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Abstract: Assessing cardiovascular disease (CVD) in children with chronic kidney disease (CKD)
is difficult. Great expectations have been associated with biomarkers, including the N-terminal
pro-brain natriuretic peptide (NT-proBNP). This study aimed to determine the correlation between
NT-proBNP and cardiovascular complications in children with CKD. Serum NT-proBNP, arterial
stiffness, common carotid artery intima-media thickness (cIMT), echocardiographic (ECHO) pa-
rameters (including tissue Doppler imaging), and biochemical and clinical data were analyzed in
38 pediatric patients with CKD (21 boys, 12.2 ± 4.2 years). Mean NT-proBNP in CKD patients was
1068.1 ± 4630 pg/mL. NT-proBNP above the norm (125 pg/mL) was found in 16 (42.1%) subjects.
NT-proBNP correlated with glomerular filtration rate (GFR) (r = −0.423, p = 0.008), and was signifi-
cantly higher in CKD G5 (glomerular filtration rate grade) patients compared to CKD G2, G3, and G4
children (p = 0.010, p = 0.004, and p = 0.018, respectively). Moreover, NT-proBNP correlated positively
with augmentation index (AP/PP: r = 0.451, p = 0.018, P2/P: r = 0.460, p = 0.016), cIMT (r = 0.504,
p = 0.020), and E/E’ in ECHO (r = 0.400, p = 0.032). In multivariate analysis, logNT-proBNP was the
only significant predictor of cIMT Z-score (beta = 0.402, 95CI (0.082–0.721), p = 0.014) and P2/P1
(beta = 0.130, 95CI (0.082–0.721), p = 0.014). Conclusions: NT-proBNP may serve as a possible marker
of thickening of the carotid artery wall in pediatric patients with CKD. The final role of NT-proBNP
as a biomarker of arterial damage, left ventricular hypertrophy, or cardiac diastolic dysfunction in
CKD children needs confirmation in prospective studies.

Keywords: chronic kidney disease; NT-proBNP; children; cardiovascular disease; common carotid
artery intima-media thickness

1. Introduction

Children with chronic kidney disease (CKD) have been recognized as the pediatric
group with the highest risk of cardiovascular disease (CVD) [1]. Assessment of cardiovas-
cular risk in children with CKD is difficult, as early stages of CVD do not cause symptoms
and can progress undetected [2]. Direct evaluation of subclinical target organ damage in
children with CKD requires expensive and not widely accessible devices, experienced and
skilled personnel, is time-consuming and, commonly, operator-dependent. Hence, research
has been conducted, aimed at finding serological markers of increased cardiovascular
burden. Great expectation has been associated with the N-terminal pro-brain natriuretic
peptide or the pro-B-type natriuretic peptide (NT-proBNP). As a response to increased
left ventricular wall stretch due to volume overloads, and to structural damage of the
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myocardium, there is an increased expression of a proBNP in myocardial cells [3]. After
cleavage to BNP and non-active NT-proBNP, both these particles are released to the blood-
stream. Then NT-proBNP is excreted in urine without being metabolized further, while
BNP can be captured by natriuretic peptide receptor types A–C, where it exerts its actions
or is inactivated by neutral endopeptidase [4,5]. Physiological actions of BNP include
the impact on kidneys (dilation of afferent arteriole and constriction of efferent arteriole,
relaxation of mesangial cells, increased blood flow through vasa recta, decreased sodium
reabsorption in the distal convoluted tubule and cortical collecting duct, inhibition of renin
secretion), adrenal glands (reduction of aldosterone secretion), blood vessels (relaxation of
vascular smooth muscles), myocardium (inhibition of maladaptive cardiac hypertrophy),
and adipose tissue (release of free fatty acids) [4,6].

NT-proBNP is widely used to diagnose, screen, and stratify patients with heart failure
and detect systolic and diastolic left ventricular dysfunction [3,7]. Its usefulness has already
been investigated in adult CKD patients [8–10]. There are only scarce data on the prognostic
value of BNP and NT-proBNP in pediatric patients with kidney impairment [11,12]. There
are no data on the relationship between central blood pressure, arterial damage, and
detailed echocardiographic evaluation and NT-proBNP in these children. Thus, this study
aimed to determine the relationship between NT-proBNP and cardiovascular complications
in children with CKD.

2. Materials and Methods
2.1. Study Group

This single-center cross-sectional study involved 38 pediatric CKD subjects hospi-
talized during two years in one tertiary center of pediatric nephrology. The inclusion
criteria were: age ≥ five years and CKD stages G2-5 (glomerular filtration rate grade)
according to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines [13].
The following exclusion criteria were applied: coexisting cardiovascular diseases (e.g.,
congenital heart defects), treatment with recombinant human growth hormone, and acute
infections (temporary exclusion for two weeks).

Participants were included in the study consecutively from among the patients after
considering inclusion and exclusion criteria to exclude selection bias. The flowchart of the
patients included in the study group is presented in Figure 1.
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2.2. Ethical Issues

All procedures were in accordance with the ethical standards of the institutional
review board (approval no. KB/89/2013) and with the 1964 Helsinki declaration and
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its later amendments. Informed consent was obtained from all legal representatives and
individuals (≥16 years).

2.3. Clinical Parameters

The following clinical data were collected: age (years), gender, CKD etiology [14],
and stage [13] based on estimated glomerular filtration rate (GFR) [15], method of renal
replacement therapy, body mass (kg), height [m] and body mass index (BMI) (kg/m2),
Z-score [16], presence of arterial hypertension, and medications used.

2.4. NT-proBNP and Biochemical Parameters

Concentration of NT-proBNP (pg/mL) was determined in serum using the VITROS
5600 Integrated System (Ortho Clinical Diagnostics, Raritan, NJ, USA) with the upper limit
taken from the manufacturer’s normative values (125 (pg/mL)). The following biochem-
ical parameters were evaluated: creatinine (mg/dL), urea (mg/dL), uric acid (mg/dL),
hemoglobin (g/dL), albumins (g/dL), calcium (mg/dL), inorganic phosphate (mg/dL),
alkaline phosphatase (IU/mL), intact parathormone (pg/mL), 25-hydroxy-vitamin D
(25(OH)D) (ng/mL), total, low-density (LDL) and high-density lipoprotein (HDL) choles-
terol (mg/dL), triglycerides (mg/dL), and parameters of acid base balance from arterialized
capillary blood: pH, and HCO3

− (mmol/L). All biochemical parameters were measured
in the morning, on fasting, simultaneously. Normal values of hemoglobin and calcium–
phosphorus metabolism parameters were taken from the Kidney Disease: Improving
Global Outcome (KDIGO) guidelines [17,18], and the normal value of cholesterol and
triglycerides from Stewart et al. [19]; hyperuricemia was recognized when uric acid was
≥5.5 (mg/dL) [20].

2.5. Blood Pressure and Parameters of Cardiovascular Damage

Peripheral office arterial blood pressure was measured with Welch Allyn VSM 300 Pa-
tient Monitor (Welch Allyn Inc., Skaneateles Falls, NY, USA) and expressed in (mmHg) and
Z-score values [21]. Common carotid artery intima-media thickness (cIMT) was evaluated
with a 13-MHz linear transducer (Aloka Prosound Alpha 6, Hitachi Aloka Medical, Mitaka,
Japan), using methods described previously [22] and expressed in (mm) and Z-score [23].
Central blood pressure, arterial pulse waveform, and aortal pulse wave velocity (PWV)
were assessed with SphygmoCor (AtCor Medical Pty Ltd., Sydney, Australia) using meth-
ods described in detail in our previous study [22]. The following parameters were analyzed:
aortic (central) office systolic, diastolic, mean, and pulse pressure (AoSBP, AoDBP, AoMAP,
AoPP (mm Hg)), augmentation pressure (AP = P2 − P1, where P2 is the amplitude of
late, i.e., returning systolic peak pressure, and P1 is early systolic peak pressure (mm Hg)),
augmentation index (AIx) expressed as AP divided by pulse pressure (AP/PP (%)), and
P2/P1 ratio (%), as well as AIx (AP/PP) normalized to heart rate of 75 beats per minute
(AIx75HR (%)), and aortic (carotid–femoral) pulse wave velocity. PWV was presented as
(m/s) and (Z-score) based on normative pediatric data [24].

All children underwent transthoracic two-dimensional (2D), conventional Doppler,
and tissue Doppler (TD) echocardiography (ECHO) with M-mode assessment of left ven-
tricular parameters and simultaneous recording of ECG in the second limb lead with Philips
iE33, transducer S5-1 (Philips, Amsterdam, The Netherlands). The following parameters
were evaluated using a classical echocardiography and conventional Doppler technique.
In the end-diastolic phase: the interventricular septum transverse diameter (IVSDd) (mm),
left ventricular diastolic diameter (LVDd) (mm), left ventricular posterior wall diameter
(LVPWd) (mm)), left atrial transverse diameter (LAD) (mm), relative wall thickness (RWT)
calculated as 2 × LVPWd divided by LVDd, left ventricular mass calculated from the
Deveraux equation, and left ventricular mass (LVMI) were indexed according to DeSimone
[g/m2.7] [25], as well as shortening and ejection fraction (SF, EF) (%), peak wave velocity
in early and late diastole caused by atrial contraction (the E and A waves) (cm/s), and E
deceleration time (Edt) [s]. The TD was used to assess the mean value of peak medial and
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lateral mitral annular velocity during early filling (E’) (m/s), the mean value of peak medial
and lateral mitral annular velocity during late filling (A’) (m/s), E/E’ ratio, isovolumetric
relaxation time (IVRT) [s], isovolumetric contraction time (IVCT) [s], and a maximum
speed of the systolic wave (C’) (m/s). Left ventricular hypertrophy (LVH) was defined as
LVMI ≥ 95c. for age and sex [26], abnormal RWT was defined as >0.42. Mildly reduced
and reduced ejection fraction was defined as EF between 41% and 49% and EF ≤ 40%,
respectively, according to the 2021 European Society of Cardiology guidelines [27].

2.6. Statistical Analysis

Statistica 13.0 PL software (TIBCO Software Inc., Palo Alto, CA, USA) was used for
calculations. The normality of the distribution of the analyzed variables was assessed using
the Shapiro–Wilk test. Normally distributed data were presented as mean ± standard
deviation (SD) and non-normally distributed variables as median and interquartile range
(Q1–Q3). Differences between data were tested using the U Mann–Whitney test. The
relationship between two variables was analyzed using Pearson’s linear correlation or
Spearman’s correlation rank, depending on the distribution. Multivariate analysis was
performed using forward stepwise regression analysis. Parameters that correlated with
arterial and heart damage markers with p < 0.100 in univariate analysis were included in
the final model. Parameters that correlated with each other with r > 0.650 were excluded
from regression models to avoid collinearity. Logarithmic transformation of non-normally
distributed data was performed prior to the analysis. As NT-proBNP and cardiovascular
complications of CKD are significantly correlated to GFR, the latter variable was forced
into the final model. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Clinical Characteristics

Clinical characteristics of children included in the study are summarized in Table 1.
Most of the subjects were in CKD grades 2 and 3, and congenital anomalies of the kidney
and urinary tract (CAKUT) were the leading primary kidney pathology. Among seven
patients in grade G5, six were chronically dialyzed: five were treated with peritoneal
dialysis (PD), one was treated with hemodialysis (HD), and one child with eGFR of
13.45 mL/min/1.73 m2 did not receive renal replacement therapy yet. Arterial hypertension
was present in 26 patients, usually treated with one antihypertensive drug, most commonly
calcium channel blockers or angiotensin-converting enzyme inhibitors.

Table 1. Clinical and biochemical data of the studied children.

Analyzed Parameter Value (Mean ± SD or Median and Q1–Q3)

Age (years) 12.3 (8.6–16.3)
Gender (males/females) 21/17 (55%/45%)

CKD GRADE (n (%))
G2 14 (37%)
G3 11 (29%)
G4 6 (16%)
G5 7 (18%)

Primary kidney disease (n (%))
CAKUT 18 (47%)

Glomerulonephritis 7 (18%)
Hereditary nephropathy 3 (8%)

Toxic/ischemic kidney injury 3 (8%)
Cystic kidney disease 2 (5%)

Hemolytic uremic syndrome 1 (3%)
Other 1 (3%)

Unknown 3 (8%)
BMI Z-score −0.1 ± 1.3
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Table 1. Cont.

Analyzed Parameter Value (Mean ± SD or Median and Q1–Q3)

Overweight (BMI Z-score 1–2) 6 (16%)
Obesity (BMI Z-score > 2) 2 (5%)

Underweight (BMI Z-score < 2) 3 (8%)
Arterial hypertension 26 (68%)

Number of antihypertensive
medications 1 (1–2)

Medications 1

Angiotensin-converting enzyme
inhibitor 16 (42%)

Angiotensin receptor antagonist 2 (5%)
Calcium channel antagonist 19 (50%)

Beta-adrenolytic 7 (18%)
Erythropoiesis-stimulating agents 11 (29%)

Vitamin D3 29 (76%)
Alfacalcidol 12 (32%)

Calcium carbonate 18 (47%)
Erythropoiesis-stimulating agents 11 (29%)

SD—standard deviation, Q1—the first quartile, Q3—the third quartile, CKD—chronic kidney disease, G—grade,
CAKUT—congenital anomalies of kidney and urinary tract, BMI—body mass index. 1 number of patients.

3.2. NT-proBNP and Biochemical Parameters

The concentration of NT-pro BNP and remaining biochemical parameters are depicted
in Table 2. The median value of NT-proBNP in patients with CKD was 95 (pg/mL) and
varied from 15 up to 28,382 (pg/mL). NT-proBNP value above the norm (i.e., >125 pg/mL)
was found in 16 (42.1%) children with CKD. NT-proBNP values did not differ significantly
among children with CKD G2, G3, and G4. The highest values of NT-proBNP, significantly
higher than children with CKD G2–G4, were found in children with CKD in stage G5
(Figure 2). In three of them, the NT-proBNP value exceeded 1000 (pg/mL). NT-proBNP
at the concentration of 1579 (pg/mL) was detected in a 16.5-year-old boy with CKD
and membranoproliferative glomerulonephritis, treated with hemodialysis. The boy had
arterial hypertension treated with two drugs and left ventricular hypertrophy (LVH)—his
LVMI was 40.2 g/m2.7. NT-proBNP at 5146 (pg/mL) was noted in a 14.5-year-old girl with
CKD and steroid-resistant nephrotic syndrome treated with PD, with arterial hypertension
treated with three drugs and LVH—her LVMI was 50.0 g/m2.7. The highest NT-proBNP
concentration (28,382 (pg/mL)) was found in a 7.5-year-old female patient with unknown
etiology of kidney disease, treated with PD, with arterial hypertension treated with two
drugs, and LVH (LVMI—46.5 g/m2.7).

Table 2. NT-pro BNP and biochemical characteristics of the study group (NT-proBNP—N-terminal
pro-brain natriuretic peptide).

Analyzed Parameter Value (Mean ± SD or Median and Q1–Q3)

NT-proBNP (pg/mL) 95.0 (52–298)
NT-proBNP G2 (pg/mL) 84.5 (32–140) 1

NT-proBNP G3 (pg/mL) 88.0 (44–174) 2

NT-proBNP G4 (pg/mL) 103.0 (72–171) 3

NT-proBNP G5 (pg/mL) 391.0 (317–5146) 1,2,3

Creatinine (mg/dL) 1.4 (0.9–2.4)
GFR (mL/min/1.73 m2) 43.7 ± 27.3

Urea (mg/dL) 45.0 (37.0–89.0)
Hemoglobin (g/dL) 12.4 ± 1.4

Albumin (g/dL) 4.4 (4.2–4.7)
cholesterol (mg/dL) 170.0 (157.0–208.0)

LDL-cholesterol (mg/dL) 96.0 (74.2–115.0)
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Table 2. Cont.

Analyzed Parameter Value (Mean ± SD or Median and Q1–Q3)

HDL-cholesterol (mg/dL) 58.2 ± 16.9
Triglyceride (mg/dL) 101.0 (77.0–152.0)

Calcium (mg/dL) 10.0 ± 0.4
Inorganic phosphate (mg/dL) 4.7 ± 0.8
Intact parathormone (pg/mL) 53.5 (29.6–111.0)
Alkaline phosphatase (IU/L) 180.1 ± 77.6

25(OH)D (ng/mL) 21.2 (16.3–29.6)
Uric acid (mg/dL) 6.3 ± 1.3

pH 7.41 ± 0.04
HCO3− (mmol/L) 24.6 (22.8–25.6)

BE (mmol/L) −0.35 ± 3.16
SD—standard deviation, Q1—the first quartile, Q3—the third quartile, NT-proBNP—N-terminal pro-brain
natriuretic peptide, GFR—glomerular filtration rate according to Schwartz formula, LDL—low-density
lipoprotein, HDL—high-density lipoprotein, 25(OH)D—25-hydroxy-vitamin D, pH—power of hydrogen,
HCO3

−—bicarbonate, BE—base excess. 1 p = 0.010, 2 p = 0.004, 3 p = 0.018.
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Figure 2. NT-proBNP in children with chronic kidney disease (median value and range) (G—chronic
kidney disease grade).

Relevant biochemical disturbances were found in the following numbers of CKD
children—anemia in 13 (34%), hypercholesterolemia in 11 (29%), hypertriglyceridemia in
14 (37%), hypercalcemia in 1 (2.6%), hyperphosphatemia in 2 (5.2%), and elevated iPTH in
8 (21.1%) patients.

3.3. Blood Pressure and Markers of Arterial and Heart Damage

Blood pressure and markers of arterial and heart damage are shown in Table 3. At
the time of the study, elevated office systolic blood pressure was found in 6 (15.8%) and
elevated DBP in 4 (10.5%) children. Abnormal (i.e., ≥95c.) PWV was found in 1 (2.6%), and
abnormal cIMT in 12 (31.6%) CKD children. LVH was found in 4 (10.5%) and abnormal
RWT in none of the subjects. None of the children had mildly reduced or reduced EF.
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Table 3. Blood pressure, arterial, and heart parameters in the study group.

Parameter Children with Primary Hypertension

Blood pressure and heart rate
Peripheral office SBP (mmHg) 116.4 ± 12.9
Peripheral office SBP Z-score 0.99 ± 1.28

Peripheral office DBP (mmHg) 71.7 ± 12.7
Peripheral office DBP Z-score 0.82 ± 1.1

Peripheral office MAP (mmHg) 87.5 ± 12.3
Peripheral office PP (mmHg) 44.7 ± 7.7

Aortic office SBP (mmHg) 101.5 ± 13.9
Aortic office DBP (mmHg) 73.4 ± 12.8
Aortic office MAP (mmHg) 87.5 ± 12.3

Aortic office PP (mmHg) 27.4 ± 5.3
Heart rate [bpm] 82 ± 14.2

Arterial structure and function
cIMT (mm) 0.47 ± 0.06

cIMT Z-score 1.77 ± 1.21
AP (mmHg) 1.5 (−1.3–5.3)

AP/PP (AIx) (%) 6.5 ± 16.2
P2/P1 (AIx) (%) 108.3 ± 25.4

AIx75HR (%) 12.4 ± 18.9
SEVR (%) 151.3 (139.3–173)

PWV (m/s) 4.56 ± 0.86
PWV Z-score −0.37 ± 1.27

Heart structure and function
IVSDd (mm) 6.0 (5–7)
LVDd (mm) 44.3 ± 7.0 (39–50)

LVPWd (mm) 6.0 (4.6–6.5)
LAD (mm) 28.2 ± 4.3

RWT 0.24 (0.22–0.28)
LVM (g) 79.8 (53.4–114.5)

LVMI (g/m2.7) 28.7 (26.4–33.3)
SF (%) 40.1 ± 5.8
EF (%) 70.5 ± 6.69

E (cm/s) 89.38 ± 13.43
A (cm/s) 59.97 ± 11.4

E/A 1.55 ± 0.37
Edt (ms) 165 (148–192)
E’ (cm/s) 13.11 ± 2.67
A’ (cm/s) 6.20 (5.5–6.5)

E/E’ 6.94 (5.83–7.49)
IVRT (ms) 68.4 ± 22.2
IVCT (ms) 77.2 ± 19.58
C’ (m/s) 6.0 ± 1.2

SD—standard deviation, Q1—the first quartile, Q3—the third quartile, SBP—systolic blood pressure,
DBP—diastolic blood pressure, MAP—mean arterial pressure, PP—pulse pressure, cIMT—common carotid
artery intima media thickness, AP—augmentation pressure, P—peak pressure, Aix—augmentation index,
AIx75HR—augmentation index normalized to heart rate 75 beats per minute, SEVR—subendocardial viability
ratio, PWV—aortic pulse wave velocity, d—end-diastolic phase, IVS—interventricular septum transverse di-
ameter, LVD—left ventricular diastolic diameter, LVPW—left ventricular posterior wall diameter, LAD—left
atrial transverse diameter, RWT—relative wall thickness, LVM—left ventricular mass, LVMI—left ventricular
mass index, SF—shortening fraction, EF—ejection fraction, E—peak wave velocity in early diastole, A—peak
wave velocity in late diastole caused by atrial contraction, Edt—E deceleration time, E’—mean value of peak
medial and lateral mitral annular velocity during early filling, A’—mean value of peak medial and lateral mitral
annular velocity during late filling, IVRT—isovolumetric relaxation time, IVCT—isovolumetric contraction time,
C’—maximum speed of systolic wave.

3.4. Correlations of NT-proBNP and Markers of Arterial and Heart Damage

Significant correlations of NT-proBNP are depicted in Table 4. In CKD children,
NT-proBNP correlated positively with markers of arterial damage: AP/PP, P2/P1, cIMT
Z-score, and with the marker of diastolic dysfunction—E/E’. NT-proBNP concentration
correlated negatively with the alfacalcidol dose and GFR. No significant relations were
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found among NT-proBNP and blood pressure, PWV ((m/s) and Z-score), AIx75HR, LVMI,
RWT, SF, EF, and E/A.

Table 4. Significant correlations of NT-proBNP with analyzed clinical, biochemical, and cardiovascu-
lar parameters in children with CKD (Spearman’s rank correlations).

Analyzed Parameter R p

Alfacalcidol dose (µg/24 h) −0.365 0.043
Creatinine (mg/dL) 0.367 0.023

GFR (mL/min/1.73 m2) −0.423 0.008
Urea (mg/dL) 0.407 0.008

Inorganic phosphate (mg/dL) 0.443 0.005
Intact parathormone (pg/mL) 0.435 0.006

Triglyceride (mg/dL) 0.492 0.002
AP/PP (AIx) (%) 0.451 0.018
P2/P1 (AIx) (%) 0.460 0.016

cIMT Z-score 0.504 0.020
E/E’ 0.400 0.032

GFR—glomerular filtration rate, AP—augmentation pressure, PP—pulse pressure, Aix—augmentation index,
P—peak pressure, cIMT—carotid intima-media thickness, E—peak wave velocity in early diastole, E’—mean
value of peak medial and lateral mitral annular velocity during early filling by tissue Doppler.

PWV correlated significantly with peripheral and central DBP (r = 0.417, p = 0.034 and
r = 0.406, p = 0.04, respectively), LVPWd (r = 0.506, p = 0.010), LVM (r = 0.482, p = 0.015),
and A’ (r = 0.467, p = 0.038); PWV Z-score correlated with heart rate (r = 0.519, p = 0.013),
A (r = 0.600, p = 0.011), and E/A (r = −0.578, p = 0.015); there was also trend towards a
positive correlation between PWV Z-score and triglycerides (r = 0.404, p = 0.503); AP/PP
correlated positively with PTH (r = 0.383, p = 0.048), cIMT Z-score (r = 0.533, p = 0.016),
and A (r = 0.495, p = 0.031); P2/P1 correlated positively with calcium (r = 0.489, p = 0.010),
alkaline phosphatase (r = 0.452, p = 0.020), PTH (r = 0.423, p = 0.028), cIMT Z-score (r = 0.510,
p = 0.022), A (r = 0.616, p = 0.005), and negatively with E/A (r = −0.511, p = 0.026); cIMT
correlated also positively with triglycerides (r = 0.461, p = 0.016) and negatively with
calcium (r = −0.392, p = 0.043); cIMT Z-score correlated positively with triglycerides
(r = 0.546, p = 0.011) and with RWT (r = 0.573, p = 0.008), negatively with E’ (r = −0.543,
p = 0.030) and C’ (r = −0.733, p = 0.001).

LVMI correlated positively with triglycerides (r = 0.377, p = 0.030) and uric acid
(r = 0.370, p = 0.031); RWT with C’ (r = −0.466, p = 0.011); E/A with calcium (r = −0.38,
p = 0.043), alkaline phosphatase (r = −0.623, p < 0.001), and triglycerides (r = −0.450,
p = 0.016); A’ with number of antihypertensive medications (r = 0.508, p = 0.013); E/E’
with calcium (r = 0.466, p = 0.011); and C’ correlated positively with hemoglobin (r = 0.413,
p = 0.026), and negatively with AP/PP (r = −0.455, p = 0.044) and P2/P1 (r = −0.489,
p = 0.029).

The correlations of the analyzed parameters with age are presented in Supplementary
Materials Tables S1 and S2. In the studied children, there was no significant association
between age and NT-proBNP (r = −0.166, p = 0.320). Age correlated negatively with
serum calcium, inorganic phosphate, alkaline phosphatase, and pH (r = −0.336, p = 0.039;
r = −0.397, p = 0.014; r = −0.590, p = 0.001, and r = −0.459, p = 0.001, respectively), and
positively with both peripheral and central systolic and diastolic blood pressures expressed
in (mm Hg) (r = 0.388–0.493, p = 0.046–0.009); no significant associations were found
between age and blood pressure Z-scores. Age correlated also positively with PWV (m/s)
(r = 0.490, p = 0.011), but not with PWV Z-score (r = 0.090, p = 0.677), and negatively with
augmentation indices (r = −0.396–−0.521, p = 0.040–0.005). Moreover, numerous cardiac
dimensions (IVSDd, LVDd, LVPWd, LAD) correlated positively with age (r = 0.459–0.727,
p = 0.012–< 0.001); LV mass was positively related to age, too (r = 0.703, p < 0.001). In
addition, age correlated negatively with A and positively with E/A and E’ (r = −0.393,
p = 0.035; r = 0.464, p = 0.011 and r = 0.438, p = 0.017, respectively).
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In the multivariate analysis, logNT-proBNP was the only significant predictor of the
cIMT Z-score (beta = 0.402, 95CI (0.082–0.721), p = 0.014), and P2/P1 (beta = 0.130, 95CI
(0.082–0.721), p = 0.014).

4. Discussion

Chronic kidney disease and cardiovascular disease are conditions that inter-influence.
In CKD patients, a gradual decline in GFR leads to overhydration and accumulation of
uremic toxins. Besides fluid overload, CKD patients are exposed to numerous other tradi-
tional (hyperlipidemia, volume-independent arterial hypertension) and non-traditional,
i.e., “uremia-specific” risk factors, such as malnutrition, calcium–phosphorus disturbances,
anemia, and hyperhomocysteinemia. Together, they contribute to cardiovascular damage
and significant shortening of estimated lifespan [1,28]. Thus, it is crucial to establish the
individual CVD risk to stratify patients to particular risk groups, diagnose the disease
early, improve the treatment process, and initiate cardio- and renoprotective measures.
NT-proBNP is one possible biomarker of increased cardiovascular risk.

In our cohort of 38 children, we observed an abnormally elevated value of NT-proBNP
in almost half of the individuals. As there is no final consensus on normal pediatric
NT-proBNP values, we used the manufacturer’s range. Nir and Lam proposed slightly
higher normal values of the marker in the pediatric population, but they used a differ-
ent kit [29,30]. NT-proBNP accumulates during CKD because of impaired renal clear-
ance [31,32]. In our study group, NT-proBNP correlated negatively with GFR, and a
gradual increase in NT-proBNP following CKD grades was found. A high concentration of
NT-proBNP may contribute to cardiac strain in CKD, indicating vascular system overload.
NT-proBNP provided essential prognostic and diagnostic information on fluid overload
and cardiovascular damage in adults with CKD [9,33,34], despite its strong relation to
kidney function. It was proven that elevated NT-proBNP concentration is correlated two-
fold with mortality risk [33]. NT-proBNP level indicating increased CVD risk in CKD
population seems to be substantially higher in comparison to healthy people [9].

There are limited data on the usefulness of NT-proBNP as a marker of cardiovascular
damage in pediatric CKD patients. A positive correlation between NT-proBNP concen-
tration and E/A, left atrial diameter, and left ventricle hypertrophy (LVH) was reported
in small pediatric CKD cohorts [11,12]. We have observed a positive correlation between
NT-proBNP and the degree of diastolic dysfunction measured by tissue Doppler echocar-
diography. Similarly, Kim et al. outlined the correlation between NT-proBNP and E/E’ in
adults, suggesting that NT-proBNP might be an early marker of diastolic dysfunction in
CKD patients [34]. No correlation among LV mass, LV ejection fraction, and NT-proBNP
was found in our children. We hypothesize that this might be a derivative of a relatively
good kidney function (66% of the studied subjects were in CKD grade G2 or G3) and a low
prevalence of LV hypertrophy in the analyzed cohort. Of note, none of the patients had
even mildly reduced left ventricular ejection fraction. In turn, mild heart damage in our
cohort could be explained by a low grade of renal impairment and good control of arterial
hypertension. This is a significant difference compared to studies in adult patients with
CKD and might explain the failure to demonstrate a statistically significant relationship
between left ventricular mass, systolic function, and NT-proBNP in the studied children.

Arterial damage is the earliest indicator of cardiovascular disease in CKD children.
Unique, uremia-related biochemical milieu leads to Mönckeberg’s arteriosclerosis charac-
terized by intramural calcium–phosphorus deposition, the osteoblast-like transformation
of fibroblast, and a high risk of stroke or myocardial infarction [35]. We found numer-
ous correlations among arterial damage and heart dimensions and function parameters,
suggesting a strict interplay between arterial and cardiac dysfunctions in these patients.

We have found positive correlations among NT-proBNP, vascular stiffness indicators
(AP/PP, P2/P1), and cIMT. NT-proBNP concentrations (expressed as decimal logarithms)
were also significant predictors of cIMT and P2/P1 in multivariate analysis. While cIMT is
a well-established marker of cardiovascular disease, P2/P1 and its derivative—the aug-
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mentation index shows a weaker correlation with hard-end points than the gold standard
of arterial stiffness—aortic pulse wave velocity [36,37]. Little is known about pathophys-
iological relations between intimal and medial thickening and the heart. Sasaki found
no significant associations between cIMT or the presence of atherosclerotic plaques and
NT-proBNP level [38]. On the other hand, Asian authors found a positive correlation
between cIMT and the concentration of this biomarker in adults with CKD [10,39,40].

NT-proBNP influences adipocyte function and was found to be negatively related to
total and LDL-cholesterol concentrations [41,42]. These data suggest that NT-proBNP may
have protective actions against arteriosclerosis and atherosclerotic plaque formation. It
is possible that this compensatory mechanism is ineffective in CKD despite NT-proBNP
accumulation. Our results suggest that NT-proBNP might serve in CKD pediatric patients
as a valuable tool assessing the risk of arterial damage. Because of the cross-sectional study
design, a causal relationship between cIMT thickening and NT-proBNP rise cannot be
established. There is a need for prospective studies to establish its position as a biomarker
of cIMT in this and other high-risk pediatric populations.

Numerous associations between NT-proBNP and calcium–phosphate metabolism
parameters were observed in our study group, suggesting cardiovascular damage induced
by these metabolic derangements. Similar relations were revealed in research conducted
among pediatric CKD G3–G5 patients by Rinat [11]. In both adult [43] and pediatric [11,12]
studies, NT-proBNP correlated positively with blood pressure. Despite evaluation of both
peripheral and central blood pressure, no such relation was revealed in our cohort. We
think that relatively mild kidney impairment and the common use of antihypertensive
medications could mask this relationship. Furthermore, we evaluated blood pressure based
on individual office measurements, which could be a source of potential bias.

Moreover, one should remember that, according to literature data, other factors may
influence NT-proBNP levels, such as anemia, BMI (especially obesity), and gender [44–46].
None of these variables influenced NT-proBNP in our cohort, except for BMI. Nevertheless,
this marker ought to be carefully interpreted in CKD patients considering factors that
might affect it.

In our cohort of CKD patients, we revealed numerous significant correlations among
biochemical parameters, heart dimensions, arterial stiffness parameters, and age. Of note,
there was no significant association between age and NT-proBNP. A negative association
between age and parameters of calcium–phosphorus metabolism reflects normal bone
metabolism, varying with age, observed in both healthy [47] and CKD children [48]. As
age and body size are crucial determinants of blood pressure and cardiac dimensions,
proper indexation and comparison of the measured value with population-based norms is
necessary in pediatric patients [21,26]. Noteworthy, age-normalized blood pressure and
left ventricular mass index did not show any significant correlations with age.

Progressive stiffening of the arteries (measured as aortic PWV) is a well-known phe-
nomenon, responsible, e.g., for isolated systolic hypertension in the elderly [49]. Age-
dependent increase in PWV is seen already in the first two decades of life and was
confirmed in large cohorts of healthy children [24,50]. On the other hand, the inverse
relationship among age, body dimensions, and augmentation index was observed in the
general population, similar to our cohort. In younger (and therefore shorter) patients, the
pulse wave reflected from the peripheral arteries reaches back to the aorta more quickly due
to its shorter pathway, resulting in an increase in the augmentation index in the youngest
children, as revealed by Hidvegi et al. [51].

Some limitations of our study may be identified. We reported only a single-center
study with a limited number of CKD patients, and broader research should be carried
out, including a comparison of the NT-proBNP level in a control group. In addition,
the vast majority of the subjects were in CKD G2 and G3 with minor biochemical and
cardiovascular abnormalities, which might have influenced the number of NT-proBNP
correlations. Finally, the study’s cross-sectional nature precludes drawing final casual
relationships between NT-proBNP and the measured parameters.
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5. Conclusions

Our cross-sectional analysis revealed numerous correlations between NT-proBNP and
arterial and heart damage indices in children with chronic kidney disease. As NT-proBNP
was a significant determinant of cIMT and P2/P1 in the multivariate analysis, we conclude
that NT-proBNP may serve as a possible marker of thickening of the carotid artery wall
in pediatric patients with kidney function impairment. NT-proBNP could be used in
everyday clinical practice to assess cardiovascular risk in these subjects as evaluation of its
serum concentration is easy accessible, relatively cheap, and repeatable. Conversely, due
to our study’s limitations, the final role of NT-proBNP as a biomarker of arterial damage,
left ventricular hypertrophy or diastolic cardiac dysfunction in children with CKD needs
confirmation in prospective studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10194344/s1, Table S1: Correlations of age with NT-proBNP, clinical, and biochemical
parameters in the study group. Table S2: Correlations of age with blood pressure, arterial, and heart
parameters in the study group.
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