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Abstract: Background: The evidence for the efficacy of glucocorticoids combined with tocilizumab
(TCZ) in COVID-19 comes from observational studies or subgroup analysis. Our aim was to compare
outcomes between hospitalized COVID-19 patients who received high-dose corticosteroid pulse
therapy and TCZ and those who received TCZ. Methods: A retrospective single-center study was
performed on consecutive hospitalized patients with severe COVID-19 between 1 March and 23
April 2020. Patients treated with either TCZ (400–600 mg, one to two doses) and methylprednisolone
pulses (MPD-TCZ group) or TCZ alone were analyzed for the occurrence of a combined endpoint of
death and need for invasive mechanical ventilation during admission. The independence of both
treatment groups was tested using machine learning classifiers, and relevant variables that were
potentially different between the groups were measured through a mean decrease accuracy algorithm.
Results: An earlier date of admission was significantly associated with worse outcomes regardless
of treatment type. Twenty patients died (27.0%) in the TCZ group, and 33 (44.6%) died or required
intubation (n = 74), whereas in the MPD-TCZ group, 15 (11.0%) patients died and 29 (21.3%) patients
reached the combined endpoint (n = 136; p = 0.006 and p < 0.001, respectively). Machine learning
methodology using a random forest classifier confirmed significant differences between the treatment
groups. Conclusions: MPD and TCZ improved outcomes (death and invasive mechanical ventilation)
among hospitalized COVID-19 patients, but confounding variables such as the date of admission
during the COVID-19 pandemic should be considered in observational studies.

Keywords: COVID-19; SARS-CoV-2; infectious diseases; machine learning; tocilizumab; corticosteroids

1. Introduction

Coronavirus disease 2019 (COVID-19) has evolved into a global pandemic with a
profound impact on public health. Approximately 20% of cases may develop severe
COVID-19 infection with pneumonia, which could potentially lead to hypoxic respiratory
failure, acute respiratory distress syndrome, and/or septic shock [1,2]. Patients with severe
or critical COVID-19 usually display features of systemic inflammation, with increased
levels of proinflammatory cytokines (interleukin (IL)-1 or IL-6) and other acute phase
reactants (C-reactive protein (CRP), D-dimer or ferritin [3]). This hyperinflammatory
response to SARS-CoV-2 has been suggested to play a key role in the pathogenesis of severe
COVID-19, including lung damage and microvascular thrombosis [4].

Accordingly, immunomodulatory drugs such as glucocorticoids have been proposed
as a treatment for patients with severe COVID-19 to tackle hyperinflammation and im-
mune dysregulation [5]. Indeed, the use of dexamethasone and other glucocorticoids in
severe COVID-19 has been associated with lower mortality in several trials [6]. Although
controversial results have been reported, evidence also suggests that the use of interleukin
(IL)-6 antagonists, such as tocilizumab (TCZ), is associated with a mortality benefit [7,8].
It is uncertain, however, whether the combined use of TCZ and glucocorticoids improves
survival, but limited evidence from observational studies [9] and a subgroup analysis of an
open-label trial [10] point toward a potential benefit of this combination. Observational
studies, however, have potential limitations, such as differences in patients characteristics
between groups, the availability of drugs at any given time, and mortality differences in
different time points of the pandemic [11,12]. These limitations may be partially overcome
with the use of advanced statistical techniques and previously validated prognostic scores
to adjust baseline risk, such as the COVID-19 Salamanca Risk Score [13].

Therefore, the aim of our study was to compare, by means of machine learning
methodology, the outcomes of hospitalized patients with COVID-19 who received TCZ
compared with those who received TCZ and high-dose glucocorticoid pulse therapy.
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2. Materials and Methods
2.1. Population and Study Design

We performed a retrospective study at a 1000-bed university tertiary care hospital
located in Salamanca (northwestern Spain). Consecutive patients admitted due to severe
COVID-19 from 1 March to 23 April (peak of the first wave in our center) were analyzed
for this study. Patients with COVID-19 were considered to have severe disease because
of respiratory failure or other organ dysfunction assessed by Sequential Organ Failure
Assessment (SOFA) score > 2, which received per protocol in our center TCZ and/or
corticosteroids. TCZ was administered according to our hospital protocol and the treatment
consisted of two doses until 26 March (administered at a dosage of 8 mg/kg (max 800 mg)
by two consecutive administrations 8 h apart) and one dose thereafter (600 mg (400 mg for
weight < 70 kg)), due to the recommendation issued on this date by the Spanish Agency of
Medicines and Medical Devices (AEMPS) based on drug shortage. High-dose corticosteroid
pulse therapy was administered according to the hospital protocol after 26 March (250 mg
of intravenous methylprednisolone (MPD) for 3–5 days) and previously at the physician’s
discretion. Patients who received at least 125 mg of intravenous MPD (or dexamethasone
equivalent in case the hospital was out of stock) for 2 to 5 days and intravenous TCZ
composed the corticosteroid and TCZ (MPD-TCZ) group, and patients who received only
intravenous TCZ composed the TCZ group. Patients within these groups were also able
to receive hydroxychloroquine and lopinavir/ritonavir according to the protocol. These
groups of patients (MPD and MPD-TCZ) were deemed comparable after stratification by
our own validated prognosis score [13]. Thus, we proposed the hypothesis that since the
choice of treatment was mainly based on the timing of admission and was not dependent
on the characteristics of the patient, the effect of the treatment could be compared between
both groups. To understand the potential differences between the patients in both treatment
groups, we also analyzed baseline characteristics, comorbidities, outpatient treatments,
symptoms, admission measures, and laboratory findings at the time of admission for
these patients with three approaches: (a) univariate tests between measured variables in
both groups; (b) a comparison using a previously validated machine learning prognostic
score for the severity of the disease (COVID-19 Salamanca Risk Score [13]); and (c) the
development of a newly trained machine learning model aimed at detecting differences
between both treatment groups to be used as a multivariate test.

2.2. Data Collection

We collected data on demographic variables, the patients’ individual comorbidities
and Charlson Comorbidity Index scores, chronic medical treatments, clinical characteristics,
physical examination parameters, and the laboratory findings available at hospital admis-
sion, as previously described [13]. Regarding patient outcomes, we defined the severity of
disease progression during hospitalization as the use of invasive mechanical ventilation
or death. Institutional approval was provided by the Ethics Committee of the University
Hospital of Salamanca (2020/03/470), and the need for informed consent was waived.
All datasets were anonymously analyzed, and the study was performed following the
current recommendations of the Declaration of Helsinki [13].

2.3. Univariate Analysis

The differences in the measured variables between both treatment groups were an-
alyzed using Student’s t-test for continuous variables and Fisher’s exact test for binary
variables. If treatment was assigned randomly to all patients and the measured variables
were independent, the p values of these tests would be distributed uniformly. Conse-
quently, we would expect approximately six variables showing differences with statistical
significance (p < 0.05) between both treatment groups in univariate analysis. In addition,
Kaplan–Meier curves were used to compare mortality rate between groups (long rank test).
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2.4. Machine Learning Severity Score Comparison by Means of COVID-19 Salamanca Risk Score

The relevance of the collected variables in the prognosis of the patients was previously
analyzed in the same cohort of patients [13], where a prognostic score was developed
through machine learning to predict severity (defined as death or intubation), regardless of
treatment type. The internal validation results evaluated the predictive power with a value
of 0.85 of the area under the receiver operating characteristic (ROC) curve [14]. Of note,
an external validation using another cohort from the Hospital Clinic of Barcelona, Spain,
obtained an area under the receiver operator characteristic (ROC) curve of 0.83, consistent
with the internal validation results [13].

As previously described, the final model of this COVID-19 Salamanca Risk Score iden-
tified the following variables as predictors of severity in both our cohort and the external
validation cohort [13]: the peripheral blood oxygen saturation (SpO2)/fraction of inspired
oxygen (FiO2) ratio, patient age, estimated glomerular filtration rate, procalcitonin levels,
C-reactive protein levels, updated Charlson comorbidity index scores, and lymphocyte
levels. We considered these predictors separately in the multivariate analysis, as differences
in these variables between the treatment groups could have likely impacted our results.
Additionally, due to the changing epidemiological situation and evolution of the COVID-19
pandemic, we performed a comparison of the mortality and severity in both treatment
groups matched to both the basal risk score of the patients and the date of admission of the
patients. This comparison was performed as a subclassification matching with five sub-
classes divided along quintiles [15], to assess the effects of the confounders within each
treatment group, the effect of the treatment within each stratum, the distribution of each
group along the subclasses, and the region of common support. A Mann–Kendall test was
also performed to detect trends in the outcomes according to the date of admission.

2.5. Multivariate Analysis through Machine Learning Methodology

To test the independence between both treatment groups in a multivariate analysis,
we developed a machine-learning algorithm for predicting whether a patient belonged to
the TCZ or MPD-TCZ group. Machine learning methods were chosen because they encom-
pass classical statistic models (such as logistic regression) while providing the benefits of
regularization and cross-validation, and also offer different categories of models of greater
discrimination power in case of non-linear relationships and interaction effects between the
variables. The performance of this algorithm was given by the area under the ROC curve
and the corresponding 95% confidence interval. The null hypothesis (lack of statistically
significant differences between the groups) was rejected if the value of 0.5 for the area
under the ROC curve fell outside the confidence interval. This analysis was performed both
using all clinical variables and using only the variables included in the abovementioned
COVID-19 Salamanca Risk Score [13].

In brief, machine learning methodology was described as follows [13]: data from pa-
tients in both treatment groups were preprocessed, variables with less than 70% completion
were dropped, and missing values were filled using a 10-nearest neighbors algorithm [16].
Three classification algorithms that represented state-of-the-art approaches in machine
learning, XGBoost [17], random forest [18], and regularized logistic regression, were trained
within a stratified 10-fold cross-validation scheme with 10 repetitions for validation [19].
The evaluation metrics and their confidence intervals were obtained from the testing folds
in the cross-validation scheme [20,21]. Additionally, we used a mean decrease accuracy
algorithm [18] to identify the most relevant variables in the classification algorithms. In ad-
dition to the machine learning classifiers, we tested the discriminatory power of the date of
admission, the SOFA score, and the abovementioned machine learning severity score to
provide a reference.

3. Results

Between 1 March and 23 April 2020, 918 patients were admitted to the University Hos-
pital of Salamanca because of severe COVID-19 with PCR-confirmed infections. Of them,
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74 patients received only TCZ, and 136 patients received TCZ and high-dose corticosteroids
(126 received MPD and 10 received dexamethasone; Figure 1). The choice of treatment
changed with the date of admission, according to modifications in our hospital protocol
(Figure 2).
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Figure 2. Distribution of patients according to date of admission.

A total of 20 patients died (27%) in the TCZ group and the combined event of death
and need for invasive mechanical ventilation occurred in 33 patients (44.6%), whereas
15 patients died (11%), and 29 patients died or required intubation (21.3%) in the MPD-TCZ
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group. These improved outcomes in the MPD-TCZ group were significant after univariate
analysis (p = 0.006 for mortality and p < 0.001 for severity in favor of the MPD-TCZ group).
Survival analysis and Kaplan–Meier curves also showed a significant effect (p = 0.002) of
MPD-TCZ in mortality (Figure 3).
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Figure 3. (A) Kaplan–Meier survival curves of mortality in admitted patients with severe COVID-19
censoring patients on the date of their discharge (p = 0.00195, log-rank test). (B) Kaplan–Meier
survival curves of mortality in admitted patients with severe COVID-19, without censoring patients
(p = 0.00151, log-rank test).

Regarding other differences in patient characteristics between treatment groups, statis-
tically significant differences between the measured variables can be found in Tables 1 and 2.
In summary, differences were found in the following variables: fever, nasal congestion,
hemoptysis, the SOFA score, treatment with hydroxychloroquine or azithromycin prior
to hospital admission, and serum levels of calcium, magnesium, protein, creatine kinase,
and fibrinogen.

Table 1. Admission characteristics of patients by treatment group.

Tocilizumab and
Glucocorticoids Tocilizumab

Name n Mean n Mean p-Value
Age, years (mean ± SD) 136 64.3 ± 11.7 74 65.2 ± 10.9 0.578

Male, n (%) 136 92 (67.6%) 74 51 (68.9%) 0.878

COMORBIDITIES

Classic Charlson comorbidity index, n (mean ± SD) 136 1.0 ± 1.6 74 0.9 ± 1.3 0.553
Updated Charlson comorbidity index, n (mean ± SD) 136 0.6 ± 1.4 74 0.5 ± 1.1 0.616

Myocardial infarction, n (%) 136 10 (7.4%) 74 6 (8.1%) 1
Congestive heart failure, n (%) 136 7 (5.1%) 74 5 (6.8%) 0.757

Peripheral vascular disease, n (%) 136 4 (2.9%) 74 3 (4.1%) 0.699
Arrhythmia, n (%) 136 10 (7.4%) 74 3 (4.1%) 0.55

Cerebrovascular accident, n (%) 136 5 (3.7%) 74 3 (4.1%) 1
Cognitive impairment, n (%) 136 2 (1.5%) 74 3 (4.1%) 0.348

Other central nervous system diseases, n (%) 136 3 (2.2%) 74 2 (2.7%) 1
Chronic obstructive pulmonary disease, n (%) 136 4 (2.9%) 74 5 (6.8%) 0.284

Asthma, n (%) 136 5 (3.7%) 74 2 (2.7%) 1
Other chronic pulmonary disease, n (%) 136 7 (5.1%) 74 6 (8.1%) 0.388

Rheumatological disorder, n (%) 136 7 (5.1%) 74 3 (4.1%) 1
Peptic ulcer disease, n (%) 136 4 (2.9%) 74 2 (2.7%) 1

Hemiplegia/paraplegia, n (%) 136 0 (0.0%) 74 1 (1.4%) 0.352
Chronic kidney disease (eGFR < 30), n (%) 136 1 (0.7%) 74 1 (1.4%) 1

Solid tumor, n (%) 136 11 (8.1%) 74 3 (4.1%) 0.387
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Table 1. Cont.

Tocilizumab and
Glucocorticoids Tocilizumab

Neoplasia without metastasis, n (%) 136 10 (7.4%) 74 1 (1.4%) 0.101
Solid tumor metastasis, n (%) 136 1 (0.7%) 74 0 (0.0%) 1
Hematologic neoplasm, n (%) 136 3 (2.2%) 74 3 (4.1%) 0.427
Chronic acute leukemia, n (%) 136 1 (0.7%) 74 2 (2.7%) 0.284

Lymphoma, n (%) 136 3 (2.2%) 74 1 (1.4%) 1
Hypertension, n (%) 136 55 (40.4%) 74 32 (43.2%) 0.77

Other endocrine disease, n (%) 136 12 (8.8%) 74 9 (12.2%) 0.475
Inflammatory autoimmune disease, n (%) 136 9 (6.6%) 74 4 (5.4%) 1

Transplant recipient, n (%) 136 0 (0.0%) 74 1 (1.4%) 0.352
Obesity, n (%) 105 23 (21.9%) 60 19 (31.7%) 0.195

Dyslipidemia, n (%) 136 43 (31.6%) 74 34 (45.9%) 0.051
Current smoking, n (%) 116 9 (7.8%) 72 4 (5.6%) 0.769

Former/current smoking, n (%) 116 33 (28.4%) 72 14 (19.4%) 0.225
Diabetes, n (%) 136 31 (22.8%) 74 17 (23.0%) 1
Cancer, n (%) 136 13 (9.6%) 74 6 (8.1%) 0.806

PREVIOUS MEDICATIONS, n (%)

Angiotensin-converting enzyme inhibitors 135 16 (11.9%) 73 7 (9.6%) 0.817
Angiotensin II receptor blockers 135 23 (17.0%) 71 20 (28.2%) 0.072

Chemotherapy 136 3 (2.2%) 74 0 (0.0%) 0.554
Immunosuppressants 136 4 (2.9%) 73 3 (4.1%) 0.697

Systemic corticosteroids 136 3 (2.2%) 73 4 (5.5%) 0.242
Inhaled corticosteroids 136 6 (4.4%) 73 2 (2.7%) 0.716

Acenocumarol 136 4 (2.9%) 74 1 (1.4%) 0.659
Low-molecular-weight heparin 136 5 (3.7%) 74 3 (4.1%) 1

Direct oral anticoagulants 136 10 (7.4%) 74 5 (6.8%) 1
New oral anticoagulants 136 1 (0.7%) 74 1 (1.4%) 1

Androgen antagonists 136 1 (0.7%) 74 0 (0.0%) 1
Hydroxychloroquine treatment prior to admission, n (%) 136 22 (16.2%) 74 5 (6.8%) 0.055

Azithromycin treatment prior to admission, n (%) 136 39 (28.7%) 74 10 (13.5%) 0.016

SYMPTOMS/SIGNS

Duration of symptoms before admissionguifen(days),
n (mean ± SD) 127 7.2 ± 4.5 71 7.2 ± 5.1 0.939

Fever, n (%) 136 101 (74.3%) 74 66 (89.2%) 0.012
Duration of fever before admissionguifen(days),

n (mean ± SD) 90 6.7 ± 4.0 64 6.2 ± 3.5 0.396

Maximum temperature, n (mean ± SD) 92 38.3 ± 0.6 60 37.9 ± 4.1 0.357
Dry cough, n (%) 136 82 (60.3%) 74 48 (64.9%) 0.554

Productive cough, n (%) 136 8 (5.9%) 74 10 (13.5%) 0.072
Chest Pain, n (%) 136 15 (11.0%) 74 9 (12.2%) 0.823
Dyspnea, n (%) 136 84 (61.8%) 74 53 (71.6%) 0.174

Diminished level of consciousness, n (%) 136 9 (6.6%) 74 7 (9.5%) 0.587
Seizures, n (%) 136 1 (0.7%) 74 0 (0.0%) 1
Asthenia, n (%) 136 55 (40.4%) 74 33 (44.6%) 0.562

Myalgia/arthralgia, n (%) 136 28 (20.6%) 74 20 (27.0%) 0.306
Anosmia, n (%) 136 6 (4.4%) 74 2 (2.7%) 0.715
Ageusia, n (%) 136 9 (6.6%) 74 2 (2.7%) 0.335

Conjunctivitis, n (%) 136 1 (0.7%) 74 0 (0.0%) 1
Nasal congestion, n (%) 136 1 (0.7%) 74 5 (6.8%) 0.021

Headache, n (%) 136 12 (8.8%) 74 6 (8.1%) 1
Odynophagia, n (%) 136 5 (3.7%) 74 3 (4.1%) 1
Hemoptysis, n (%) 136 0 (0.0%) 74 5 (6.8%) 0.005

Nausea/vomiting, n (%) 136 19 (14.0%) 74 6 (8.1%) 0.267
Abdominal pain, n (%) 136 7 (5.1%) 74 1 (1.4%) 0.265

Diarrhea, n (%) 136 34 (25.0%) 74 15 (20.3%) 0.497
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Table 1. Cont.

Tocilizumab and
Glucocorticoids Tocilizumab

BASELINE CHARACTERISTICS

COVID-19 Salamanca Risk Score (n) 136 28.6 ± 23.4 74 30.8 ± 26.0 0.543
SOFA Score (n) 136 1.0 ± 1.2 74 1.4 ± 1.6 0.045
Pneumonia, (%) 136 130 (95.6%) 74 70 (94.6%) 0.744

Labored breathing, n (mean ± SD) 135 41 (30.4%) 74 26 (35.1%) 0.536
Heart rate, beats/min, n (mean ± SD) 136 87.3 ± 16.3 74 89.6 ± 16.2 0.339
Mean arterial pressure, n (mean ± SD) 136 87.6 ± 13.6 74 91.5 ± 13.5 0.048
Glasgow Coma Scale, n (mean ± SD) 136 14.8 ± 1.0 74 14.8 ± 0.9 0.903

Temperature, n (mean ± SD) 136 37.1 ± 0.9 74 37.1 ± 1.1 0.739
SpO2/FiO2 ratio, n (mean ± SD) 136 368.5 ± 90.5 74 342.6 ± 116.6 0.076

Oxygen supplementation, n (mean ± SD) 136 67 (49.3%) 74 40 (54.1%) 0.564
Pulmonary infiltrates on chest X-ray, n (mean ± SD) 136 131 (96.3%) 74 71 (95.9%) 1

Bilateral pulmonary infiltrate, n (mean ± SD) 136 121 (89.0%) 74 65 (87.8%) 0.823
Lopinavir/ritonavir treatment 136 128 (94.1%) 74 72 (97.3%) 0.5

SD: standard deviation; SpO2/FiO2: arterial oxygen pressure/inspired oxygen fraction; SOFA: sequential organ
failure assessment.

Table 2. Admission laboratory findings of patients from internal validation cohort by outcome.

Laboratory Findings

Name n Mean n Mean p-Value

Glucose (mg/dL) 128 136.4 ± 61.7 71 126.5 ± 35.2 0.216
Urea (mg/dL) 131 44.1 ± 30.0 72 43.8 ± 27.6 0.936
Urate (mg/dL) 112 4.9 ± 2.0 62 4.8 ± 1.8 0.95

eGFR (mL/min/1.73 m2) 133 70.9 ± 21.4 74 71.6 ± 20.8 0.813
Calcium (mg/dL) 125 9.0 ± 0.6 63 8.8 ± 0.5 0.003

Magnesium (mmol/L) 125 2.1 ± 0.3 63 2.0 ± 0.2 0.05
Sodium (mmol/L) 130 136.0 ± 3.3 71 136.5 ± 3.3 0.348

Potassium (mmol/L) 130 4.0 ± 0.5 71 4.0 ± 0.4 0.74
Alanine Aminotransferase (U/L) 129 49.5 ± 73.8 70 41.8 ± 37.7 0.418

Aspartate Aminotransferase (U/L) 107 54.4 ± 46.7 37 68.6 ± 51.3 0.123
Alkaline phosphatase (U/L) 126 87.6 ± 99.0 70 70.3 ± 28.2 0.153

Gamma-glutamyl transferase (U/L) 127 108.8 ± 287.9 70 67.1 ± 52.1 0.232
Lactate dehydrogenase (U/L) 128 394.4 ± 149.9 71 397.0 ± 142.4 0.905

Proteins (g/L) 125 7.6 ± 0.6 64 7.4 ± 0.5 0.012
Albumin (g/L) 122 3.8 ± 0.4 64 3.8 ± 0.4 0.956

Creatine kinase (U/L) 123 140.0 ± 136.3 63 215.1 ± 283.7 0.016
Procalcitonin (ng/mL) 82 0.4 ± 1.1 67 0.6 ± 1.7 0.548
Prothrombine time (%) 116 86.5 ± 16.9 67 84.6 ± 17.6 0.488

INR 115 1.2 ± 0.5 67 1.3 ± 1.2 0.391
Activated partial thromboplastine

time (s) 63 34.7 ± 6.8 59 34.6 ± 4.9 0.904

Fibrinogen levels (mg/dL) 112 693.1 ± 192.3 61 626.2 ± 189.8 0.03
Hemoglobin (g/dL) 133 14.3 ± 1.9 72 14.3 ± 1.8 0.954

White blood cells count (×109/L) 116 11.9 ± 35.9 63 7.5 ± 6.3 0.339
Neutrophil cell count (×109/L) 131 6.2 ± 3.2 72 6.2 ± 3.7 0.948

Lymphocyte count (×109/L) 132 3.0 ± 23.3 72 1.2 ± 1.1 0.511
Monocyte count (×109/L) 130 0.5 ± 0.9 71 0.5 ± 0.3 0.667

C-reactive protein (mg/dL) 128 14.6 ± 11.0 71 14.5 ± 11.7 0.947
Interleukin-6 (pg/mL) 25 89.5 ± 104.9 16 183.7 ± 382.0 0.248
D-dimer level (pg/mL) 126 2.2 ± 7.9 64 2.9 ± 11.3 0.617
Platelet count (×109/L) 134 217.8 ± 90.1 74 195.7 ± 79.1 0.079
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Table 2. Cont.

Laboratory Findings

Name n Mean n Mean p-Value

Bilirubin (total) (mg/dL) 132 0.6 ± 0.3 73 0.6 ± 0.3 0.738
Creatinine (mg/dL) 133 1.1 ± 0.4 74 1.1 ± 0.5 0.973

Variables are presented as the mean ± standard deviation. eGFR: estimated glomerular filtration rate calcu-
lated using Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation; INR: international
normalized ratio.

The average COVID-19 Salamanca Risk Score, as previously described [13], was 30.7%
for the TCZ group and 28.7% for the MPD-TCZ group (p = 0.543), which means that
patients from both groups have a similar risk of severe outcomes according to this score
and therefore that these groups may be considered comparable due to similar baseline
risk. In addition, no statistically significant differences were found in any of the variables
composing this score between both treatment groups. The comparison of the mortality and
severity between the treatment groups matched to the score risk of patients is shown in
Table 3. Worse outcomes were associated with higher COVID-19 Salamanca Risk Score
in both groups, but patients in the MPD-TCZ group consistently had lower values for
death and death or intubation. In addition, and due to the differences in the distribution of
patients according to date of admission (Figure 2), data from Table 3 were also matched to
date of admission, with the average risk score for each period (as shown in Table 4). After
matching these data, we found that both mortality and combined end-point improved
over time. Indeed, until 21st March mortality exceeded 30% and combined-end point
reached 50% for both TCZ and MPD and TCZ alone but clearly declined thereafter for both
groups. The baseline risk as calculated with COVID-19 Salamanca Risk Score of patients
treated with tocilizumab also changed over time, although the average prognostic score
was similar for both treatment groups. Very few patients were treated with tocilizumab
alone after 26th March due to the change in protocol. A Mann–Kendall trend test showed
that the combined endpoint events had a decreasing significant trend with admission date
in both the TCZ group (p = 0.004) and the MPD-TCZ group (p = 0.007). Therefore, this
finding shows that patients had worse outcomes in the first weeks of the analyzed period
regardless of treatment type.

Table 3. Mortality and severity for each treatment group by risk score classification.

Tocilizumab Group Tocilizumab and Glucocorticoids
Group p-Value

Average COVID-19
Salamanca Risk Score

Death or
Intubation Death Death or

Intubation Death Death or
Intubation Death

0–8.8% 2/16 = 12.5% 1/16 = 6.3% 3/26 = 11.5% 0/26 = 0% 1.0 0.381
8.8–15.7% 3/11 = 27.3% 2/11 = 18.2% 4/31 = 12.9% 0/31 = 0% 0.353 0.064
15.7–28% 6/16 = 37.5% 2/16 = 12.5% 4/26 = 15.4% 2/26 = 7.7% 0.142 0.628
28–49.5% 9/15 = 60% 4/15 = 26.7% 7/27 = 25.9% 5/27 = 18.5% 0.047 0.698

49.5–100% 13/16 = 81.3% 11/16 = 68.8% 11/26 = 42.3% 8/26 = 30.8% 0.024 0.026
TOTAL 33/74 = 44.6% 20/74 = 27% 29/136 = 21.3% 15/136 = 11% <0.001 0.006

Therefore, univariate analysis and stratification according to baseline risk score cal-
culated by means of COVID-19 Salamanca Risk Score and date of admission showed that
patients who received tocilizumab and glucocorticoids had better outcomes than those
receiving tocilizumab alone, without significant differences in baseline risk score but with
differences regarding date of admission. In order to include other variables potentially as-
sociated with outcomes, machine learning models were built to test differences between the
two treatment groups by means of multivariable analysis. Figure 4 shows the ROC curve
for the machine learning models for predicting the treatment group of a patient. The best
model built only with the seven variables included in the COVID-19 Salamanca Risk Score
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(the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio,
patient age, the estimated glomerular filtration rate, procalcitonin levels, C-reactive protein
levels, updated Charlson comorbidity index scores, and lymphocytes levels) was regular-
ized logistic regression, which obtained an area under the ROC curve of 0.49 (0.40–0.57).
However, the best model built with all the clinical variables was the random forest classifier,
which obtained an area under the ROC curve of 0.60 (0.51–0.69), thus detecting statistically
significant differences between both groups. Therefore, multivariable analysis including
all potentially relevant variables confirmed a statistically significant difference between
both treatment groups regarding outcomes. The most relevant variables used for this
multivariable analysis as calculated by the mean decrease accuracy algorithm can be found
in Table 5. Variables that were not included in this table and were not significant in the
univariate analysis were less likely to impact mortality in our cohort, regardless of potential
differences between groups.

Table 4. Mortality and severity for each treatment group by date of admission.

Tocilizumab Tocilizumab and Glucocorticoids

Date of Admission

Average
COVID-19
Salamanca
Risk Score

Death or
Intubation Death

Average
COVID-19
Salamanca
Risk Score

Death or
Intubation Death

March 1st–March 21st 33.2% 22/40 = 55% 13/40 = 32.5% 44.4% 6/12 = 50% 4/12 = 33.3%

March 22nd–March 25th 34.1% 9/21 = 42.9% 7/21 = 33.3% 27.8% 5/21 = 23.8% 2/21 = 9.5%

March 26th–March 31st 25.7% 2/7 = 28.6% 0/7 = 0% 29.9% 7/39 = 17.9% 4/39 = 19.3%

April 1st–April 7th 11.5% 0/4 = 0% 0/4 = 0% 24.4% 5/30 = 16.7% 1/30 = 3.3%

April 8th–April 14th 4.3% 0/2 = 0% 0/2 = 0% 25.9% 6/34 = 17.6% 4/34 = 11.8%

TOTAL 30.8% 33/74 = 44.6% 20/74 = 27% 28.6% 29/136 = 21.3% 15/136 = 11%

Table 5. Relative importance of top 10 variables used by the random forest classifier according to
mean decrease accuracy algorithm (scaled to the most important one).

Variable Relative Importance

Mean arterial pressure 1.000
Magnesium levels 0.822

Protein levels 0.759
Lactate dehydrogenase (ldh) 0.651

Sodium levels 0.434
Hemoptysis 0.429

D-dimer levels 0.404
Neutrophil count 0.380

Aspartate aminotransferase (ast) levels 0.370
Lymphocyte count 0.369

In addition, we compared whether the date of admission was more relevant than
prognostic scores to differentiate between treatment groups. Figure 5 shows the ROC
curves for the SOFA score, machine learning severity score, and date of admission, when
used to distinguish between both treatment groups, showing no discriminant power for the
first two and great discriminant power for the latter. Therefore, we confirmed that the date
of admission was a significant variable potentially impacting outcome differences between
treatment groups.
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4. Discussion

In our study, we found that the combination treatment with glucocorticoids and TCZ,
when compared with TCZ alone, is associated with both reduced mortality and a reduced
risk of a composite endpoint of invasive mechanical ventilation and death. To allow
comparison, we selected two groups with similar baseline risk according to our previously
validated risk score, which made the presence of potential unknown confounders related to
patient characteristics unlikely [13]. Additionally, we used a machine learning methodology
to assess potential differences between groups after adjusting for other variables, and
we found that a random forest classifier including all variables confirmed a significant
difference between both treatment groups.

Our results are in line with data from other observational studies showing that this
combination therapy is associated with better outcomes when compared with either TCZ or
glucocorticoids alone [9,22–24]. In addition, subgroup analysis from the Recovery trial [10]
found that patients who were receiving glucocorticoids were more likely to benefit from
TCZ, and a similar result was reported from a recent meta-analysis including TCZ and other
IL-6 antagonists [8]. The efficacy of this combination, however, is not yet fully established
due to the lack of randomized trials and the presence of controversial results from other
studies (e.g., improved outcomes with TCZ alone instead of with combination therapy [25]).
Moreover, previous studies on this topic were prone to potential biases due to small sample
sizes and retrospective and observational study designs, despite the different statistical
techniques employed to reduce this risk, such as the inverse probability of the treatment
weights technique [9] or propensity score matching [24].

In line with this, although we found a significant difference between the treatments
after machine learning methodology, we also found that mortality improved over time
as an independent variable associated with better outcomes. In our study, the choice of
treatment for each patient was made according to the protocol at the time of admission:
patients treated in the early stages of the pandemic received only TCZ, while in later stages,
the protocol for treatment changed to include both TCZ and corticosteroids. Mortality
improvement over time may have therefore been due, at least in part, to different treatment
efficacies, as the random forest classifier also confirmed, but a potential confounding effect
for the date of admission has to be considered. Indeed, improved mortality over time has
already been described in other series of COVID-19 patients and may also be explained by
the increased knowledge of the disease, different population groups being affected by the
pandemic at different time points, and reduced hospital burden, regardless of treatment
type [11]. This would support the hypothesis of the potential role of the date of admission
as a confounding variable because such variable would be a risk factor for an effect (e.g.,
mortality) and would also be associated with the exposure subject of our study in the
population from which the effect derives, without being an intermediate step in the causal
pathway between the exposure and the effect that we have analyzed [26]. This variable is,
however, complex, since a higher mortality risk has also been described at times of high
incidence in comparison with inter-wave period [12] and an analysis of epidemiological
time delay dynamics showed a marked decrease in the time from hospitalization to death
and infection to death during high incidence periods when health care system was under
the most pressure [27]. In any case, taking into account this variable could be of great
interest since other studies that compared groups of patients with historical controls during
the peak of the first pandemic wave have also found worse outcomes for the cohort
admitted earlier in the pandemic [22,23]. Considering the striking differences in incidence
in different periods of the pandemic, our data, along with the results from other authors,
allow us to draw the conclusion that the date of admission should be considered as a
variable in observational studies during the COVID-19 pandemic. In addition, this variable
should be taken into account in other diseases when relevant temporal trends are present.

Another potential limitation of our study is the different sample sizes between groups
and the use of different types and doses of steroids. Although the Recovery trial [6,28]
used a low dose (6 mg) of dexamethasone for treatment, other studies, including a small
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randomized trial, have shown the efficacy of pulse therapy with other steroids [29–31],
such as MPD (which achieves higher lung tissue concentrations than dexamethasone).
Regarding dose, a recent systematic review has shown that COVID-19 patients may be
more likely to benefit from medium-high doses of steroids (defined as 90–250 mg/day or
1.5–4 mg/kg/day of MPD or an equivalent dose of other steroids), but higher or lower
doses were both associated with improved survival rates [32]. Therefore, despite the lack
of evidence regarding an optimal therapy, we do not think that combining the data of
patients with equivalent corticosteroid dosages may have a major impact on our results,
and other studies have also used this approach [24]. In any case, there is a lack of data on
the comparison of corticosteroid pulse therapy with low-dose oral corticosteroids. Finally,
although we only present data from the first wave of the pandemic, it is very unlikely
to have data to compare tocilizumab vs. tocilizumab and corticosteroids after the first
wave because corticosteroids became part of standard treatment in an early phase of
the pandemic.

5. Conclusions

In conclusion, our data support the potential utility of the combination of glucocorti-
coids with TCZ, in line with previous findings but outcomes were influenced by date of
admission regardless of treatment type and thus this variable as a potential source of bias
should be considered in observational studies on this topic. Rigorous randomized trials
are needed to assess the efficacy of TCZ and corticosteroids combined and to evaluate the
optimal corticosteroid dose for treatment.

Author Contributions: M.M., M.B.-G., P.-L.S., A.S.-P., J.S.-G., P.-I.D.-D. and J.-Á.M.-O. participated in
the design, analysis of data and interpretation of results, and drafted the manuscript; P.-L.S., A.S.-P.,
J.S.-G. and P.-I.D.-D. performed the machine-learning model; R.A.-M., E.M.-M., A.L.-B., B.R.-A. and
C.C. contributed to the design, acquisition of data, analysis, interpretation of results, and revised
the manuscript for intellectual important content; M.-E.S.-B., I.M., I.H.-G., G.H.-P., L.B., E.L.-S., C.R.,
A.-M.R., L.C.-R., F.B., D.E.-S., J.G.-A., M.S.-L., J.H., P.A., M.-J.S.-C., S.R.-R., A.-E.R.-G., M.-V.S.-H.,
R.B. and V.S.-M. collaborated in the collection of data, interpretation of results, and revising the
manuscript for intellectual important content. A.S.-P. and M.B.-G. are both first-authors of this
manuscript. J.-Á.M.-O. and M.M. are both senior-authors of this manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: Partially funded by Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (Madrid,
Spain) and FEDER Funds “Una manera de hacer Europa”, by grants CIBERCV CB16/11/00374 to
Pedro-L Sánchez and RD16/0017/0023 to Miguel Marcos, and by Institute of Biomedical Research of
Salamanca (IBSAL) through a special grant for COVID-19 research.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Ethics Committee of the University Hospital of
Salamanca (2020/03/470), date of approval: 2 April 2020.

Informed Consent Statement: Institutional approval was provided by the Ethics Committee of the
University Hospital of Salamanca (2020/03/470) and the need for informed consent was waived.

Data Availability Statement: Relevant anonymized patient level data are available on reasonable
request. Code to develop machine learning model is already available.

Acknowledgments: We are indebted to Rafael Borras, which passed away after the writing of this
manuscript, for his inspiring leadership and hard work during COVID-19 pandemic. We acknowl-
edge to María-Victoria Mateos and José-Ramón González-Porras from the Hematology Department
of the University Hospital of Salamanca as well as to all doctors and healthcare personnel involved
in the COVID-19 Working Team from the Internal Medicine Department and others departments of
the University Hospital of Salamanca including: José-Ignacio Martín-González, María-José García-
Rodríguez, Ángela Romero-Alegría, Nora Gutiérrez-San Pedro, Leticia Moralejo-Alonso, José-Ignacio
Herrero-Herrero, Antonio Chamorro, Mercedes Martín-Ordiales, Celestino Martín-Álvarez, Felipe
Álvarez-Navia, Ronald Macías, Alejandro Rolo, Juan-Francisco Soto, Laura Manzanedo, Luis Seisde-
dos, Juan-Miguel Manrique, Alfredo-Javier Collado, Ana Rodríguez, Silvia Ojea, José-María Bastida,



J. Clin. Med. 2022, 11, 198 14 of 15

María Díez-Campelo, Alberto Hernández-Sánchez, Luis-Mario Vaquero, Cristina de-Ramón, Estefanía
Pérez, Borja Puertas, Daniel Presa, Ana Yeguas, Ana África, María-Victoria Coral, Rosa Tejera, Laura
Gil, Javier Fernández, Elisa Acosta, Sonia Pastor, Marta Fonseca, María-de-los-Ángeles Pérez-Nieto,
Ernesto Parras, María Cartagena, Víctor Barreales, Óscar Humberto, María Bartol, Olga Compán, Ana
Ramón, Raquel Rodríguez, Silvia Ruiz, Sonsoles Garrosa, Alexis-Alan Rodrigo, Sara Alonso, Raquel
Domínguez, Felipe Peña, María García-Duque, Ana Menéndez, Edgar Marcano-Millán, María-Teresa
Moreiro-Barroso, Noelia Cubino-Bóveda, María-Luisa Pérez-García, Sonia Peña-Balbuena, Eduardo
Sobejano-Fuertes, Sandra Inés, Miriam López-Parra, Catalina Lorenzo, Adela Carpio, David Polo-
San-Ricardo, and all the staff members. We want also to thank all COVID-19 patients admitted at the
University Hospital of Salamanca and their families.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and

epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [CrossRef]
2. Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak

in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323,
1239–1242. [CrossRef]

3. Gustine, J.N.; Jones, D. Immunopathology of Hyperinflammation in COVID-19. Am. J. Pathol. 2021, 191, 4–17. [CrossRef]
[PubMed]

4. Dorward, D.A.; Russell, C.D.; Um, I.H.; Elshani, M.; Armstrong, S.D.; Penrice-Randal, R.; Millar, T.; Lerpiniere, C.E.B.;
Tagliavini, G.; Hartley, C.S.; et al. Tissue-Specific Immunopathology in Fatal COVID-19. Am. J. Respir. Crit. Care Med. 2021, 203,
192–201. [CrossRef] [PubMed]

5. Hertanto, D.M.; Wiratama, B.S.; Sutanto, H.; Wungu, C.D.K. Immunomodulation as a Potent COVID-19 Pharmacotherapy: Past,
Present and Future. J. Inflamm. Res. 2021, 14, 3419–3428. [CrossRef] [PubMed]

6. Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.;
Cavalcanti, A.B.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill
Patients with COVID-19: A Meta-analysis. JAMA J. Am. Med. Assoc. 2020, 324, 1330–1341. [CrossRef]

7. Ghosn, L.; Chaimani, A.; Evrenoglou, T.; Davidson, M.; Graña, C.; Schmucker, C.; Bollig, C.; Henschke, N.; Sguassero, Y.;
Nejstgaard, C.H.; et al. Interleukin-6 blocking agents for treating COVID-19: A living systematic review. Cochrane Database Syst.
Rev. 2021, 2021, CD013881. [CrossRef]

8. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Domingo, P.; Mur, I.; Mateo, G.M.;
Gutierrez, M.D.M.; Pomar, V.; de Benito, N.; Corbacho, N.; Herrera, S.; Millan, L.; et al. Association between Administration
of IL-6 Antagonists and Mortality among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 449–518.
[CrossRef]

9. Ruiz-Antorán, B.; Sancho-López, A.; Torres, F.; Moreno-Torres, V.; de Pablo-López, I.; García-López, P.; Abad-Santos, F.; Rosso-
Fernández, C.M.; Aldea-Perona, A.; Montané, E.; et al. Combination of Tocilizumab and Steroids to Improve Mortality in Patients
with Severe COVID-19 Infection: A Spanish, Multicenter, Cohort Study. Infect. Dis. Ther. 2021, 10, 347–362. [CrossRef] [PubMed]

10. Abani, O.; Abbas, A.; Abbas, F.; Abbas, M.; Abbasi, S.; Abbass, H.; Abbott, A.; Abdallah, N.; Abdelaziz, A.; Abdelfattah, M.; et al.
Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial.
Lancet 2021, 397, 1637–1645. [CrossRef]

11. Dennis, J.M.; McGovern, A.P.; Vollmer, S.J.; Mateen, B.A. Improving Survival of Critical Care Patients with Coronavirus Disease
2019 in England: A National Cohort Study, March to June 2020. Crit. Care Med. 2021, 49, 209–214. [CrossRef] [PubMed]

12. Xiong, X.; Wai, A.K.C.; Wong, J.Y.H.; Tang, E.H.M.; Chu, O.C.K.; Wong, C.K.H.; Rainer, T.H. Impact of varying wave periods
of COVID-19 on in-hospital mortality and length of stay for admission through emergency department: A territory-wide
observational cohort study. Influ. Other Respir. Viruses 2021. [CrossRef] [PubMed]

13. Marcos, M.; Belhassen-García, M.; Sánchez-Puente, A.; Sampedro-Gomez, J.; Azibeiro, R.; Dorado-Díaz, P.-I.; Marcano-Millán, E.;
García-Vidal, C.; Moreiro-Barroso, M.-T.; Cubino-Bóveda, N.; et al. Development of a severity of disease score and classification
model by machine learning for hospitalized COVID-19 patients. PLoS ONE 2021, 16, e0240200. [CrossRef] [PubMed]

14. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982,
143, 29–36. [CrossRef] [PubMed]

15. Stuart, E. Matching methods for causal inference: A review and a look forward. Stat. Sci. 2010, 25, 1–21. [CrossRef]
16. Beretta, L.; Santaniello, A. Nearest neighbor imputation algorithms: A critical evaluation. BMC Med. Inform. Decis. Mak. 2016, 16,

197–208. [CrossRef]

http://doi.org/10.1016/S0140-6736(20)30251-8
http://doi.org/10.1001/jama.2020.2648
http://doi.org/10.1016/j.ajpath.2020.08.009
http://www.ncbi.nlm.nih.gov/pubmed/32919977
http://doi.org/10.1164/rccm.202008-3265OC
http://www.ncbi.nlm.nih.gov/pubmed/33217246
http://doi.org/10.2147/JIR.S322831
http://www.ncbi.nlm.nih.gov/pubmed/34321903
http://doi.org/10.1001/jama.2020.17023
http://doi.org/10.1002/14651858.CD013881
http://doi.org/10.1001/JAMA.2021.11330
http://doi.org/10.1007/s40121-020-00373-8
http://www.ncbi.nlm.nih.gov/pubmed/33280066
http://doi.org/10.1016/S0140-6736(21)00676-0
http://doi.org/10.1097/CCM.0000000000004747
http://www.ncbi.nlm.nih.gov/pubmed/33105150
http://doi.org/10.1111/irv.12919
http://www.ncbi.nlm.nih.gov/pubmed/34643047
http://doi.org/10.1371/journal.pone.0240200
http://www.ncbi.nlm.nih.gov/pubmed/33882060
http://doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://doi.org/10.1214/09-STS313
http://doi.org/10.1186/s12911-016-0318-z


J. Clin. Med. 2022, 11, 198 15 of 15

17. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery:
New York, NY, USA, 2016; pp. 785–794.

18. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
19. Airola, A.; Pahikkala, T.; Waegeman, W.; De Baets, B.; Salakoski, T. An experimental comparison of cross-validation techniques

for estimating the area under the ROC curve. Comput. Stat. Data Anal. 2011, 55, 1828–1844. [CrossRef]
20. Nadeau, C.; Bengio, Y. Inference for the generalization error. Mach. Learn. 2003, 52, 239–281. [CrossRef]
21. Bouckaert, R.R. Choosing between two learning algorithms based on calibrated tests. In Proceedings of the Twentieth International

Conference on Machine Learning (ICML, 2003), Washington, DC, USA, 21–24 August 2003; pp. 51–58.
22. Ramiro, S.; Mostard, R.L.M.; Magro-Checa, C.; Van Dongen, C.M.P.; Dormans, T.; Buijs, J.; Gronenschild, M.; De Kruif, M.D.;

Van Haren, E.H.J.; Van Kraaij, T.; et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus
supportive care only in patients with COVID-19-associated cytokine storm syndrome: Results of the CHIC study. Ann. Rheum.
Dis. 2020, 79, 1143–1151. [CrossRef]

23. Van den Eynde, E.; Gasch, O.; Oliva, J.C.; Prieto, E.; Calzado, S.; Gomila, A.; Machado, M.L.; Falgueras, L.; Ortonobes, S.;
Morón, A.; et al. Corticosteroids and tocilizumab reduce in-hospital mortality in severe COVID-19 pneumonia: A retrospective
study in a Spanish hospital. Infect. Dis. 2021, 53, 291–302. [CrossRef]

24. López-Medrano, F.; Asín, M.A.P.-J.; Fernández-Ruiz, M.; Carretero, O.; Lalueza, A.; de la Calle, G.M.; Caro, J.M.; de la Calle, C.;
Catalán, M.; García-García, R.; et al. Combination therapy with tocilizumab and corticosteroids for aged patients with severe
COVID-19 pneumonia: A single-center retrospective study. Int. J. Infect. Dis. 2021, 105, 487–494. [CrossRef]

25. Rodríguez-Baño, J.; Pachón, J.; Carratala, J.; Ryan, P.; Jarrín, I.; Yllescas, M.; Arribas, J.R.; Berenguer, J.; Muñoz, E.A.;
Gil Divasson, P.; et al. Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state:
A multicentre cohort study (SAM-COVID-19). Clin. Microbiol. Infect. 2021, 27, 244–252. [CrossRef]

26. Delgado-Rodríguez, M.; Llorca, J. Bias. J. Epidemiol. Community Health 2004, 58, 635–641. [CrossRef] [PubMed]
27. Ward, T.; Johnsen, A. Understanding an evolving pandemic: An analysis of the clinical time delay distributions of COVID-19 in

the United Kingdom. PLoS ONE 2021, 16, e0257978. [CrossRef] [PubMed]
28. Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Phil, D.; Staplin, N.; Brightling, C.; Med, F.; et al.

Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [CrossRef]
29. Ruiz-Irastorza, G.; Pijoan, J.-I.; Bereciartua, E.; Dunder, S.; Dominguez, J.; Garcia-Escudero, P.; Rodrigo, A.; Gomez-Carballo, C.;

Varona, J.; Guio, L.; et al. Second week methyl-prednisolone pulses improve prognosis in patients with severe coronavirus disease
2019 pneumonia: An observational comparative study using routine care data. PLoS ONE 2020, 15, e0239401. [CrossRef]

30. Cusacovich, I.; Aparisi, Á.; Marcos, M.; Ybarra-Falcón, C.; Iglesias-Echevarria, C.; Lopez-Veloso, M.; Barraza-Vengoechea, J.;
Dueñas, C.; Martínez, S.A.J.; Rodríguez-Alonso, B.; et al. Corticosteroid Pulses for Hospitalized Patients with COVID-19: Effects
on Mortality. Mediat. Inflamm. 2021, 2021, 6637227. [CrossRef] [PubMed]

31. Edalatifard, M.; Akhtari, M.; Salehi, M.; Naderi, Z.; Jamshidi, A.; Mostafaei, S.; Najafizadeh, S.R.; Farhadi, E.; Jalili, N.; Esfahani, M.;
et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: Results from a randomised
controlled clinical trial. Eur. Respir. J. 2020, 56, 2002808. [CrossRef]

32. Li, J.; Liao, X.; Zhou, Y.; Wang, L.; Yang, H.; Zhang, W.; Zhang, Z.; Kang, Y. Comparison of Associations between Glucocorticoids
Treatment and Mortality in COVID-19 Patients and SARS Patients. Shock, 2021; in press. [CrossRef]

http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.csda.2010.11.018
http://doi.org/10.1023/A:1024068626366
http://doi.org/10.1136/annrheumdis-2020-218479
http://doi.org/10.1080/23744235.2021.1884286
http://doi.org/10.1016/j.ijid.2021.02.099
http://doi.org/10.1016/j.cmi.2020.08.010
http://doi.org/10.1136/jech.2003.008466
http://www.ncbi.nlm.nih.gov/pubmed/15252064
http://doi.org/10.1371/journal.pone.0257978
http://www.ncbi.nlm.nih.gov/pubmed/34669712
http://doi.org/10.1056/nejmoa2021436
http://doi.org/10.1371/journal.pone.0239401
http://doi.org/10.1155/2021/6637227
http://www.ncbi.nlm.nih.gov/pubmed/33776574
http://doi.org/10.1183/13993003.02808-2020
http://doi.org/10.1097/shk.0000000000001738

	Introduction 
	Materials and Methods 
	Population and Study Design 
	Data Collection 
	Univariate Analysis 
	Machine Learning Severity Score Comparison by Means of COVID-19 Salamanca Risk Score 
	Multivariate Analysis through Machine Learning Methodology 

	Results 
	Discussion 
	Conclusions 
	References

