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Abstract: Following the first report of the coronavirus disease 2019 (COVID-19) in Sapporo city,
Hokkaido Prefecture, Japan, on 14 February 2020, a surge of cases was observed in Hokkaido during
February and March. As of 6 March, 90 cases were diagnosed in Hokkaido. Unfortunately, many
infected persons may not have been recognized due to having mild or no symptoms during the
initial months of the outbreak. We therefore aimed to predict the actual number of COVID-19 cases
in (i) Hokkaido Prefecture and (ii) Sapporo city using data on cases diagnosed outside these areas.
Two statistical frameworks involving a balance equation and an extrapolated linear regression model
with a negative binomial link were used for deriving both estimates, respectively. The estimated
cumulative incidence in Hokkaido as of 27 February was 2,297 cases (95% confidence interval (CI):
382–7091) based on data on travelers outbound from Hokkaido. The cumulative incidence in Sapporo
city as of 28 February was estimated at 2233 cases (95% CI: 0–4893) based on the count of confirmed
cases within Hokkaido. Both approaches resulted in similar estimates, indicating a higher incidence
of infections in Hokkaido than were detected by the surveillance system. This quantification of
the gap between detected and estimated cases helped to inform the public health response at the
beginning of the pandemic and provided insight into the possible scope of undetected transmission
for future assessments.

Keywords: epidemiology; travel medicine; COVID-19; emerging infectious diseases

1. Introduction

In December 2019, a cluster of 41 patients with atypical pneumonia of unknown
etiology was reported in the city of Wuhan, China [1,2]. The number of atypical pneumonia
cases in Wuhan rapidly increased in early January and cases began appearing across China
and in other countries [3,4]. The cause of the pneumonia was recognized as a newly
emerged coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), and the disease it causes was given the name coronavirus disease 2019 (COVID-19).
Cases of COVID-19 have now been reported in more than 120 countries worldwide [5],
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and the WHO declared it a pandemic on 11 March 2020. By the end of 2020, the disease
had spread to nearly every country in the world. In the present paper, we examine the
emergence of a COVID-19 hotspot in Hokkaido Prefecture, Japan, during the first wave of
the pandemic. Because of the limited testing capacity in the first months of the outbreak [6]
and the specific contact-based, centered surveillance of SARS-CoV-2 infections in Japan [7],
a substantial fraction of infected individuals may have remained undetected during the
first months of the pandemic.

Control of COVID-19 spread is complicated by various factors, including nonspe-
cific clinical symptoms, especially during the early phase of infection [8–10]; a relatively
high proportion of pre-symptomatic and asymptomatic infections [11–15]; multiple pos-
sible routes of transmission—including aerosol, direct contact, and fecal–oral transmis-
sion [10,16,17]—as well as the moderate to high potential of superspreading events gener-
ated by a small proportion of cases [18,19]. Additionally, the incubation period can vary
widely [20,21], and re-occurrence of the disease after primary infection is possible [22].
Nonetheless, the transmission dynamics of COVID-19 in the community can be roughly
grasped by exploring epidemiological indicators such as the number of confirmed infec-
tions in a given location, or the number of exported cases.

Clinical manifestation of COVID-19 begins with nonspecific symptoms (similar to
seasonal influenza), which remain mild for most persons. Some infections may remain
entirely asymptomatic. For a small fraction of symptomatic cases, the disease may resolve
into a life-threatening onset of acute respiratory distress [19,23]. Despite efforts towards
mitigation, the number of confirmed cases worldwide represents only a fraction of all
infections, and the actual number of cases including mild and asymptomatic infections
may be as large as four- or ten-fold [15,24,25]. Hence, the derivation of reliable estimates of
the actual number of cases is needed to conduct risk assessments of the spread of COVID-
19 and inform policies related to containment and mitigation [26]. This was especially
important for newly emerging hotspots in Japan and some other countries at the beginning
of 2020 [4,27].

The increased number of cases in and exportation of cases from Hokkaido in February–
March 2020 signaled an urgent need to increase containment efforts within the prefecture.
To help guide the policymaking process and better understand the risk of further spread
within and exportation from Hokkaido, we derived real-time estimates of the actual
incidence by accounting for under-ascertained cases. The methods can be further expended
to other areas or countries experiencing a surge of new cases of COVID-19, any other
emergent disease, or their new variants.

2. Methods
2.1. Epidemiological Data

Three sources of data were leveraged to estimate the actual incidence of COVID-19
in Hokkaido. Firstly, cases exported domestically and internationally from Hokkaido
were identified based on government reports. The domestically exported cases were
Kumamoto (1 case), Nagano (1 case), and Chiba (1 case) prefecture residents [28–30].
The internationally exported cases were reported from Malaysia (1 case) and Thailand
(2 cases) [31,32]. Considering that the two Thailand cases were husband and wife and one
case was asymptomatic, one infection may have been the result of household transmission,
as similarly described in [33], rather than exported from Japan. Secondly, the total volume
of air passengers from all airports in Hokkaido to Thailand and Malaysia over the two-
month period of January and February 2019 was retrieved from the International Air
Transport Association (IATA) and included 9349 passengers flown directly to Malaysia
and 45,137 to Thailand. Lastly, the population size of Hokkaido was obtained from the
Hokkaido Prefectural Government website [34].

The calculation of COVID-19 incidence in Sapporo was based on cases of non-Sapporo
residents who (i) became infected in Sapporo and were diagnosed outside of Sapporo or (ii)
cases diagnosed outside of Sapporo who had no information on their source of infection
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(i.e., unknown link). Cases who were infected outside of Sapporo by Sapporo residents
were excluded from the analysis, as they did not represent true exportation of infection
from Sapporo by a local case. For example, in one instance, a Sapporo resident travelled
to Kitami city in Okhotsk subprefecture and caused secondary infections among Kitami
residents. These Kitami residents were excluded from our analysis, as they were infected
outside of Sapporo. However, if a case from Kitami were to travel to Sapporo, have likely
been infected there, and then be subsequently diagnosed in Kitami, they would be eligible
for our analysis. Data on cases reported through the end of February 2020, including dates
of illness onset, subprefecture of diagnosis, history of travel to Sapporo, and epidemiologic
linkage to other confirmed cases, were retrieved from the websites of government entities
in Hokkaido.

The estimate of the fraction of commuters between subprefectures was obtained with
reference to a survey of the daytime and nighttime population sizes in Sapporo [35]. By
subtracting the daytime population size from the nighttime population size and dividing
the difference by the nighttime population, we obtained a value of 3.7% [35], reflecting
the change in the population size of Sapporo due to commuting. However, this estimate
accounts for the movement of individuals both within Ishikari subprefecture (including
Sapporo and several other cities) and between subprefectures. In contrast, our model
requires the average estimate between all subprefectures of Hokkaido. Therefore, we set
this parameter at 1% and performed a sensitivity analysis wherein we varied the fraction
of commuters between 0.5% and 4%.

2.2. Modeling Commuter Movement between Subprefectures of Hokkaido

Two single-parameter models of human movement were employed to predict the
rate of commuting between Sapporo and the various subprefectures of Hokkaido—a
radiation model and a model of uniform selection. Both emphasize the attractiveness of
large population centers [36–39]. The uniform selection model [40] predicts the commuting
volume using the following formula:

Mij = Mi
Pi

N −Qj
, (1)

where Pi is the population size at the origin i, Qj is the population size at the destination j,
and N is the total population of Hokkaido. The only parameter to be estimated is Mi, which
defines the scaling of the ongoing number of commuters from the source subprefecture
and is equal to the proportion of commuters multiplied on the population size Pi [39]. In
contrast, the radiation model [41] incorporates the distance metric between the origin and
the destination and defines a commuting volume with the following formula:

Mij = Mi
PiQj(

Pi + Rij
)(

Pi + Qj + Rij
) (2)

where Rij denotes the total population within a radius around two centers, Pi and Qj. Both
matrices Mij (1)–(2) were made symmetric in our simulations. Either model (1) or (2) was
selected based on the values of a widely applicable information criterium (WAIC), with a
lower value regarded as better.

An aggregated dataset of population sizes and central point coordinates for each sub-
prefecture was used to estimate the commuting rates using the R package “movement” [38].
The package required a fraction of the commuting individuals to be a single input pa-
rameter for the function. Due to the uncertainty of this value, we performed a sensitivity
analysis with reference to the daytime and nighttime populations of Sapporo [35].

2.3. Estimating Actual Incidence of COVID-19 Cases in Hokkaido Prefecture and Sapporo City

The actual incidence was estimated in (i) Hokkaido Prefecture using the number of
detected cases among international and domestic travelers outbound from Hokkaido, and
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in (ii) Sapporo city using the number of confirmed cases within different subprefectures of
Hokkaido. Both estimates were thought to be close to each other, because Sapporo was the
epicenter for COVID-19 spread within Hokkaido.

The framework was based on two key assumptions. First, the outbreak was considered
to be in its initial stage during the time period of February to March 2020, when the first
cases in Sapporo emerged and had just expanded to other areas in Hokkaido. In such an
instance, the disentanglement of locally acquired infections from the imported cases was
still possible in each subprefecture. Second, the travel volume between subprefectures in
Hokkaido was assumed to be well-approximated by the models of commuting movement,
which were described above.

(i) Estimating incidence in Hokkaido by using imported cases among travelers outbound
from Hokkaido

A balance equation was implemented to predict incidence across all Hokkaido using
the case count of air passengers from Hokkaido with international or domestic destina-
tions [3,42–44]. Given the observed cumulative count of exported cases C, we estimated
the fraction of infected individuals in Hokkaido p̂ by the following equation:

p̂ = C
365
mT

, (3)

where m is the total volume of passengers to the corresponding destination and T is the
infectious period, approximated from the observed average virus shedding period of
5.0 days [45]. Accordingly, the incidence in Hokkaido was defined by p̂n, where n is
the catchment population size for the international airport in Hokkaido. To account for
stochasticity, we used a binomial sampling process, maximum likelihood estimation, and
95% confidence intervals derived from the profile likelihood.

(ii) Estimating incidence in Sapporo using cases imported within Hokkaido

Following a previously developed framework [46], the number of infections Cj in
subprefecture j of Hokkaido Prefecture was sampled from a negative binomial distribution
with the mean λj linearly proportional to the predicted travel volume between Sapporo
and subprefecture j: λj = β ·M◦j, and the dispersion parameter k:

Cj ∼ Negative Binomial
(
mean = λj, overdispersion = k

)
,

λj = β ·M◦j, j = 1 . . . 14,
(4)

where the regression coefficient β is considered to be independent of a subprefecture and
to be fitted to the data.

Because Sapporo is a part of Ishikari subprefecture, for our study, we defined Ishikari
subprefecture as all cities within Ishikari subprefecture, excluding Sapporo (Figure 1B).
The flow M◦j was predicted using the uniform selection and radiation models of human
movement [40,41], as described in Equations (1) and (2). The cumulative incidence in
Sapporo was then estimated by extending Equation (4) to the entire population of Sapporo:

C◦ ∼ NegativeBinomial(β · N◦, k), (5)

where N◦ is the population size of Sapporo.
The derived estimates of the linear regression model (3) were also used to validate

our assumption of linearity between the number of reported COVID-19 infections in each
subprefecture and the daily commuting rate [47]. Using the fit of the predicted travel
volume and observed case counts, the best-fit model between (1) and (2) was selected based
on the difference in the WAIC values.
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firmed in Hokkaido. The labels indicate the names of the subprefectures of Hokkaido. (C) Only cases included in our 
analysis: non-residents of Sapporo with unknown links either with or without history of travel to Sapporo. Ishikari sub-
prefecture was separated into two subregions: Sapporo city and outside Sapporo city. Hatched areas in grey indicate 
subprefectures with zero counts. 
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A surge of cases was observed at the end of February (Figure 2A). In the first half of 
February, peaks of reported cases by date of illness onset were separated by 3–4 days on 
average, consistent with estimates of the serial interval [51]. The epidemic curve peaked 
around 18 February 2020, but the subsequent decline in cases can be explained by the 
delay in reporting. The delay distribution fitted with the gamma distribution had a mean 
of 7.9 days (95% CI: 6.9–9.0) and a standard deviation of 4.2 days (95% CI: 3.3–5.2). The 
95th percentile was 15.6 days (95% CI: 13.4–18.8), implying that cases with illness onset in 
the last two weeks of February were likely to be under-ascertained. 

Figure 1. Geographical distribution of confirmed cases linked to Hokkaido by subprefecture of diagnosis as of 29 February 2020.
(A) International and domestic cases (excluding Hokkaido). Hokkaido is shaded in black, whereas affected countries are depicted
in red. The circled numbers indicate the total count of cases for each import destination. (B) All cases confirmed in Hokkaido.
The labels indicate the names of the subprefectures of Hokkaido. (C) Only cases included in our analysis: non-residents of
Sapporo with unknown links either with or without history of travel to Sapporo. Ishikari subprefecture was separated into two
subregions: Sapporo city and outside Sapporo city. Hatched areas in grey indicate subprefectures with zero counts.

2.4. Reporting Delay between Illness Onset and Confirmation

Because the dataset for this study was collected at a near-real-time setting, the assess-
ment of the under-ascertainment of reported cases was made by evaluating the reporting
delay distribution. For this purpose, the time interval from illness onset day Si to report
of case confirmation day Ri for each confirmed case i was extracted from the data. The
doubly interval-censored likelihood function L [20,47] was implemented for estimation:

L(θ | D) = ∏
i

∫ Si+1

Si

∫ Ri+1

Ri

h(s) · f (r− s | θ) dr ds. (6)

Here, h(.) is the probability distribution function (PDF) of illness onset time following
a uniform distribution, and f (. | θ) is the PDF of the reporting delay independent of h(.). D
represents a dataset among all confirmed cases i, where both the time of illness onset s and
the time of case confirmation r are defined with precision to one day, i.e., they belong to
the time intervals (Si, Si + 1) and (Ri, Ri + 1), respectively. The distribution to be defined
is f (. | θ) , and it was fitted to gamma, lognormal, and Weibull distributions, each with a
set of parameters θ. The best-fit distribution was then selected by comparing the WAIC
values and selecting the one with a lower value.

We note that an alternative way to implement a right-truncated likelihood is by using
the following formula:

L(θ |D) = ∏
i

∫ Si+1

Si

∫ Ri+1

Ri

h(s) · f (r− s | θ)
F(t∗ − s | θ) dr ds, (7)

where t∗ is the cut-off time at noon on 29 February 2020, and F(. | θ) is the cumulative
distribution function of f (. | θ) . However, our analysis has shown that the mean delay was
longer than two weeks, and this was inconsistent with real observations. The reason is that
the right truncation does not account for the effect of control measures implemented in late
February (see Discussion).
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2.5. Simulation Platform

The data were processed using R version 3.6.2 and Python version 3.6.10. Markov chain
Monte Carlo (MCMC) simulations were performed in Stan (cmdStan version 2.22.1 [48]) for
estimation of the delay distribution, and in PyMC3 version 3.8 [49] for all other estimates. The
code is available online [50].

3. Results
3.1. Epidemiological Situation

The first case was reported in Hokkaido on 28 January 2020. One month later, on
28 February 2020, the total count of confirmed cases reached 65, with 13 cases reported
by Sapporo and another 51 cases reported by 11 of the 14 subprefectures of Hokkaido
(and one elsewhere). The place of diagnosis for the first case was unspecified. Initially,
cases were predominantly linked to the Sapporo Snow Festival, but overall, the geographic
distribution of COVID-19 cases was widespread. By 28 February, Japan had also been
notified of three cases diagnosed in Thailand and Malaysia who were believed to have
been infected in Hokkaido, as well as three domestic cases likely exposed in Hokkaido that
were reported by other prefectures (Table 1, Figure 1A).

Table 1. Exportation events and estimated incidence in Hokkaido by date of report.

Case
Number

Diagnosis
Location Date of Illness Onset Date of Report Cumulative

Count
Estimated Incidence in

Hokkaido (95% CI)

1 Kumamoto 15 February 2020 22 February 2020 2 24 (4–74)2 Chiba 16 February 2020
3 Nagano 20 February 2020 25 February 2020 3 36 (9–93)

4–5 Thailand
20 February 2020 26 February 2020

6 3446 (857–8931) #

2298 (382–7091) ##NA
6 Malaysia 25 February 2020 27 February 2020

CI, confidence interval (the 95% CI was derived from profile likelihood); NA, not available. The estimated incidence is updated by the
function of the date of report. The estimated incidence for the latest available reporting date (27 February 2020) depends on whether both
cases 4 and 5 acquired their infection in Hokkaido (#) or whether one was infected by the other (##).

A surge of cases was observed at the end of February (Figure 2A). In the first half of
February, peaks of reported cases by date of illness onset were separated by 3–4 days on
average, consistent with estimates of the serial interval [51]. The epidemic curve peaked
around 18 February 2020, but the subsequent decline in cases can be explained by the delay
in reporting. The delay distribution fitted with the gamma distribution had a mean of
7.9 days (95% CI: 6.9–9.0) and a standard deviation of 4.2 days (95% CI: 3.3–5.2). The 95th
percentile was 15.6 days (95% CI: 13.4–18.8), implying that cases with illness onset in the
last two weeks of February were likely to be under-ascertained.
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3.2. Estimated Incidence in Hokkaido Using Confirmed Cases Diagnosed Outside Hokkaido (Method (i))

The first three cases diagnosed in early February outside of Hokkaido indicated a low
incidence of COVID-19 in Hokkaido with an estimated upper bound (95th percentile) of
fewer than 100 cases. Our estimate of the cumulative incidence in Hokkaido as of 25 February
2020 is dependent on whether the transmission within the infected couple who travelled to
Thailand was acquired in the community or within the household, and we estimated the
incidence in Hokkaido to be higher in the former scenario, at 3446 cases (95% CI: 857–8931),
compared to the latter, with 2297 cases (95% CI: 382–7091); see Figure 3A.
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3.3. Estimated Incidence in Sapporo Using Confirmed Cases Diagnosed within Hokkaido (Method (ii))

A total of 34 Hokkaido cases were included in our model (Figure 1B). We fitted the
radiation and uniform selection models to the population data for each subprefecture based
on their centroids (Figure S1). The resulting fit to the observed incidence of COVID-19 cases
showed that the uniform selection model performed better than the radiation model (WAIC
values: 60.2 vs. 68.3, respectively). Figure 3B shows the fit using the model with uniform
selection. If we assume the fraction of commuters to be at 1%, then the mean estimated
incidence in Sapporo was 2233 cases (95% CI: 0–4893) as of 28 February 2020. Variation in
the fraction of commuters between 0.5% and 4% results in an estimated incidence between
4440 (95% CI: 0–9687) and 563 (95% CI: 0–1221) for 0.5% and 4%, respectively (Figure 3C).

4. Discussion

Our estimate of the incidence in Sapporo in February–March 2020 is in the range of
1000–10,000 cases and resembles early estimates of COVID-19 incidence in Wuhan city,
China that used data on the first cases among international travelers [3,52]. Assuming,
however, that our estimates are correct, a substantial proportion of these infected persons
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likely had only a mild or asymptomatic course of the disease [11,21], did not seek medical
care, and were not detected by the surveillance system. The median estimated infection-
to-confirmed-case ratio in Hokkaido was 26:1 (95% CI: 4.2–78.8), which includes, but is
expectedly higher than, the 7:1 (95% CI: 5.5–10.0) estimate for the first wave of infections
in the United States [25]. However, in the early stage of the pandemic, the case-finding
strategy in Japan was based on extensive contact tracing [7], and differences in adopted case
definitions between the two countries may have contributed to the observed difference in
estimates. Our inference method was also less specific and did not rely on a compartmental
Susceptible–Infected–Recovered (SIR) model as in [25].

Use of data on the travel volume of commuters and tourists within Hokkaido could
be beneficial for fitting the travel volume to the observed incidence rather than adopting a
model of human movement (Figure 3B). However, publicly available data on train, bus,
and private car travel in Hokkaido were inconsistent and scarce, and we were unable to
use them for this study. Nevertheless, our results demonstrate that the use of mathemat-
ical models of human movement at the scale of estimating the travel volume between
administrative subunits of a given region is a promising alternative to the use of observed
transportation data. Previously, this was also demonstrated by other researchers in assess-
ing the risk of spread of yellow fever in Angola [36] or during epidemics in resource-poor
settings [37].

In addition, surveillance among travelers at international borders may detect infections
not found through standard surveillance systems due to the implementation of additional
detection methods [53,54]. As shown by other researchers [46,55], the linear regression fit
of the travel volume among international travelers to observed disease incidence represents
an efficient way to distinguish areas that are able to detect most new infections from those
that are likely to miss a larger fraction of cases. One limitation of our approach is that we
were unable to distinguish international travelers from Hokkaido to Malaysia and Thailand
who actually stayed in those countries from those who transited to another international
destination. We applied the same approach to compare the performance of the various
subprefectures of Hokkaido, as shown in Figure 3B. Subprefectures that fall within the 95%
CI of the linear regression line are considered to have surveillance systems that succeed in
detecting COVID-19 infections within their jurisdiction. Subprefectures that fall below the
95% CI of the linear regression line may not have surveillance systems that are sensitive
enough to detect all imported cases [46]. The four subprefectures with no reported cases
by the end of March were Rumoi, Soya, Nemuro, and Shiribeshi. The first three are distant
and less connected to Sapporo compared to, for example, Kamikawa or Oshima, which
contain the second and third largest cities of Hokkaido, Asahikawa and Hakodate (Figure
1B). However, Shiribeshi is located next to Ishikari subprefecture/Sapporo and includes
the relatively large city of Otaru. The lack of reports in Shiribeshi may be explained by
our use of place of diagnosis over place of residence for determining the subprefecture
assigned to cases. This was done because the specific place of residence was not always
reported. We suspect that some cases residing in Shiribeshi subprefecture were diagnosed
in Ishikari subprefecture.

Our analysis of the reporting delay did not implement right truncation of the likeli-
hood because the low case count (by date of illness onset) seen in late February through
the beginning of March 2020 was highly likely due to the effect of control measures in
Hokkaido rather than delays in reporting. In support of this assumption, there were fewer
cases reported between 28 February and 6 March 2020 compared to the week of 21–27
February 2020 (cf. Figure 2 and Figure S2). Right truncation should, therefore, be used with
caution when it is unclear whether recent incidence is increasing or decreasing.

In conclusion, our study demonstrates that combining data sources of imported
COVID-19 cases at different (sub-prefectural, inter-prefectural, or international) levels
represents a valuable way for estimating the actual incidence at the origin. Based on this
approach, we showed that the under-ascertainment rate of COVID-19 cases in Hokkaido
Prefecture at the beginning of the pandemic in February–March 2020 was much higher
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than the analogous estimate from the United States in the corresponding period [25].
This could be explained by the different case-finding strategy used in Japan in early
2020, when mass testing of the public was rarely implemented and only the contacts of
confirmed cases were investigated by the authorities [6,7]. Preliminary analysis of the
offspring distribution among infected individuals in the detected clusters around Japan
has shown that approximately 80% of cases do not produce secondary infections (i.e., their
reproduction number is equal to zero) [56]. Because most of the clusters have been linked to
the known cases and could be traced back in time, we argue that there is still a window of
opportunity for containment of the disease, and only some small fraction of the infections
may drive the epidemic [18]. We agree with other studies, e.g., [57,58], that a successful
strategy for the control of COVID-19 lies in strict movement restriction, avoidance of social
gatherings, and an intense investigation effort in contact tracing with the possible help of
new information technologies such as digital assistance for contact tracing [59,60].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10112392/s1, Figure S1: Reconstructed connectivity matrix between subprefectures of
Hokkaido, Figure S2: Epidemic curves by date of confirmation (A) and date of illness onset (B) as of
6 March 2020 for confirmed cases among Japanese nationals linked to Hokkaido.
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