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Abstract: Background: β-Thalassemia is the most prevalent single gene blood disorder, while the
assessment of its susceptibility to coronavirus disease 2019 (COVID-19) warrants it a pressing biomed-
ical priority. Methods: We studied 255 positive COVID-19 participants unvaccinated against severe
acute respiratory syndrome–coronavirus 2 (SARS-CoV-2), consecutively recruited during the last
trimester of 2020. Patient characteristics including age, sex, current smoking status, atrial fibrillation,
chronic respiratory disease, coronary disease, diabetes, neoplasia, hyperlipidemia, hypertension,
and β-thalassemia heterozygosity were assessed for COVID-19 severity, length of hospitalization,
intensive care unit (ICU) admission and mortality from COVID-19. Results: We assessed patient
characteristics associated with clinical symptoms, ICU admission, and mortality from COVID-19. In
multivariate analysis, severe-critical COVID-19 was strongly associated with male sex (p = 0.023),
increased age (p < 0.001), and β-thalassemia heterozygosity (p = 0.002, OR = 2.89). Regarding the
requirement for ICU care, in multivariate analysis there was a statistically significant association
with hypertension (p = 0.001, OR = 5.12), while β-thalassemia heterozygosity had no effect (p = 0.508,
OR = 1.33). Mortality was linked to male sex (p = 0.036, OR = 2.09), increased age (p < 0.001) and
β-thalassemia heterozygosity (p = 0.010, OR = 2.79) in multivariate analysis. It is worth noting that
hyperlipidemia reduced mortality from COVID-19 (p = 0.008, OR = 0.38). No statistically significant
association of current smoking status with patient characteristics studied was observed. Conclusions:
Our pilot observations indicate enhanced mortality of β-thalassemia heterozygotes from COVID-19.
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1. Introduction

Identifying medical conditions with a high or potentially deadly impact on the disease
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a critical
initial step towards containment of associated morbidity and mortality risks. Given that
viral stress from SARS-CoV-2 elicits anabolic responses supported by increasing blood
pressure to meet enhanced oxygen needs of vital organs and organ systems, hypoxemia is
rendered a high-risk medical condition [1,2]. As the most common blood disorder affecting
approximately one third of the global population, anemia presents a low tolerance to
hypoxemia and may have either acquired polysystemic or inherited poly- or monogenic
background [3]. Monogenic anemia—which is caused by abnormal hemoglobin—is a rather
prevalent medical disorder with 270 million carriers worldwide [4–6]. β-Thalassemia is the
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most common inherited single gene disorder in the world. Approximately one-third of all
hemoglobinopathies and/or nearly 1.5% of the global population carry the β-thalassemia
trait [7]. In this context, β-thalassemia heterozygosity is a strong candidate condition for
assessing an individual’s susceptibility to COVID-19.

In the present study, we aimed to compare the effect of age, sex, complex co-morbidities,
and β-thalassemia status on clinical outcomes. It was determined that β-thalassemia het-
erozygotes were more likely to develop severe and critical COVID-19 (p = 0.002, OR = 2.89)
or die from the disease (p = 0.01, OR = 2.79); however, β-thalassemia heterozygotes were
not likely to be admitted to the hospital’s intensive care unit (ICU) (p = 0.508, OR = 1.33).
These findings suggest that β-thalassemia heterozygotes present increased morbidity and
mortality related to COVID-19, and therefore supports the urgent need for their recognition
as a high-risk group to facilitate early identification, consultation, and intervention.

2. Material and Methods
2.1. Patients

Our study population included 255 participants who were not vaccinated against
COVID-19 and had a positive SARS-CoV-2 Real-Time Polymerase Chain Reaction (RT-
PCR) molecular test. All study participants provided consent to participate in the study.
The mean age of participants was 61.56 (±16.597) years, ranging from 20 to 92 years of
age. Participants were consecutively recruited through their admittance to the emergency
department (ER) of a tertiary referral center in central Greece (Larisa University Hospital),
between 1 October and 31 December 2020. Of those patients, 153 (60%) were male and 102
(40%) were female. Current smoking status of participants was recorded in only 79 (31%)
study participants.

2.2. Patient Symptoms and Study Design

Detailed clinical characteristics of SARS-CoV-2 (dominant variant 20B/GR clade), as
well as the corresponding treatment protocols, are available online [8]. Participants were
examined with chest X ray or chest CT and categorized into groups based on ascending
severity of viral symptoms as follows: non-hospitalized, either asymptomatic or present-
ing with mild illness (26.7%, 68 patients) and hospitalized with either moderate (44.3%,
113 patients) or severe to critical illness 74 (29%, 74 patients) according to their dependence
on oxygen support (Table 1). A clinical and demographic database was created based on
both participants’ reported and clinically re-assessed medical history of confirmed COVID-
19 positive patients. Statins were prescribed to all our hyperlipidemic and in association
with anti-hypertensive treatment to a small number of hypertensive study participants.
The clinical course of non-hospitalized participants was followed by conducting telephone
interviews. Overall, 53 (20.8%) study participants were admitted to the ICU (Table 2) and
70 (27.5%) study participants died (Table 3). COVID-19 infection was the single common
official cause of death for our study participants that was registered in hospital archives.

The present study was designed to assess the association of clinical and demographic
characteristics to the outcome of study participants. In this context, we recorded patients’
age, sex, current smoking status, and history of major comorbidities (such as atrial fibril-
lation, chronic respiratory disease, coronary disease, diabetes, neoplasia, hyperlipidemia,
hypertension, and β-thalassemia heterozygosity), in relation to severity of clinical symp-
toms, time of hospitalization, ICU admission and mortality due to COVID-19 (Tables 1–3).
Other than being COVID-19 positive, our β-thalassemia trait carriers with Ht 32 to 39, were
free from additional rare hemoglobin variant combinations or notable comorbidities requir-
ing hypertensive and hyperlipidemic medication. The study was conducted in accordance
with the Research and Ethical Committee guidelines of the Larisa University Hospital.
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Table 1. Characteristics and COVID-19 clinical spectrum.

Severity Univariate
Multivariate Ordinal Logistic

Regression (Severe and Critical vs.
Others)

Mild (%) Moderate
(%)

Severe and
Critical (%) p-Value p-Value aOR with 95% CI

Sex (M/F) 34/34 67/46 52/22 0.047 * 0.023 1.81 (1.09–3.01)
Age (median, IQR) 51.5 (34) 64.0 (17) 70.5 (15) <0.001 ± <0.001 1.06 (1.04–1.08)
Atrial Fibrillation 17 (25.0) 32 (28.3) 33 (44.6) 0.022 * 0.787 0.92 (0.49–1.71)

Respiratory Disease 5 (7.4) 13 (11.5) 14 (18.9) 0.104 * 0.325 1.47 (0.68–3.15)
Coronary Disease 7 (10.3) 23 (20.4) 20 (27.0) 0.041 * 0.955 1.02 (0.50–2.09)

Diabetes 10 (14.7) 25 (22.1) 18 (24.3) 0.331 * 0.619 0.85 (0.45–1.60)
Neoplasia 7 (10.3) 11 (9.7) 11 (14.9) 0.529 * 0.209 0.61 (0.28–1.32)

Hyperlipidemia 21(30.9) 60 (53.1) 32 (43.2) 0.014 * 0.138 0.65 (0.37–1.15)
Hypertension 24 (35.3) 62 (54.9) 56 (75.7) <0.001 * 0.104 1.67 (0.90–3.08)

β-Thalassemia Heterozygotes 5 (7.4) 19 (16.8) 21 (28.4) 0.004 * 0.002 2.89 (1.49–5.62)

* Chi-square test, ± Mann–Whitney test; Bold is for the statistically significant results (p-value < 0.05).

Table 2. Characteristics and mortality due to COVID-19.

Mortality Univariate MultivariateBinary Logistic
Regression

Yes (%) No (%) p-Value OR with
95% CI

RR with
95% CI p-Value aOR with

95% CI

Sex (M/F) 50/20 103/82 0.022 * 1.99 (1.10–3.61) 1.67 (1.06–2.64) 0.036 2.09 (1.05–4.18)
Age (median, IQR) 72.5 (15) 61.0 (24) <0.001 ± - - <0.001 1.06 (1.03–1.09)
Atrial Fibrillation 33 (47.1) 49 (26.5) 0.002 * 2.48 (1.40–4.39) 1.88 (1.28–2.78) 0.201 1.64 (0.77–3.48)

Respiratory Disease 14 (20.0) 18 (9.7) 0.027 * 2.32 (1.08–4.97) 1.74 (1.11–2.74) 0.297 1.61 (0.66–3.95)
Coronary Disease 20 (28.6) 30 (16.2) 0.027 * 2.07 (1.08–3.96) 1.64 (1.08–2.49) 0.808 0.90 (0.39–2.09)

Diabetes 18 (25.7) 35 (18.9) 0.233 * 1.48 (0.77–2.84) 1.32 (0.85-2.05) 0.758 0.87 (0.41–1.91)
Neoplasia 10 (14.3) 19 (10.3) 0.367 * 1.46 (0.64-3.31) 1.30 (0.75–2.24) 0.395 0.67 (0.26–1.70)

Hyperlipidemia 30 (42.9) 83 (44.9) 0.773 * 0.92 (0.53–1.61) 0.94 (0.63–1.41) 0.008 0.38 (0.19–0.78)
Hypertension 52 (74.3) 90 (48.6) <0.001 * 3.05 (1.66–6.60) 2.30 (1.43–3.70) 0.198 1.67 (0.77–3.62)

β-Thalassemia Heterozygotes 20 (28.6) 25 (13.5) 0.005 * 2.56 (1.31–4.99) 1.87 (1.24–2.80) 0.010 2.79 (1.28–6.09)

* Chi-square test, ± Mann–Whitney test; Bold is for the statistically significant results (p-value < 0.05).

Table 3. Characteristics and ICU admission due to COVID-19.

ICU Univariate MultivariateBinary Logistic
Regression

Yes (%) No (%) p-Value OR with
95% CI

RR with
95% CI p-Value aOR with

95% CI

Sex (M/F) 36/17 117/85 0.186 * 1.54 (0.81–2.92) 1.41 (0.84–2.37) 0.305 1.45 (0.72–2.93)
Age (median, IQR) 66.2 (17) 60.4 (24) 0.030 ± - - 0.649 1.01 (0.98–1.04)
Atrial Fibrillation 21 (36.9) 61 (30.2) 0.191* 1.52 (0.81–2.84) 1.39 (0.85–2.25) 0.966 0.98 (0.43–2.23)

Respiratory Disease 11 (20.8) 21 (10.4) 0.043 * 2.26 (1.01–5.04) 1.83 (1.05–3.17) 0.205 1.80 (0.73–4.46)
Coronary Disease 16 (30.2) 34 (16.8) 0.029 * 2.14 (1.07–4.27) 1.77 (1.08–2.92) 0.393 1.48 (0.61–3.59)

Diabetes 10 (18.9) 43 (21.3) 0.699 * 0.86 (0.40–1.85) 0.87 (0.48–1.64) 0.098 0.49 (0.21–1.14)
Neoplasia 4 (7.5) 25 (12.4) 0.466 † 0.58 (0.19–1.74) 0.64 (0.25–1.63) 0.102 0.37 (0.11–1.22)

Hyperlipidemia 22 (41.5) 91 (45.0) 0.644 * 0.87 (0.47–1.60) 0.89 (0.55–1.45) 0.033 0.44 (0.21–0.94)
Hypertension 42 (79.2) 100 (49.5) <0.001 * 3.90 (1.90–7.99) 3.04 (1.64–5.63) 0.001 5.12 (2.04–12.87)

β-Thalassemia Heterozygotes 11 (20.8) 34 (16.8) 0.505 * 1.29 (0.61–2.77) 1.22 (0.68–2.18) 0.508 1.33 (0.57–3.06)

* Chi-square test, ± Mann–Whitney test, † Fisher’s exact test; Bold is for the statistically significant results (p-value < 0.05).

2.3. Statistical Analysis

Statistical analysis was performed using SPSS v.25 (IBM, Chicago, IL, USA). Qualitative
variables are presented as absolute (N) and relative (%) frequencies, and quantitative
variables are presented as means with standard deviation (SD). Both the Mann–Whitney U
test and Kruskal–Wallis test were used for continuous variables where data did not follow
a normal distribution. Normal distribution was tested using the Shapiro–Wilk normality
test. Qualitative variables were analyzed using Chi-square test or Fisher’s exact test. In
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addition, multivariate analysis was performed using binary and ordinal logistic regression.
The significance level was set at 5% (0.05).

Sample Estimation

Considering an estimated prevalence of 8% in our entire study population, a precision
of ±3.5% and a 95% confidence interval (CI), the minimum sample size required was
calculated by a precision analysis using Epi Info 7 [9]. It was determined to be 231 patients.

3. Results

Association of β-thalassemia heterozygosity with severe and critical COVID-19 symp-
toms

Considering the clinical spectrum of COVID-19 as a primary outcome, patients were
categorized into three groups (asymptomatic and mild/ moderate/ severe and critical). No
difference in chest X ray or CT scan was observed among study participants. In univariate
analysis, sex (p = 0.047), age (p < 0.001), atrial fibrillation (p = 0.022), coronary disease
(p = 0.041), hyperlipidemia (p = 0.014), hypertension (p < 0.001), and being heterozygous
for thalassemia (p = 0.004) were associated with severe COVID-19 symptoms (Table 1). In
multivariate analysis, male sex (p = 0.023), increased age (p < 0.001), and being heterozygous
for thalassemia (p = 0.002) were identified as independent risk factors for severe and critical
clinical COVID-19 symptoms. Specifically, males had a 1.81 times (95% CI, 1.09 to 3.01)
increased possibility for severe or critical clinical symptoms; increased age was associated
with increased odds of severe and clinical symptoms with OR = 1.06 (95% CI, 1.04 to 1.08).
A finding of great interest is that patients who were heterozygous for thalassemia were
2.89 times (95% CI, 1.49 to 5.62) more likely to have severe and critical clinical symptoms of
COVID-19 (Figure 1).

Figure 1. Proportion of β-thalassemia heterozygotes relative to non-carriers regarding clinical
symptoms to COVID-19.

3.1. Association of β-Thalassemia Heterozygotes with Mortality Due to COVID-19

Regarding mortality associated with COVID-19 infection, in univariate analysis sex
(p = 0.022), age (p < 0.001), atrial fibrillation (p = 0.002), respiratory disease (p = 0.027), coro-
nary disease (p = 0.027), hypertension (p < 0.001), and being heterozygous for thalassemia
(p = 0.005) were associated with mortality (Table 2). In logistic regression analysis, male
patients had a 2.09 times (95% CI, 1.05 to 4.18) greater possibility of dying and patients
with increased age were 1.06 times (95% CI, 1.03 to 1.09) more likely to die. It is worth
noting that hyperlipidemia plays a beneficial role in COVID-19 mortality, as the odds
ratio of mortality in patients with hyperlipidemia is 0.65 (95% CI 0.37–1.15). It should be
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highlighted that patient who are heterozygous for thalassemia have a 2.79 times (95% CI,
1.28 to 6.09) greater possibility of dying than other patients (Figure 2).

Figure 2. Proportion of β-thalassemia heterozygotes relative to non-carriers regarding mortality due
to COVID-19.

3.2. Admission of COVID-19 Infected β-Thalassemia Heterozygotes to the ICU

Regarding the requirement for ICU care, it was found through univariate analysis that
age (p = 0.03), respiratory disease (p = 0.043), coronary disease (p = 0.029) and hypertension
(p < 0.001) were associated with ICU admission (Table 3). Through logistic regression
analysis, patients with hypertension had 5.12 times (95% CI, 2.04 to 12.87) greater risk of
requiring ICU care than patients without hypertension. On the contrary, hyperlipidemia
was identified as a protective factor against ICU admission, with OR = 0.44 (95% CI, 0.21
to 0.94). Furthermore, in relation to the requirement for ICU care, being heterozygous for
thalassemia had no effect on the possibility of admission to the ICU (p = 0.505).

3.3. Length of Hospitalization until Death

When comparing the median length of hospitalization (days) between patients being
heterozygous for thalassemia and non-carriers, a statistically significant difference was
observed (p = 0.046) (Figure 3). More specifically, the median duration of hospitalization
among carriers and non-carriers was 12 and 17.5 days, respectively.

Figure 3. Days of hospitalization until death between carries and non-carriers.
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3.4. Length of Hospitalization among Patients Who Survived

Regarding days of hospitalization among patients that survived COVID-19, the me-
dian duration was eight days for patients that were heterozygous for thalassemia and six
days for non-carriers (p = 0.014) (Figure 4).

Figure 4. Days of hospitalization between carries and non-carriers that survived.

4. Discussion

In this pilot study, we aimed to evaluate the impact of COVID-19 on β-thalassemia
heterozygotes. We assessed the association of age, sex, common co-morbidities, and
β-thalassemia heterozygosity to clinical outcomes of participants from central Greece
who were not vaccinated against SARS-CoV-2 and tested positive for COVID-19 during
the last trimester of 2020. Our findings support earlier observations that male sex and
older age are associated with poorer outcomes [9–13] and suggest that hyperlipidemia
reduced participant mortality due to COVID-19 (p = 0.08, OR = 0.38), while β-thalassemia
heterozygosity enhanced (p = 0.010, OR = 2.79) participant mortality due to COVID-19
(Table 3, Figure 2).

While hyperlipidemia and obesity are common co-morbidities with negative impacts
on most associated pathologies [14], in the present study patients with hyperlipidemia were
clearly protected from mortality due to COVID-19, with a 60% lesser probability of death
compared to other patients (OR = 0.38). Known to reduce COVID-19 mortality [15–17],
statins that were prescribed to hyperlipidemic patients may account for patients’ pro-
tection against COVID-19 associated death. In addition to their primary lipid-lowering
effect, statins appear to regulate vasodilation via a receptor of the novel coronavirus,
angiotensin-converting enzyme 2 (ACE2) [18]. As a well-characterized regulator of pul-
monary vasodilation, ACE2may also exert beneficial secondary vascular effects such as
dilation of lung vessels [19].

A strong association between β-thalassemia heterozygosity and increased mortality
from COVID-19 was also observed. While in line with the rationale presented in our
introductory remarks regarding hypoxemia and viral stress, this observation is in stark
contrast to the protection of β-thalassemia heterozygotes against mortality due to COVID-
19, which was reported at the beginning of pandemic [20,21].

In order to explain the difference between studies, we compared the days of hospi-
talization due to COVID-19 between carriers and non-carriers of the β-thalassemia trait
(Figure 4). Significantly longer COVID-19 hospitalizations were observed for β-thalassemia
trait carriers compared to non-carriers (p = 0.014). This observation suggests different
carrier status-dependent dynamics between confirmed high risk non-carriers and no risk
carriers of the β-thalassemia trait, during the early and later phase of the COVID-19 out-
break. According to this hypothesis, lagging end fatal episodes of COVID-19 positive
β-thalassemia heterozygotes may yield reduced mortality during the early stage, which
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will be normalized during the later stage of pandemic. Analogous regional differences
between prevalence of the β-thalassemia trait and mortality from COVID-19 due to the
timing of the viral outbreak may also be observed. Such alleged differences may be further
magnified by the short duration of data collection from participants at the onset of the
pandemic. Thus, timing of data collection and study design differences may account for
contrasting conclusions between studies.

In light of the recent recognition of COVID-19 as a vascular disease leading to mor-
tality from cardiovascular (CVS) failure [22], an operational overview of our observations
regarding pathogenesis and treatment of β-thalassemia trait carriers is pertinent. CVS
control is exerted through classical RAS inducing vasoconstriction via renin processed
ANGII vasoconstrictors and counterbalancing non-classical RAS inducing vasodilation via
ACE2 converted ANG1-7 vasodilators [23]. SARS-CoV-2 inhibits ACE2 expression and
deranges CVS homeostasis [24]. Current strategies for COVID-19 treatment aim to suppress
SARS-CoV-2 main protease activity, required to release active viral protein products and
induce ACE2 expression [25]. Conversely, hyperlipidemia is a major systemic risk factor of
CVS failure [26]. Ideally, effective treatment of CVS failure in COVID-19 patients should
face a combination of viral and systemic risks. Statins appear to be ideal candidates for
such combined treatment needs. On the viral front, statins bind to main protease and
induce ACE2 expression, while on the systemic front they confer a potent lipid-lowering
and anti-inflammatory effect [27].

Asymptomatic or mildly anemic β-thalassemia heterozygotes are in a state of threat-
ened homeostasis, that if deranged may collectively induce expression of innate immune
receptors CD45, Toll-like receptor 4, and CD32, reduce the ability to produce oxidative
burst, and elevate membrane lipid peroxidation [28,29]. The compromised nature of re-
sponse to stress inherent to β-thalassemia heterozygotes may explain the low threshold of
COVID-19 symptoms required to begin treatment, which appear with considerable time
lag and require considerably longer periods of hospitalization and ICU care. According to
this comparison, also indicative to patients’ borderline resistance to stress, carriers of the
β-thalassemia trait have a considerably higher risk of dying from COVID-19 compared to
non-carriers (OR = 2.79).

Considering that COVID-19 induces CVS failure in this patient group and in view
of the high mortality of β-thalassemia heterozygotes from COVID-19, the prescription of
statins may improve this group’s clinical outcome. Thus, statin administration to COVID-19
positive β-thalassemia heterozygotes merits thorough consideration as a potential first line
treatment option. Statins could represent an interesting treatment but, ideally, dedicated
studies are needed.

5. Conclusions

In conclusion, carriers of the β-thalassemia trait are highly susceptible to COVID-
19 and their early identification, consultation and treatment should be considered as a
mandatory clinical practice, with important socioeconomic impacts for containment of
the COVID-19 pandemic. Targeted studies from different study groups will be needed to
assess the broader strength of our conclusions.
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