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Abstract: Purpose: Computer-assisted tissue image analysis (CATIA) enables an optical biopsy of
human tissue during minimally invasive surgery and endoscopy. Thus far, it has been implemented
in gastrointestinal, endometrial, and dermatologic examinations that use computational analysis
and image texture feature systems. We review and evaluate the impact of in vivo optical biopsies
performed by tissue image analysis on the surgeon’s diagnostic ability and sampling precision and
investigate how operation complications could be minimized. Methods: We performed a literature
search in PubMed, IEEE, Xplore, Elsevier, and Google Scholar, which yielded 28 relevant articles.
Our literature review summarizes the available data on CATIA of human tissues and explores the
possibilities of computer-assisted early disease diagnoses, including cancer. Results: Hysteroscopic
image texture analysis of the endometrium successfully distinguished benign from malignant condi-
tions up to 91% of the time. In dermatologic studies, the accuracy of distinguishing nevi melanoma
from benign disease fluctuated from 73% to 81%. Skin biopsies of basal cell carcinoma and melanoma
exhibited an accuracy of 92.4%, sensitivity of 99.1%, and specificity of 93.3% and distinguished
nonmelanoma and normal lesions from benign precancerous lesions with 91.9% and 82.8% accuracy,
respectively. Gastrointestinal and endometrial examinations are still at the experimental phase.
Conclusions: CATIA is a promising application for distinguishing normal from abnormal tissues
during endoscopic procedures and minimally invasive surgeries. However, the efficacy of computer-
assisted diagnostics in distinguishing benign from malignant states is still not well documented.
Prospective and randomized studies are needed before CATIA is implemented in clinical practice.

Keywords: tissue image analysis; tissue texture image analysis; optical biopsies; computer-aided diagnosis

1. Introduction

Clinicians and computer scientists have been exploring the possibilities of using
computer-assisted tissue image analysis (CATIA) in distinguishing normal from abnormal
tissues. The fast development and application of endoscopy for diagnosis and treatment in
daily medical practice, and the use of high-definition video recording facilitate research on
CATIA [1]. Processing evaluation is based on a manual or automated image interpretation
that filters artefacts from a database of images. We reviewed existing studies to evaluate
the potential of performing optical biopsies of human tissues and the reliability of the
results, evaluated the gained experience from CATIA on various tissues, and explored the
possibilities of implementing tissue image texture analysis in daily medical practice within
the context of computer-assisted diagnostics (CAD) during minimally invasive surgery. In
the studies reviewed, tissue image processing techniques focus on three aspects. Tissue
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image features, colour-spectrum characterization and filtering as well as algorithm and
statistical evaluation during or after a patient’s endoscopic procedure (Table 1).

Table 1. Summary and Indexing of tissue image processing terminology and techniques.

Image Processing Evaluation:
Manual or automated image interpretation that filters artefacts from a database of images, e.g.,
endoscopic surgery video summary.

Colour-spectrum, Characterization and Filtering:
Image colour texture content of the region of interest (ROI).
Colour texture features are extracted over different colour spaces or hue saturation values (HSV).
(1) Red green blue (RGB), (2) Luminance (Y), (3) Chrominance (red-yellow)/chrominance
(blue-yellow) (YCrCb).
For each colour space component, a standard grayscale feature is used and can be widely applied
for texture characterization according to different texture features.

Tissue image features
There are 26 texture features from each colour component.
(i) Statistical Features (SF): (1) Mean, (2) Variance, (3) Median, (4) Energy, (5) Skewness,
(6) Kurtosis, (7) Mode, (8) Entropy.
(ii) Spatial Gray Level Dependence Matrices (SGLDM) (1) Angular second moment, (2) Contrast,
(3) Correlation, (4) Homogeneity, (5) Variance, (6) Entropy, (7) Sum Entropy, (8) Sum Average,
(9) Sum Variance, (10) Difference Entropy, (11) Difference Variance, (12) Information Measurement
of Correlation 1, (13) Information Measurement of Correlation 2.
(iii) Gray Level Difference Statistics (GLDS): (1) Mean, (2) Entropy, (3) Contrast, (4) Homogeneity,
(5) Energy.

Algorithm and Statistical evaluation
Training and testing to distinguish normal from abnormal Regions of Interest (ROI).
CATIA system performance was evaluated using SVM algorithm and probabilistic neural networks (PNN).
C-SVM network was used to investigate the Gaussian radial basis function (RBF) kernel and the
linear kernel.
Principal component analysis (PCA) reforms a dataset into a bilinear model of linear independent
variables and uses a mathematical equation to explain the variation within the dataset.
Vectors within the matrix are reshaped into images that show the spatial distribution forming
abundance images, which represent the abundance of each vector for each pixel.
Abundance images are then plotted in a colour-scaled image and can be combined with
prominent differences between the samples highlighted.
Partial least squares discriminant analysis (PLS-DA) is a supervised data reduction technique.
It uses a versatile algorithm that can predict and describe modelling as well as select
discriminative variables.

Examining suspicious tissue without an invasive procedure by in vivo optical biopsy
with tissue image analysis has several advantages: preventing vascular and tissue injury,
haemorrhage, haematoma, spread of malignant cells, and risk for infection and scarring. In
addition, CATIA allows for comparing suspicious tissue to its neighbouring healthy regions.
Thus far, final diagnosis and treatment follows histopathologic examination. Nevertheless,
tissue image analysis may guide the physician during biopsy sampling by providing a
high-risk or low-risk tissue malignancy score. CATIA could serve as a ‘second opinion’,
augmenting the physician’s decision on the biopsy sampling location and allowing a
preliminary tissue image result. In the suspicion of malignancy, the histopathological
examination can be prioritised. Moreover, tissue image analysis could decrease the risk for
error, especially in difficult and suspicious cases with extensive visual tissue variability [2].

Tissue images during minimally invasive surgery and endoscopic images during
colonoscopy and gastroscopy for CATIA could be manually isolated and evaluated when
an abnormality or lesion is suspected. An automated system could also be used to define
frames of normal and abnormal characteristics in endoscopic segments with different
visual appearance [3]. An expert might easily choose the frames that need further process-
ing, though the inexperienced practitioner might find this more difficult. Specific tissue
segments could be isolated from a video, and groups of frames with suspicious patho-
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logic features could be visualized and selected for CATIA. Clustering and classification
techniques facilitate the selection of automated images and allows surveillance of defined
targets [1]. Skin, gastrointestinal tract [GIT], larynx, and endometrial [4,5] tissues were
analysed for malignancy by optical biopsies.

The purpose of the study was to provide a review of computer-assisted tissue image
analysis studies during minimally invasive surgery and endoscopy. In addition, we review
and evaluate the impact of in vivo optical biopsies performed by tissue image analysis on
the surgeon’s diagnostic ability and sampling precision.

2. Materials and Methods

We reviewed the scientific literature for articles in which CATIA was used to distin-
guish normal from abnormal human tissues, screen for high-risk cancer cases, and assist
in diagnosis and treatment. Using the keywords ‘computer-assisted tissue-image analy-
sis’, ‘computer-aided-diagnosis-systems’, ‘tissue-texture-analysis’, ‘tissue texture image
analysis’, ‘endoscopy’ and by filtering with words such as ‘computer-assisted-diagnosis’
and ‘tissue-texture-analysis’, we searched the scientific databases PubMed, IEEE, Xplore,
Elsevier, and Google Scholar for relevant articles from 2010 to 2020. Last day of access
was the 16th of July 2021. Our search further specifically isolated the articles in the disci-
plines of dermatology, gastroenterology, otorhinolaryngology (ENT), and gynaecology. No
automation tools were used in the process.

Articles which did not analyse tissue, reported no tissue texture parameters, as well
as any article dealing with numerical measurements or algorithms were excluded from
our study. Articles dealing with computing and virtualization were disregarded from our
review as well as more complicated, machine learning techniques using colour spectra and
filters. However, papers that used tissue texture analysis and augmented their diagnostic
methodology using colour spectra or other technologies were included in this review.
The isolated articles included digital analysis form, computation analysis, texture image
analysis, or any other form of digital CAD specifically on tissue. Each of these forms
of analysis use different tools and methods of scrutiny and, therefore, an individualized
approach was performed to isolate the relevant articles as described in Figure 1. A total of
28 relevant articles were selected on the basis of CAD methods used and tissue examined,
the data are summarized in Tables 2–4 in order to be assessed and compared. This includes
references, CAD method, sample-size, results, conclusions, and critical comments.

In most studies, the numerical and quantifiable values produced by tissue texture
analysis and interpreted by algorithms came from endoscopic observation of a suspected
abnormal tissue region and were correlated with the histopathologic results of a tissue
biopsy under light microscopy. Most studies used the algorithms derived from correlating
CATIA results with histopathologic criteria for malignancy in individual tissues and
relied on computer-assisted diagnostic methods and tissue analysis to distinguish pre-
malignant from malignant tissues based on repetition, number of patients, and abnormal
tissue variability.

All images used in the studies were of human tissue. The images were captured by
photography in dermatologic and histopathologic cases, by endoscopy with an external and
capsule camera in the gastrointestinal cases, and with a 3-chip camera during hysteroscopy
and laparoscopy. All studies focused on identifying neoplastic disease by using CATIA to
compare tissue image optical criteria with histopathologic results.
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Table 2. Imaging process evaluating normal and abnormal tissue for dermatological pathologies.

Journal Technique Aim Sample Methodology Results Critical comments

Intl J of Scient
& Engineering
Research
(IJSER) [5]

CATTA of
microscopic
images

Skin Cancer Dg
(Squamous and
Basal cell
Carcinomas)

80 images of skin
BMP 24 bit/pixel
1280 × 1024 pixels
Blocks Size = 75–225 pixels

Compare normal and abnormal tissue
(1) Pre-processing: RGB 2 GRAY
- liner image stretching
(2) Image ROIs partitioning
(3) Discriminating texture features
Fifty samples used for training the
minimum distance classifier method

Combinations of textural
types of features
200 × 200 pixels recognition
provided
89.92% for allocation
accuracy 93.75% for
diagnosis accuracy

Small number of samples
Image Stretching = loss of imaging info
Partitioning = increase processing
time and computational resources
Image segmentation may increase the
diagnostic accuracy

Photomed
Laser Surgery,
2012 [6]

Raman
spectroscopy
and PCA
algorithm

Discrimination
of BCC and
melanoma from
normal skin
biopsies
in vitro

Histo skin images:
145 spectra
Normal 30
BCC 96
Melanoma 19

Raman spectroscopy coupled to a
fiber optic Raman probe.
PCA and Elucidation distance
classify samples according to
histopathology

Differentiate normal from BCC
and melanoma with accuracy
92.4%, sensitivity 99.1%, and
specificity 93.3%

Raman spectroscopy can discriminate
colour band frequency and can
possibly be combined with any
CATIA method adding to the
sensitivity of the test. However, the
technical complexity and procedural
approach seem to be the main
obstacles to its implementation.

Lasers in
Surgery and
Medicine,
2015 [7]

Raman
spectroscopy
and
multivariate
statistics

Discrimination
between Mg
and Bg skin
lesions prior to
surgery

In vivo image results
compared to
histopathology
250 normal images and
14 Bg, 133 BCC
30 SCC, 57 AK

PCA/DA and PLS/DA based on
Euclidean Quadratic space distances
were used to discriminate between
Bg and Mg tissues using RS

Non melanoma versus
normal and Bg precancerous
lesions; the discrimination
accuracy
was 91.9% and 82.8%,
respectively

Standard methodology microscopy
Histopathological sections analysis

Series in Bio
Engineering
[8]

Illumination
correction
and feature
extraction on
skin lesion
images

Skin lesion
analysis
Melanoma and
nevi

Overall 206 standard
camera images
ROI 200 × 200 pixels
119 malignant
melanomas and 87 nevi

(1) Multistage illumination
correction algorithm
(2) Histogram equalization
(3) Feature extraction method
(4) SVM model

Accuracy 72.52–81.26% for
3 different feature sets
Combination between the
features and framework
provide better results

Data set is fair
Conclusions are confusing
Weak methodology (ground truth
values, algorithms for nevi versus
melanoma are not acknowledged)
Insufficient data analysis
Discrimination between malignant
melanoma and nevi is not clear

Index: CATTA = Computer-aided tissue texture analysis, PCA = Principal component analysis algorithm, DA = discriminant analysis, PLS = Partial least squares, BCC = Basal cell carcinoma, ROIs = region of
interest, BMP = Bitmap format, AK = actinic keratosis, Bg = benign, Histo = histopathology.
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Table 3. CATA used in endoscopic procedures for the Gastrointestinal tract.

Journal Targeted
Organ Technique Aim Sample Methodology Results Critical Comments

Alinent Pharmacol
Ther [2] Colon

Colonoscopy
vs. chromo
endoscopy

Dg of dysplasia in
patients with IBD

6 studies
1277 patients
with IBD
(Review paper)

Comparison of std colo/py to
Chromo endoscopy to detect
dysplasia controlled by histo
Meta-analysis

91.3% specificity, 93.9%
sensitivity for tumor detection

Not reported
1. Tu size detection ability
2. Texture features values
3. Small no of frames

World Journal
of Gastrology [9]

Celiac
Disease
Diagnosis

Endoscopy and
Computer Aided
Texture Analysis
(CATTA)

Detection of
Intestinal mucosa
alterations due to
celiac disease

290 children
2835 duodenum

Endoscopic images recorded
tissue alteration by modified
immersion technique compared
to histopathology Bx

CATTA reduced Dg error up
to 31%
Dg accuracy improved by 10%

Small patient numbers
Low statistical power
analysis
Weak study design

BioMedical
Engineering
OnLine [10]

Colon polyps
and colitis

Chromo
endoscopy

Detection Rate of
polyp and
ulcerative colitis
Procedure time

75 patients
586 images

White light endoscopy (WLE)
followed by CE (Indigo
Carmine) colonoscopy for UC
surveillance

×30 ability
to detect metaplasia
72% in pre-CE-IM and
63% in post-CE-IM

CATTA improves
diagnostic accuracy
Well designed study

Gastrointest
Endosc. [11] Esophagus

3D optical
coherence
tomography for
CE-IM

Detection of
esophageal
metaplasia

patients
18 pre-treatment
16 post-RFA tx

Identification of metaplasia
before and after therapy

Chromo endoscopy is
superior to light endoscopy
by 7% detecting dysplastic
lesions

Heterogeneous samples
More studies needed

BioMedEng
OnLine [12] Small bowel

Endoscopic
capsule video
multiscale
wavelet

Detection of small
Bg or Mg bowel
tumors

14 patients
700 frames

Multiscale texture features
analysis
Wavelet transformation
Image Classification

Dysplasia detected
by WLE at 9.3% and
WLE and CE at 21.3%.
Improved Median colo/copy
withdrawal time

high rates of polyp
detection
enhanced dysplasia
detection

Index: Dg = Diagnosis, IBD = Inflammatory bowel disease, Bg = benign, Mg = malignant, Chromo endoscopy = Methylene Blue or Indigo Carmine, RFA tx = radiofrequency ablation treatment. Std = standard,
Histo = histopathology, colo/py = colonoscopy, Bx = biopsies, Tu = tumor, CE-IM = Complete Eradication of Intestinal Metaplasia.
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Table 4. Technical papers for image processing techniques.

Journal Target Organ Technique Aim Sample Methodology Results Critical Comments

BioMedical
Engineering
OnLine, 2007 [10]

A standardized protocol
for texture feature
analysis of endoscopic
images in gynecological
cancer

Endoscopy
video Gynecology

Normal 209 vs.
209 abnormal
ROIs

Texture Features
Colour correction
Gamma correction
Calibration
Viewing conditions

Gamma correction
improve the comparison
between different
viewing conditions.
Texture features can
differentiate normal vs.
abnormal ROIs

More images can be
imported for further
analysis

CBMS, 19th IEEE
International
Symposium on
IEEE, 2006 [13]

Technology for medical
education, Research, and
Disease Screening by
Exploitation of
Biomarkers in a Large
Collection of Uterine
Cervix Images

Cervical
images colour
features
discrimination

Gynecology

Classification using
Gaussian mixture model,
Lab colour and one
geometrical feature to
discriminate clinically
significant images.

Image pre-processor
used to remove specular
reflecting artifacts with
90% success rates

New camera projection
software with an
algorithm to infer the
rotation of the lens
improved boundary
estimation and image
conversions

IEEE EMBS
2009 [14]

Texture-based
Computer-Assisted
Diagnosis for fiberscope
Images

GIT endoscopy
Fiberscope
images

For Improving
diagnosis in GIT
Endoscopy
Images before
and after CATA

350 esophagus
129 gastric mucosa
164 Barret
esophagus
158 squamous
epithelium

A new CAD system that
filters the artifacts first
with an image filtering
algorithm, then applies a
colour texture algorithm.
Evaluation is based on an
image database with
artificially rendered fiber
artifacts

Similar to highest
accuracy achieved by
standard original images
and Gabor filter by 80%
No improvement after
filtered procedure

Insufficient
pre-processing
More tissue texture
feature algorithms can be
applied

IEEE International
Conference on
Image Processing,
2006 [15]

Hierarchical
Summarization of
Diagnostic Hysteroscopy
Videos

Hysteroscopy
video Gynecology 12 hysteroscopy

videos
Video summarization
Video segmentation

False positive 26% for
11 videos

Small sample
More videos

IEEE EMBS,
2010 [16]

An Integrated Port
Camera and Display
System for Laparoscopy

Port camera Gynecology

The Powered port camera
integrating visual system
components with a
cannula port

Results show that ex
vivo tissue identification
and acquisition was as
good as the traditional
methods

New device:
(1) reduced the
invasiveness of the
laparoscopic procedure
(2) reduced its cost
(3) improved the
laparoscopic procedure
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A few studies compared normal with abnormal regions of interest captured from the
same images and compared to histopathologic findings. Pre-processing procedures were
used for reducing image noise, such as γ-correction algorithm (Digital image processing
algorithm that compensates for the nonlinear effect of signal transfer between electrical and
optical devices) and liner image stretching (Point operation in digital image processing to
improve an image by stretching the range of intensity values to a desired range of values).
Furthermore, image partitioning (Image segmentation to smaller image parts), was used
to select the Regions of Interest (ROIs). Image discriminating texture features (Method to
extract relevant information from an image), used in all studies, tried to isolate the best
single algorithm or combination of algorithms to distinguish benign from malignant tissue.
Manual image segmentation was performed in most studies. Automated segmentation
was reported in gastrointestinal videos. Texture and colour discrimination characteristics,
multistage illumination (different image scale sizes), correction algorithms (Digital image
processing luminance correction to a range of values), histogram equalization (Method
that normalises the histogram values to a specific range of values), and support vector
machine (SVM) algorithms (Supervised machine learning algorithm that solves two group
classification problems) were the main tools used for image analysis.

3. Results
3.1. Assessing Dermatological Abnormalities

Skin diseases evaluated by using CATIA focus on distinguishing malignant from
benign conditions. One study on basal cell carcinoma (BCC), two on squamous cell
carcinoma (SCC), three on melanoma, one on vitiligo, and one on skin lesions were reported
(Table 2). CATIA distinguished normal from benign and malignant tissues with an accuracy
of 90% and diagnostic accuracy of 94%, among 80 skin samples of BCC and SCC. In
another study of tissue image analysis, the accuracy of distinguishing nevi melanoma from
benign disease was from 73% to 81% [4–6]. Raman spectroscopy and principal component
algorithm were used on skin images and distinguished normal from BCC and melanoma
with an accuracy of 92.4%, sensitivity of 99.1%, and specificity of 93.3%. In another study
focused on texture image analysis of melanoma versus normal and benign precancerous
lesions, discrimination accuracy was 91.9% and 82.8%, respectively [7].

The principal component analysis (PCA) algorithm, used in microscopy images from
histopathologic sections to discriminate 145 different spectra of skin biopsies between
BCC and melanoma, exhibited accuracy of 92.4%, sensitivity of 99.1%, and specificity of
93.3% [6,8]. A combination of PCA-hLDA and Raman spectroscopy, followed by tissue lin-
ear discriminant analysis classification models, demonstrated accuracy of 86%, sensitivity of
100%, and specificity of 66% in differentiating oral cavity SCC of the tongue [17]. Computer-
assisted tissue texture analysis (CATTA) of 80 microscopy images of 200× 200 pixels recog-
nition against BCC provided 89.92% for allocation accuracy and 93.75% for diagnosis
accuracy in locating the region of interest (ROI) for the lesion and discriminating texture
features [5]. PCA’s use was further recognized in BCC and melanoma discrimination from
normal skin biopsies in vitro. PCA and elucidation distance classified samples according
to histopathologic features with an accuracy of 92.4%, sensitivity of 99.1%, and specificity
of 93.3%, by using Raman spectroscopy coupled with a fiber optic Raman probe [6,8].

Similarly, Silveria FL et al., 2015, successfully discriminated non melanoma skin lesions
from non tumour human skin tissues in vivo before surgery by using Raman spectroscopy
and multivariate statistics [7]. PCA/DA and PLS/DA, based on mathematical metric space
distances, accurately distinguished non melanoma from normal and benign precancerous
lesions with 91.9% and 82.8% accuracy, respectively. High-frequency ultrasound and
ultrasound elastography (USE) were used to distinguish benign from malignant skin
lesions, and histopathologic evaluation for malignancy was correlated with a ratio of
compressibility. In characterizing these lesions as malignant, a diagnostic value of 3.0 to
3.9 resulted in 100% sensitivity and specificity [18]. Computerized algorithms were also
used in the primary diagnosis and recurrence management of vitiligo. Vitiligo patients’
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primary treatment efficacy was assessed by the digital method (MPR-CDIAS) and proved
to perform objective analysis of repigmentation or depigmentation in vitiligo skin lesions
in response to treatment.

3.2. Assessing Gastrointestinal Track Abnormalities

Most CATIA studies we reviewed concern research on GIT endoscopy (Table 3). Tissue
image analysis from a wireless endoscopy capsule of 14 patients’ small bowels, reported
high specificity and sensitivity in distinguishing malignant from benign tumours [4]. Oe-
sophageal metaplasia was seen in the images of 34 patients undergoing esophagoscopy
using 3D optical coherence tomography (OCT) and the detection rate of metaplasia in-
creased by 72% [4]. Chromo endoscopy images using CAD tools compared to standard
colonoscopy images and histopathologic biopsies improved the detection rate of celiac dis-
ease diagnosis by 10%, the detection of dysplastic cells among inflammatory bowel disease
by 7%, and of dysplasia in polyp and ulcerative colitis by 9.3% and 1.3%, respectively [9].
Celiac disease diagnosis was achieved by using gastroscopy and CATIA in identifying
mucosa alterations in 2835 duodenum images from 290 children [9]. Using 350 oesophageal
and 129 gastric mucosa images captured by fiber optic telescope, an algorithm system
application diminished the honeycomb effect on final images, thus improving the clarity
and diagnosis [19].

3.3. Assessing Endometrial Hyperplasia and Cancer and Ovarian Malignancies

On a previous study, we identified the optimal conditions of image capturing during
hysteroscopy and laparoscopy [10] and the ability of a CAD system to distinguish normal
from abnormal epithelia by using animal models and video recordings from minimally
invasive gynaecological surgeries. Endoscopic images were captured by using animal
models at a clinically optimum illumination and focus with 720 × 576 pixels and 24 bits
colour for (a) various testing targets from a colour palette with a known colour distribution,
(b) different viewing angles, and (c) two different distances from calf endometrium by
hysteroscopy and from poultry abdomen by laparoscopy. Human hysteroscopic and
laparoscopic pelvic images from the endometrium and ovaries, respectively, were also
captured and analysed. For texture feature analysis, three different sets were considered:
(i) statistical features (SF), (ii) Spatial Gray Level Dependence Matrices (SGLDM), and
(iii) Gray Level Difference Statistics (GLDS). All images were γ-corrected, and the extracted
texture feature values were compared against the texture feature values extracted from the
uncorrected images [1,10].

In another study, endometrium images in a hysteroscopy office from 40 women with
209 normal and 209 abnormal ROI were compared. Neural network models were also
trained to classify 100 normal and 100 abnormal endometrial images with increased CAD
sensitivity and specificity, however, without significant difference [1,10]. On the basis of
the above results, a standardized protocol was proposed for image capture conditions to
optimize tissue texture analysis. In a similar study, data of 52 patients were examined, and
516 ROIs were captured. The ROIs were equally distributed among cases of normal and
endometrial hyperplasia. RGB images first γ-corrected and then converted into HSV and
YCrCb reached 81% correct classification of ROI by using SF and GLDS features with an
SVM classifier.

Neophytou M et al., 2015, evaluated 52 hysteroscopic images of 258 normal and
258 abnormal ROIs extracted manually by the gynaecologist, and tissue diagnosis was
verified by histopathology after biopsy [1]. The YCrCb colour system with SF+GLDS colour
texture features based on SVM modelling could correctly classify 81% of the cases with
a sensitivity and specificity of 78% and 81%, respectively, for normal and hyperplastic
endometrium [1].

The imaging processes of four studies evaluating normal and abnormal tissue for the
endometrium and cervix are summarized in Table 4. The third group of studies deals with
hysteroscopic images and lacks the volume of data to extract concrete results. The review
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study of cervical cancer screening suggests an interesting algorithm, diagnosing the lesion
margins by using a colour features discrimination process [13].

An analysis of hysteroscopic images of 28 patients with abnormal uterine bleeding
and images of 39 patients without any pathologic features extracted 167 texture and ves-
sel features for each image. Using artificial neural networks, four tissue features were
selected to classify the images further. The specific software system verified the histopatho-
logic diagnosis of 39 patients with normal endometrium and 10 patients with carcinoma
with classification accuracy of 91.2%, and specificity and sensitivity of 83.8% and 93.6%,
respectively [20].

4. Discussion

The camera systems, monitors, operative techniques, and skills developed with mini-
mally invasive surgery provide tissue images and magnification with exceptional clarity.
The abdomen and individual organs can be examined in situ with ease, without disturbing
the anatomic features or the pathologic condition before treatment. In addition, video
images can be used intra- and postoperatively to re-evaluate the pathologic condition and
operative technique and for teaching purposes. They provide the surgeon with excellent
quality real-time video, assessing cavities and areas of the human body impossible to
observe with the naked eye. The easy access to tissue images facilitates, encourage, and
accelerate the application of bioinformatics using different algorithms, which are correlated
with the histopathological findings [1,10].

Dual-working channel endoscopes can enable an image-guided punch biopsy by
using OCT. Matched OCT images obtained in vivo corresponding to histological biopsies
can improve the accuracy and reliability of the technique [21]. An improvement in image
resolution and the development of more specific imaging technology, such as polarization
sensitive OCT, may also improve the accuracy of detecting buried pathologic features [21].
However, dual-working channel endoscopes increase the tip diameter of the scope, which
is a big disadvantage when small cavities are observed, as in hysteroscopy. OCT is fre-
quently used in ophthalmology and can provide information about cell architecture and
morphology up to 15 nano microns below epithelial cells [14].

Tissue visual signs, image texture analysis, and selected features by electronic neural
network systems can serve as biomarkers distinguishing abnormal from normal tissue.
Precancerous as well as cancerous conditions are characterized as images with a complex
set of attributes. Colour, texture, and relative geometry are predominately useful, while
region shape is significantly less so. Regions are frequently amorphous, or, for a few region
classes, exhibit a shape which may be only approximately modelled, and even in these
cases, the model may be image dependent. The overall region of interest in the images may
in general correlate with the histopathologic cancerous characteristics, such as abnormal
tissue architecture, neo-angiogenesis, oedema, and cellular dysfunction. Images from a
histopathologic section produced by microscopy may be interpreted by visual signs and tis-
sue image features by computer-assisted diagnosis [22]. Such translation from microscopy
tissue section characteristics to tissue image textures demand an allocation of data and
computer system training [23]. CAD may have the potential to diagnose early disease,
including cancer [1]. The loading of data with digital features of normal and abnormal
tissue, with both visual and histopathologic characteristics, is essential in building the
primary level of bioinformatics. The functionality and efficiency of CAD depends on
network capacity, speed of data processing, and technological support [1].

The texture discrimination of capsule endoscopy (CE) video frames can be improved
by modelling classical texture descriptors in the colour scale plane instead of the colour
plane, as usually assumed by classical approaches [4]. Higher order statistics applied
to the joint distribution of classical texture descriptors appear effective for texture char-
acterization. Future work will include introducing different classification schemes [4];
augmenting the database, which is important in generalizing the results, especially when
higher order statistics’ modelling is involved; exploring the temporal dynamics of texture
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information, since taking information from neighbour frames may improve classification
performance [4].

Optical coherence tomography (OCT) is widely considered a real-time intraoperative
tumour margin assessment because of its high-resolution (HR) images, rapid scanning,
and optical properties [24]. However, although OCT provides HR images, the combination
of OCTSS and spectral domain (SD) is still insufficient to effectively classify different
types of internal organs [24]. The main reason is that OCT images are simply composed
of the reflectivity of light (elastic scattering property), which can only reflect the texture
information instead of molecular information [25]. OCT is a minimally invasive method
to evaluate buried glands or other subsurface features and may be used to evaluate the
efficacy of other endoscopic therapies, such as cryoablation and photodynamic therapies,
not only in the GIT but also in the skin and abdominal cavity [26].

Raman spectrum is aimed at improving the accuracy of tissue margins’ delineation by
detecting the margin of tumour surrounded by normal tissues, e.g., muscle. Based on the
integrated system, OCT and RS can acquire the measurement with similar experimental
conditions [27]. This allows for real-time review and assessment of the margins. Tumour
margin detection can be evaluated with different algorithms and tissue types. 3D optical
coaxial tomography and Raman spectroscopy were the two additional modalities used in
combination with the tissue texture analysis to augment CATIA diagnostic ability. Coaxial
tomography seems to provide extra information regarding the tissue cell layers below the
superficial layer and can be used as an added tool to the optic system. Raman spectroscopy
provides highly specific 3D spectra with intensity and time axes mainly used during
microscopy for histopathologic sections.

Although many ENT articles have been published on CAD, research on tissue texture
analysis was missing. No studies using CAD for endometriosis were found. The intensity,
density, and variety of tissue hue found in cases of pelvic and abdominal endometriosis
would facilitate CATIA research in clinical practice. CATIA could probably contribute to
the identification and quantification of endometriosis, especially the depth and extent of
the disease on one tissue, the epithelium, and could probably assist in surgical treatment
and the depth of destruction by laser and other modalities. Prospective and randomized
studies are needed before CATIA is implemented in clinical practice.

We found no prospective randomized studies published on CATIA. Most studies
we reviewed failed to provide convincing evidence regarding the efficiency and efficacy
of their image processing to distinguish normal from abnormal tissue, detect with high
accuracy malignant tissues, and verify histopathologic results. The number of cases and
image samples analysed in these studies were small, and the methods used were not well
described. A major limitation of some studies was the absence of co-registered histologic
features of lesions in system datasets, which was due to procedural difficulties; for example,
using OCT to guide a biopsy during OCT imaging and using biopsy forceps with a small
size and area coverage [4,11]. To address this limitation, one study compared the in vivo
and ex vivo images of one biopsy from an endoscopic mucosal resection specimen obtained
at the gastroesophageal junction [28]. Another limitation in cross sectional studies was
comparing patients who were at different time points in treatment and stages of the disease.
Variations in disease severity and responses across the patient population contribute to
variations in data. In all studies, illumination was adjusted for optimal viewing but not
for calibrating results to include the viewing angle, distance, and magnification of images.
Experiments during hysteroscopy demonstrated that when three different texture feature
algorithms, SGDLM, GLDS, and SF, were used, CATIA results were reliable when the
distance of the telescope tip to the tissue target was within 3 cm and the viewing angle was
kept within 15 degrees deviation [10].

Selecting the best algorithm or combination of algorithms for the diagnosis of malig-
nant tissue and new cases was a major challenge in almost all studies. CATIA technology
needs to be adapted to clinical use, with real-time image analysis supported by a physician-
friendly interface. Use of this technology for the diagnosis of malignancy is to diminish
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false negative results, a fact that is usually accompanied by an increase in false positives
and a reduction in specificity.

In the studies we reviewed, the major advantage of CATIA was comparing an abnor-
mal tissue region to adjacent normal healthy tissue. However, the comparison between the
healthy and the adjacent unhealthy area was neglected in the examination. Comparing
images can be used during the intra- and postoperative period to re-evaluate the pathologic
features and operative technique. Easy access to tissue images facilitates, encourages, and
accelerates the application of bioinformatics by using different algorithms correlated with
histopathologic findings [1,10].

5. Conclusions

CATIA results are encouraging, as many studies demonstrate the CAD systems’ poten-
tial to confirm, with high accuracy, abnormal tissue findings diagnosed by histopathology.
Our review of CATIA research shows that much information can be extracted and used to
diagnose and distinguish normal from abnormal tissue. The naked eye can analyse colour
frequencies and detect shape and size differences of 100 microns in diameter. Minimally
invasive surgery can facilitate and increase human sight limits up to 34 times that of the
naked eye [28]. This is a great advantage to non-experienced eyes as well as in shortening
the diagnostic time and starting treatment earlier.

CATIA and OCT will enable the evaluation of several cell layers now beneath human
visual capacity. New technical and computational advances will improve optical biopsy
and the precision of lesion excision during minimally invasive surgery. The exchange of
knowledge, collaboration, identification of tasks, and CATIA method selection strategy
will further improve CAD implementation in daily practice at a low cost.

More extensive validation on a larger dataset, along with well-designed studies using
CATIA, will be required once it is used in a clinical setting as a software system. When
CATIA proves that it may increase the surgeon’s diagnostic ability and sampling precision,
it could augment the intraoperative management decision and the surgeon’s performance.
Additionally, it could minimize complications such as haemorrhage, haematoma, the
spread of malignant cells, infection and scarring from multiple biopsies, as well as extensive
tissue injuries. A proven efficacy of a CAD method discrimination ability, after validation
by prospective and randomized studies, will allow the clinical implementation of CATIA
systems and optical biopsies.
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