melanoma
skin cancer,

NMSC

16 Basal cell carcinoma (C44) 165 2475 2640

17 Carcinoma in situ (D09) 6 90 96

18 Keratoacanthoma (L85.8) 1 15 16

Other benign
lesions, OBL

19 Hemangioma (D18) 36 540 576

20 Myxoma (D21.9) 5 75 80

21 Granuloma annulare (L92) 6 90 96

22 Calcinosis cutis (L94.2 + PXE) 59 885 944

23
Other specified disorders of the
skin and subcutaneous tissue

(L98.8 + L98.9)
48 720 768

24 Sarcoidosis (D86.3) 5 75 80

25 Healthy skin (ada) 171 2565 2736

Total 1304 19,560 20,864

Melanoma-like lesions diagnosis (Table 1) was approved by histological evaluation.
Diagnosis of benign skin lesions was approved clinically under the supervision of an
experienced dermatologist/dermato-oncologist. The Ethics Committee has approved this
study. The research has been conducted in accordance with the Declaration of Helsinki and
the Oviedo Convention.

Multispectral data were collected from individuals with Caucasian skin type at the On-
cology Center of Latvia (Riga, Latvia) and at Semmelweis University (Budapest, Hungary)
under the supervision of medical physicists, dermatologists and dermato-oncologists.
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2.3. Data Preprocessing

At first, data were visually analyzed to remove from the dataset incorrectly captured
data. These images were observed to have unacceptable artifacts such as severe motion
blur or one or more missing channels G, R, IR or AF.

The images were collected from several self-made equipment models and stored in
PNG format. Due to equipment that has been redesigned and improved over time, the
images have different sizes (960 × 686, 460 × 512, and 640 × 480 pixels). Since DARTS
models were trained on Nvidia GeForce 1080 Ti (11Gb GDDR5X), we reduced the original
image size to meet memory requirements. The final solution used 4 × 128 × 128 input
images. Other tested input image sizes will be discussed in Section 4. To minimize
distortion effects, image resolution reduction was performed using bicubic interpolation
over a 4 × 4 pixel neighborhood. In the next step, image sets were aligned using the
OpenCV OpticalFlow algorithm to compensate for motion artifacts between different
channels. Optical Flow uses the shape and position of the marker on the skin (the presence
of a marker is crucial as some of the images have a certain degree of blurriness, and no
considerable details are present that can be used to acquire multimodal images). As a result,
4 × 128 × 128 tensors were created for the CNN training and validation procedure.

2.4. Data Augmentation

A total of 20,864 (1304 original and 19,560 augmented) multispectral datasets of skin
lesions were used.

As our accumulated dataset is rather small and no such open-source multi-modal
data is available to supplement our database, a commonly used image augmentation
approach [43] was applied to avoid overfitting and improve the overall performance of
the trained CNN. In total, 15 variations of augmented multispectral versions were created
for each original 4 × 128 × 128 input, increasing the overall amount of data by 16 times.
The augmentation was accomplished using random horizontal/vertical flipping (with a
probability 0.5) and random rotation (−90◦, +90◦, with a probability 0.5) of the original
images. In our case, the augmented data was only rotated and mirrored without adding
other specific features. Normalization of images or any other color-related augmentations
severely reduced the performance. Augmented image sets were used for training, and
only original data were used for validation. Additionally, one of the channels—G, R, IR,
or AF—was randomly removed with a probability of 0.2 (higher and lower probability
reduced the classification performance). The use of this procedure reduced overfitting.

Posed classification problem was aimed at the classification of images as belonging to
one of the five following classes:

• Melanoma-like lesions (MLL);
• Pigmented benign lesions (PBL);
• Hyperkeratotic lesions (HKL);
• Non-melanoma skin cancers (NMSC);
• Other benign lesions (OBL).

2.5. Validation of Classification Decision via Saliency Map

One method to evaluate the performance of trained neural networks is to investigate
the resulting saliency maps [44]. We used saliency maps to validate and understand the
classification decision of our DARTS found CNN architectures. Saliency maps of the
correctly trained network should focus on the areas of the lesion that contain essential
classification features. If the focus is shifted to artifacts (markers, corners, hair, etc.), the
neural network should be considered overtrained (i.e., overfitting). The intensities of the
saliency map characterize the importance of each pixel across all input image channels
with respect to the classification results. For assessment of the mentioned approach, we
used the ResNet50 network pre-trained on the ImageNet dataset in a transfer-learning
scenario (fine-tuned, i.e., only the “tail” was trained). Figure 1 shows the saliency maps
acquired from a neural network fine-tuned on the ISIC dataset. Figure 1b shows a saliency
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map built for input in Figure 1a. Figure 1b demonstrates that the trained model considers
the lesion to perform classification. Figure 1d shows network inference acquired using
Figure 1c, which considers the marker to make a classification decision—the unmistakable
sign of overfitting. Here, low importance (classification-wise) areas are marked in the dark
blue, and high importance areas are marked in red. One way to overcome this problem is
data augmentation. In this case, when only some of the lesions in the ISIC archive have
such markers (mentioned in Section 1.2), it should not be a rotation but image cropping
to remove markers from the dataset. Another approach is the elimination of such data
samples from the dataset.

Figure 1. Nevus and marker RGB images from ISIC archive (a,c) and saliency maps acquired via
pre-trained ResNet50 fine-tuned on ISIC dataset showing good inference relying on the lesion (b) and
inference relying on a marker, which shows model overfitting (d).

3. Results
3.1. DARTS Applying for Network Architecture Search

Several neural architecture search sessions were performed for networks with different
depths ranging from 1 to 5 layers in this work. In the context of the DARTS model,
these layers should be considered as meta-layers consisting of several parallel data flows.
Hyperparameters influence experiments were conducted using 10, 12, 14, 16 and 18 internal
data processing channels used in the DARTS layers. Figure 2 shows the resulting mean
F1-weighted validation scores attained during these experiments. The experimental setup
is described below.

Each experiment involved five-fold stratified cross-validation running over five-fold
stratified cross-validations. The confusion matrices were used for reporting test results
using the data acquired from the outer test fold using the best model, which showed
the best validation F1 score acquired from the inner validation fold. Hence, five test
confusion matrices were combined to present the averaged result over five outer folds
tests sets. Among these experiments, 18 internal data processing channels of five meta-
layers showed the best validation classification score. In the scope of a single DARTS layer
search, we used the following operators: MaxPooling, AveragePooling, SkipConnection,
SepConv 3 × 3, SepConv 5 × 5, DilConv 3 × 3, DilConv 5 × 5. SepConv operator
is responsible for depthwise separable convolution [45], but DilConv is responsible for
dilated convolutions [46]. As a result, five network architectures of varying depth (from
one to five hidden meta-layers) trained to classify MLL vs. PBS vs. HKL vs. NMSC vs. OBL
were found. In our case, a single layer is not a classical CNN layer containing convolution
and pooling layers, but holding several operators combined into a non-trivial pipeline.

Moreover, these operators were stacked together to form a complex operation part of
one or several pathways in the single “layer” of the architected CNN. It would be more
appropriate to call these layers meta-layers. Networks used in this work contained one to
five such meta-layers. Furthermore, in the final multi-layered networks, even subsequent
meta-layers are not the same; they vary in their inner structure.
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Figure 2. DARTS hyperparameters (layers and inner channels) estimation experiments result of mean
F1-weighted validation scores acquired on 5-fold stratified cross-validation executed over 5-fold
stratified cross-validation.

The use of architecture search tools reduces time costs compared with the manual
approach. The time cost depends on the dataset size, architecture complexity, number
of folds, and image size and structure. It took ~50 h to process on GeForce 1080Ti GPU,
11Gb video RAM for the four-channel images (128 × 128 pixels), five meta-layers deep
network, and five-over-five folds of stratified cross-validation. An asynchronous process
was implemented for image loading and preprocessing routines, and neural network
training on GPU. The definition of the search space for the architecture (convolutions of
size 3 × 3 and 5 × 5) was slightly reduced compared to the original, which used larger
convolutions. This was done due to memory limitations that should be satisfied, which is a
common problem with all neural architecture search algorithms. From the implementation
aspect, the PyTorch DARTS package of the MS NNI framework [47] was used.

3.2. Results Using Found Architectures and Trained Networks

Since the dataset size is small, the cross-validation over cross-validation technique
was used. That allowed using all the available data for training and ensuring that all
k-fold trained models were tested on separate datasets. For a more objective assessment
of the classification performance of the found architecture and trained deep neural net-
work, the results are presented in the form of confusion matrices obtained as a sum of
five-fold stratified cross-validation folds over five-fold stratified cross-validation for the
test datasets of the outer folds (Figure 3). For inner cross-validation folds, training for
350 epochs was performed, and simultaneously the best models (showing highest F1-
validation score) were saved. Afterward, the best-performing models from the inner folds
were selected to be tested on the outer fold test dataset. We are saying models because we
have tried both final models trained over 350 epochs and the best model found during
training (considering test set performance). In the end, models trained over 350 epochs
showed slightly lower levels of overfitting. Figure 3. shows the hyperparameters search
results for the combined validation sets confusion matrix for the classification group:
MLL vs. PBL vs. HKL vs. NMSC vs. OBL.
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Figure 3. Confusion matrix of the validation set for MLL vs. PBL vs. HKL vs. NMSC vs. OBL.

Our further goal is to create an artificial neural network that would be suitable for
medical practice. A multispectral device with a built-in trained artificial neural network
will help inexperienced physicians decide if a patient needs to be referred for further
examination. The average F1 test score is 0.749. Sensitivities and specificities for each
specific class can be seen in Table 2. In particular, the specificity tests for all examined groups
demonstrated values above 0.9. The highest sensitivity values are obtained for groups of
MLL (0.72), BPL (0.83), and OBL (0.84). Obviously, the sensitivity value for melanoma
discrimination from benign pigmented lesions shall be higher to exclude missed melanoma
cases. However, diagnostics values obtained by the classification of spectral images by
CNN are suitable for developing portable devices that provide additional diagnostics
support in clinical practice. Such devices will be designed to provide convenience and
ease of use even for inexperienced professionals, and the devices should include as many
different groups of skin formations as possible that can be confused with each other. In this
case, we choose to use a classifier with five groups, which we plan to retrain over-time on
the newly acquired skin formation data.

Table 2. Test values of sensitivity and specificity for MLL, PBL, HKL, NMSC, and OBL classification.
Specificity and sensitivity values are given for a specific class vs. all others.

MLL PBL HKL NonMSC OBL

Specificity (TNR) 0.97 0.90 0.91 0.95 0.93
Sensitivity (TPR) 0.72 0.83 0.61 0.57 0.84

3.3. Prediction Validation Using Saliency Maps

We extracted saliency maps and verified if classification results were correct and
appropriate to test if our CNN model is trained correctly. In the case of incorrect training
(e.g., overfitting), the neural network highlights the attention to the marker or other artifact-
forming regions such as hair, edges, shadows, etc. In our dataset, the black marker was
added to each image that is used to align the image set. The marker retains the same shape
in all images, with minor variations due to the skin’s curvature and the angle at which it is
recorded. Since the marker is added to all lesion types and is not correlated with diagnosis,
saliency maps should exclude the marker from classification.

Figure 4 displays representative examples of input datasets and the resulting saliency
maps for each channel. For PBL (Figure 4), almost the entire lesion shows high intensity



J. Clin. Med. 2022, 11, 2833 11 of 15

in the saliency maps, containing asymmetrically distributed pigmentation with a uniform
structure and regular borders. Saliency maps showed an increased number of bright pix-
els in regions with high blood (540 nm), melanin (630 nm), and water (950 nm) optical
absorption and variations of endogenous skin fluorophores content under violet excita-
tion. Accordingly, including near-IR and AF images for CNN training are reasonable
and appropriate.

Figure 4. Input multispectral G, R, IR, and AF images (top row) and corresponding saliency maps (bottom
row). PBL input images were recognized as PBL (classification of MLL vs. PBL vs. HKL vs. NMSC vs. OBL).

4. Summary and Discussion

The objective estimation of multispectral computer-aided diagnostics (CAD) accuracy
is a complicated scientific and practical task that is challenging to solve. The physician’s role
in influencing the choice of the region of interest and patient selection for the examination
has a significant impact on resulting diagnostics sensitivity and specificity. Moreover, most
CAD studies are performed in preselected patients’ groups with high melanoma prevalence,
which can also affect the resulting sensitivity parameters. According to available literature
data, the CAD of multispectral imaging systems (in total, five different spectral imaging
systems were tested in 18 studies) have provided an average sensitivity of 92.9% (83.7% to
97.1%) and specificity of 43.6% (24.8% to 64.5%) for melanoma discrimination from atypical
intraepidermal melanocytic variants [26]. In these studies, 2401 skin lesions, including
286 melanomas, were examined. CAD diagnostics results demonstrate a high sensitivity for
detecting invasive melanoma and atypical intraepidermal melanocytic variants. However,
specificity parameters of the multispectral imaging systems deliver low values and vary
within different studies [26].

In the presented research, we have processed 20,864 (1304 original and 19,560 aug-
mented) MSR and AF sets of clinical cases. The confusion matrices and resulting diagnostic
parameters such as sensitivity and specificity were obtained for the classification of MLL vs.
PBL vs. HKL vs. NMSC vs. OBL. As seen, the CNN system shows high specificity values
for melanoma-like lesions (0.97) and non-melanoma skin cancer (0.95). Obtained specificity
values demonstrated significantly higher values than values obtained by CAD systems
(43.6%). However, the sensitivity of the CNN classification of spectral images showed
lower values (MLL 0.72 and NonMSC 0.57) compared to CAD (92.9%). Undoubtedly, future
research should be addressed to enhance sensitivity to avoid missing cancerous cases in
routine screening. Future expansion of the dataset, including more clinical cases, seems
reasonable to develop even more precise classification models and reach higher sensitivity
rates. However, in the presented research, including more skin lesion groups in the classi-
fication model, the diagnostics parameters decreased, which is acceptable because most
lesions are rather poorly represented (less than 100 samples overall). This can be explained
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by the fact that improving the CNN skin lesion classifier requires not only increasing the
number of skin lesion groups, but it is necessary accumulating a significant amount of data
in each skin lesion group. Increasing the size of the dataset always positively influences
the generalization abilities of classifiers and serves as a regulator. Suppose the increase in
dataset size is achieved by the introduction of other classes (e.g., new skin lesion groups).
In that case, we are not exposing the network to diversified samples of a single class but
are adding samples of new classes. With a high probability, such addition of data will
reduce the performance of the classifier. We hypothesize that training a classification model
for discriminating specific lesion types (by diagnosis) instead of groups of lesions should
improve the classification performance. Therefore, the constant expansion of the dataset is
crucial in developing even more accurate classification models.

Overall DARTS algorithm allowed us to find neural network architectures capable of
performing classification on limited data of spectrally resolved reflectance and AF clinical
images of skin lesions. Assessment of classification performance on validation sets showed
signs of overfitting, despite various regularization tricks, such as random channel dropout,
rotation, and slight regularization of weights within the optimization algorithm. Despite
that, the validation performance was at a satisfactory level.

Another important issue affecting the classification performance of CNN, and one
which could be addressed, is image spatial resolution and clarity. In the presented study, the
imaging setup is equipped with cross-polarized filters enabling capturing diffuse reflectance
images from deeper skin layers, avoiding specular reflection from the skin surface. Thus, the
quality or clarity of the acquired multispectral and AF images mainly depends on incident
light penetration depth to the tissue. The shallowest light penetration depth enables the
highest clarity of the images. While the deeper penetration depth of the incident light makes
diffuse reflectance images significantly blurred. In our experiments, images with the highest
clarity are AF images under violet, excitation, and spectral reflectance images under green
illumination, since the penetration depth of violet and green light is significantly smaller
than red and infrared. Accordingly, the red and infrared images are much more blurred. The
overall number and pixel intensity depth are similar for all illumination’s wavelengths and
detection. The impact of spatial resolution and clarity parameters on the CNN classification
performance should be studied in more detail. Optimal image resolution was observed and
applied in the experiments. Found and trained on NN, the classifier model architecture
used images with a resolution of 128 × 128 pixels. Experimental testing on a slightly
higher resolution (192 × 192 pixels) and lower resolution (96 × 96 pixels) images resulted
in a lower training and validation classification performance. We hypothesize that more
refined and more diverse morphological information, such as vascularization, melanin
network, etc., is visible at a higher resolution. Most probably, the images with the highest
clarity (green and AF) become over-dominant to the red and infrared images, leading to
an upset of cross-correlation weights between the whole image set. Such features may
be present in several skin lesion diagnoses from different established skin lesion groups,
resulting in reduced classification performance. Such information, combined with a massive
amount of data, could significantly improve the classification of skin lesions at the level of
diagnosis. Still, higher resolution reduced the CNN classifier performance in our case (with
a small amount of data in each skin lesion group and some slightly blurred data samples).
On the other hand, too much morphological information was lost in too low resolution
(96 × 96 pixels) images, which leads to the conclusion that the found architectures consider
not only the spectral information between the channels but also the shape (e.g., irregular
borders) and size.

5. Conclusions

The use of deep learning for the fully automatic classification of multimodal (MSR
and AF) clinical images raises a well-grounded practical interest for dermatologists and
technology developers. However, the diagnostic performance of deep learning approaches
for the classification of multi-modal clinical images has not been fully studied and evaluated,
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due to the lack of available large training datasets. Additionally, available literature
frequently mentions the potential of deep learning for the classification of multispectral
images and lacks results of complementary research. Our unique research is one of the
first attempts to classify multimodal clinical images by using CNN. We proposed using
spectrally resolved reflectance and AF images for CNN training and classification within the
presented research. Obtained saliency maps demonstrated high weights on CNN decision
making attributed to the skin’s significant chromophores (hemoglobin, melanin, water)
and endogenous skin fluorophores. Overall, the presented approach for CNN construction
is suitable for classification and could be helpful for various sets of MSR and AF images.

Based on the presented study, we conclude that multimodal (with spectral resolution)
datasets (small or medium-sized) that do not contain a large variety of textures should
not be approached using models pre-trained on feature-rich datasets. Our experiments
have shown poor performance of VGG16, ResNet50 and InceptionV3 architectures, which
a simple handcrafted CNN outperformed. We hypothesize that in the described scenario,
a custom trained-from-scratch architecture should be favored over the transfer-learning
approach using classification models trained on texture-rich datasets.

Further research would require exploring deeper architectures with an expanded
dataset. Such studies would require a more significant amount of GPU RAM (we had 11GB)
and could potentially lead to the learning of some texture-specific filters by a trained CNN,
which may be important in the process of classifying specific skin lesions.

For production purposes, we expect to use the entire dataset for network training. A
bigger dataset will improve generalization capabilities. Continuing this study, the dataset is
continuously updated with new data samples obtained in hospitals in Latvia and Hungary.

Author Contributions: Conceptualization, I.L., A.B., Y.C., D.U., D.B., N.K. and A.L.; data curation,
I.L., A.B., D.B., N.K. and A.L.; formal analysis, I.L., A.B., Y.C., D.B., N.K. and A.L.; funding acquisition,
I.L., D.B. and A.L.; investigation, I.L., A.B., Y.C., D.U., D.B., N.K. and A.L.; methodology, A.B., D.U.
and D.B.; project administration, I.L., Y.C. and A.L.; resources, A.B. and D.B.; software, A.B., Y.C.,
D.U. and D.B.; supervision, I.L.; validation, A.B.; visualization, A.B.; writing—original draft, I.L.,
A.B., Y.C., D.B., N.K. and A.L.; writing—review & editing, I.L., A.B., Y.C., D.B., N.K. and A.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Latvian Council of Science, the project “Skin cancer early di-
agnostics accuracy improvement by using neural networks,” project No. lzp-2018/2-0052, and by the
ÚNKP -21-4-II-SE-10 New National Excellence Program of the Ministry for Innovation and Technol-
ogy from the source of the National Research, Development and Innovation Fund of Hungary (NK).
This work has also been supported by the European Regional Development Fund projects “Rare skin
diseases efficient identification and multi-modal diagnostic system” (agreement No.1.1.1.1/20/A/072)
and “Portable Device for Non-contact Early Diagnostics of Skin Cancer” (No. 1.1.1.1/16/A/197).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Ethics Committee of Semmelweis
University (SE RKEB no. 228/2018) and by the Cardiology and Regenerative Medicine Institute
(University of Latvia) Scientific Research Ethics Committee on 31 August 2016.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data and neural network architectures are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clarke, C.A.; McKinley, M.; Hurley, S.; Haile, R.W.; Glaser, S.L.; Keegan, T.H.M.; Swetter, S.M. Continued Increase in Melanoma

Incidence across all Socioeconomic Status Groups in California, 1998–2012. J. Investig. Dermatol. 2017, 137, 2282–2290. [CrossRef]
[PubMed]

2. Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept.
2017, 7, 1–6. [CrossRef]

3. Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 2019, 20, 1366–1379.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.jid.2017.06.024
http://www.ncbi.nlm.nih.gov/pubmed/28736233
http://doi.org/10.5826/dpc.0702a01
http://doi.org/10.1080/15384047.2019.1640032
http://www.ncbi.nlm.nih.gov/pubmed/31366280


J. Clin. Med. 2022, 11, 2833 14 of 15

4. Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B.; Fargnoli, M.C.; et al.
European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics—Update 2019. Eur. J. Cancer 2020, 126,
141–158. [CrossRef] [PubMed]

5. Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.;
Holland-Letz, T.; et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 2019,
119, 11–17. [CrossRef] [PubMed]

6. International Skin Imaging Collaboration (ISIC). Collection of High Quality Image Data Sets. Available online: https://www.isic-
archive.com/#!/topWithHeader/onlyHeaderTop/gallery (accessed on 8 February 2022).

7. Lee, S.; Chu, Y.S.; Yoo, S.K.; Choi, S.; Choe, S.J.; Koh, S.B.; Chung, K.Y.; Xing, L.; Oh, B.; Yang, S. Augmented decision-making
for acral lentiginous melanoma detection using deep convolutional neural networks. J. Eur. Acad. Dermatol. Venereol. 2020, 34,
1842–1850. [CrossRef]

8. Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.;
Kittler, H.; et al. Skin Lesion Analysis toward Melanoma Detection: A Challenge at the 2017 International Symposium on
Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2017, arXiv:1710.05006.

9. González-Díaz, I. Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for the Diagnosis of Skin
Lesions. arXiv 2017, arXiv:1703.01976. [CrossRef]

10. Lopez, A.R.; Giro-i-Nieto, X.; Burdick, J.; Marques, O. Skin lesion classification from dermoscopic images using deep learning
techniques. In Proceedings of the 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria,
20–21 February 2017; pp. 49–54.

11. Bisla, D. Beating Melanoma with Deep Learning: Letting the Data Speak. Available online: https://github.com/devansh20la/
Beating-Melanoma (accessed on 8 February 2022).

12. Bhowmik, T. Cancer_nn. Available online: https://github.com/tanmoyopenroot/cancer_nn (accessed on 8 February 2022).
13. Yu, J. ISIC_Melanoma. Available online: https://github.com/jyu-theartofml/ISIC_melanoma (accessed on 8 February 2022).
14. Wang, H.-W. Capstone Project. Available online: https://github.com/wanghsinwei/isic-2019/blob/master/docs/capstone_

project_report.pdf (accessed on 8 February 2022).
15. Mendes, D.B.; da Silva, N.C. Skin Lesions Classification Using Convolutional Neural Networks in Clinical Images. arXiv 2018,

arXiv:1812.02316.
16. Matsunaga, K.; Hamada, A.; Minagawa, A.; Koga, H. Image Classification of Melanoma, Nevus and Seborrheic Keratosis by

Deep Neural Network Ensemble. arXiv 2017, arXiv:1703.03108.
17. Hagerty, J.R.; Stanley, R.J.; Almubarak, H.A.; Lama, N.; Kasmi, R.; Guo, P.; Drugge, R.J.; Rabinovitz, H.S.; Oliviero, M.;

Stoecker, W.V. Deep learning and handcrafted method fusion: Higher diagnostic accuracy for melanoma dermoscopy images.
IEEE J. Biomed. 2019, 23, 1385–1391. [CrossRef]

18. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef]

19. Halligan, S.; Altman, D.G.; Mallett, S. Disadvantages of using the area under the receiver operating characteristic curve to assess
imaging tests: A discussion and proposal for an alternative approach. Eur. Radiol. 2015, 25, 932–939. [CrossRef] [PubMed]

20. Al-Masni, M.A.; Kim, D.H.; Kim, T.S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmenta-
tion and classification. Comput. Methods Programs Biomed. 2020, 190, 105351. [CrossRef] [PubMed]

21. Albahar, M.A. Skin lesion classification using convolutional neural network with novel regularizer. IEEE Access 2019, 7, 38306–38313.
[CrossRef]

22. Pham, T.C.; Luong, C.M.; Visani, M.; Hoang, V.D. Deep CNN and data augmentation for skin lesion classification. In Proceedings
of the 10th Asian Conference on Intelligent Information and Database Systems, Dong Hoi City, Vietnam, 19–21 March 2018; Springer:
Cham, Switzerland, 2018; pp. 573–582.

23. Sarkar, R.; Chatterjee, C.C.; Hazra, A. Diagnosis of melanoma from dermoscopic images using a deep depthwise separable
residual convolutional network. IET Image Process. 2019, 13, 2130–2142. [CrossRef]

24. Johansen, T.H.; Møllersen, K.; Ortega, S.; Fabelo, H.; Garcia, A.; Callico, G.M.; Godtliebsen, F. Recent advances in hyperspectral
imaging for melanoma detection. WIREs Comput. Stat. 2019, 12, 1939–5108. [CrossRef]

25. He, Q.; Wang, R.K. Analysis of skin morphological features and real-time monitoring using snapshot hyperspectral imaging.
Biomed. Opt. Express 2019, 10, 5625–5638. [CrossRef]

26. Ferrante di Ruffano, L.; Takwoingi, Y.; Dinnes, J.; Chuchu, N.; Bayliss, S.E.; Davenport, C.; Matin, R.N.; Godfrey, K.; O’Sullivan, C.;
Gulati, A.; et al. Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in
adults. Cochrane Database Syst. Rev. 2018, 12, CD013186. [CrossRef]

27. Rey-Barroso, L.; Burgos-Fernández, F.J.; Delpueyo, X.; Ares, M.; Royo, S.; Malvehy, J.; Puig, S.; Vilaseca, M. Visible and Extended
Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis. Sensors 2018, 18, 1441. [CrossRef]

28. Diebele, I.; Kuzmina, I.; Lihachev, A.; Kapostinsh, J.; Derjabo, A.; Valene, L.; Spigulis, J. Clinical evaluation of melanomas and
common nevi by spectral imaging. Biomed. Opt. Express 2012, 3, 467–472. [CrossRef]

29. Bliznuks, D.; Chizhov, Y.; Bondarenko, A.; Uteshev, D.; Lihachev, A.; Lihacova, I. Identification of the most informative
wavelengths for non-invasive melanoma diagnostics in spectral region from 450 to 950 nm. Proc. SPIE 2020, 11459, 114590K.

http://doi.org/10.1016/j.ejca.2019.11.014
http://www.ncbi.nlm.nih.gov/pubmed/31928887
http://doi.org/10.1016/j.ejca.2019.05.023
http://www.ncbi.nlm.nih.gov/pubmed/31401469
https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery
https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery
http://doi.org/10.1111/jdv.16185
http://doi.org/10.1109/JBHI.2018.2806962
https://github.com/devansh20la/Beating-Melanoma
https://github.com/devansh20la/Beating-Melanoma
https://github.com/tanmoyopenroot/cancer_nn
https://github.com/jyu-theartofml/ISIC_melanoma
https://github.com/wanghsinwei/isic-2019/blob/master/docs/capstone_project_report.pdf
https://github.com/wanghsinwei/isic-2019/blob/master/docs/capstone_project_report.pdf
http://doi.org/10.1109/JBHI.2019.2891049
http://doi.org/10.1371/journal.pone.0118432
http://doi.org/10.1007/s00330-014-3487-0
http://www.ncbi.nlm.nih.gov/pubmed/25599932
http://doi.org/10.1016/j.cmpb.2020.105351
http://www.ncbi.nlm.nih.gov/pubmed/32028084
http://doi.org/10.1109/ACCESS.2019.2906241
http://doi.org/10.1049/iet-ipr.2018.6669
http://doi.org/10.1002/wics.1465
http://doi.org/10.1364/BOE.10.005625
http://doi.org/10.1002/14651858.CD013186
http://doi.org/10.3390/s18051441
http://doi.org/10.1364/BOE.3.000467


J. Clin. Med. 2022, 11, 2833 15 of 15

30. Borisova, E.G.; Angelova, L.P.; Pavlova, E.P. Endogenous and Exogenous Fluorescence Skin Cancer Diagnostics for Clinical
Applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 211–222. [CrossRef]

31. Pires, L.; Nogueira, M.S.; Pratavieira, S.; Moriyama, L.T.; Kurachi, C. Time-resolved fluorescence lifetime for cutaneous melanoma
detection. Biomed. Opt. Express 2014, 5, 3080–3089. [CrossRef] [PubMed]

32. Lihachev, A.; Lihacova, I.; Plorina, E.V.; Lange, M.; Derjabo, A.; Spigulis, J. Differentiation of seborrheic keratosis from basal cell
carcinoma, nevi and melanoma by RGB autofluorescence imaging. Biomed. Opt. Express 2018, 9, 1852–1858. [CrossRef]

33. Borisova, E.G.; Bratchenko, I.A.; Khristoforova, Y.A.; Bratchenko, L.A.; Genova, T.I.; Gisbrecht, A.I.; Moryatov, A.A.; Kozlov, S.V.;
Troyanova, P.P.; Zakharov, V.P. Near-infrared autofluorescence spectroscopy of pigmented benign and malignant skin lesions.
Opt. Eng. 2020, 59, 061616. [CrossRef]

34. Lihacova, I.; Bolochko, K.; Plorina, E.V.; Lange, M.; Lihachev, A.; Bliznuks, D.; Derjabo, A. A method for skin malformation
classification by combining multispectral and skin autofluorescence imaging. Proc. SPIE 2018, 10685, 1068535.

35. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-Trained CNNs Are Biased towards
Texture; Increasing Shape Bias Improves Accuracy and Robustness. arXiv 2018, arXiv:1811.12231.

36. Lee, S.H.; Lee, S.; Song, B.C. Vision Transformer for Small-Size Datasets. arXiv 2021, arXiv:2112.13492.
37. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545.
38. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. arXiv 2018, arXiv:1806.09055.
39. Thomas, R. An Opinionated Introduction to AutoML and Neural Architecture Search. Available online: https://www.fast.ai/20

18/07/16/auto-ml2/ (accessed on 8 February 2022).
40. Basha, S.H.S.; Vinakota, S.K.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. AutoFCL: Automatically Tuning Fully Connected Layers

for Handling Small Dataset. arXiv 2020, arXiv:2001.11951. [CrossRef]
41. Wong, C.; Houlsby, N.; Lu, Y.; Gesmundo, A. Transfer Learning with Neural AutoML. arXiv 2018, arXiv:1803.02780.
42. Osipovs, P.; Bliznuks, D.; Lihachev, A. Cloud infrastructure for skin cancer scalable detection system. Proc. SPIE 2018, 10679, 1067905.
43. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
44. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside Convolutional Networks: Visualising Image Classification Models and

Saliency Maps. arXiv 2013, arXiv:1312.6034.
45. Guo, Y.; Li, Y.; Feris, R.; Wang, L.; Rosing, T. Depthwise Convolution Is All You Need for Learning Multiple Visual Domains.

arXiv 2019, arXiv:1902.00927. [CrossRef]
46. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122.
47. Zhang, Y. Microsoft, Nni. Available online: https://github.com/microsoft/nni/blob/master/docs/en_US/NAS/DARTS.rst

(accessed on 8 February 2022).

http://doi.org/10.1109/JSTQE.2013.2280503
http://doi.org/10.1364/BOE.5.003080
http://www.ncbi.nlm.nih.gov/pubmed/25401022
http://doi.org/10.1364/BOE.9.001852
http://doi.org/10.1117/1.OE.59.6.061616
https://www.fast.ai/2018/07/16/auto-ml2/
https://www.fast.ai/2018/07/16/auto-ml2/
http://doi.org/10.1007/s00521-020-05549-4
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.1609/aaai.v33i01.33018368
https://github.com/microsoft/nni/blob/master/docs/en_US/NAS/DARTS.rst

	Introduction 
	Prevalence of Melanoma and Present Diagnostic Approach 
	An Overview of the Applications of Artificial Neural Networks in the Classification of Skin Lesions 
	Multimodal Spectral Imaging and Its Potential for Deep Learning 

	Materials and Methods 
	Proposed Approach 
	Description of Multispectral Data 
	Data Preprocessing 
	Data Augmentation 
	Validation of Classification Decision via Saliency Map 

	Results 
	DARTS Applying for Network Architecture Search 
	Results Using Found Architectures and Trained Networks 
	Prediction Validation Using Saliency Maps 

	Summary and Discussion 
	Conclusions 
	References

