Next Issue
Volume 9, September
Previous Issue
Volume 9, July
 
 

Membranes, Volume 9, Issue 8 (August 2019) – 14 articles

Cover Story (view full-size image): Molecular simulations are playing an increasingly important role in the design of tailor-made materials and in understanding and predicting the permeability and selectivity properties of polymer-based membranes. The broad spectra of length and time scales that govern the permeation performance of glassy polymers necessitate the development of hierarchical molecular simulation methods. This review discusses the challenges that emanate from the multiscale problem and presents molecular modeling approaches for the study of the diffusion and sorption of small penetrants in dense glassy polymers. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 6489 KiB  
Article
Temperature-Dependent Gas Transport Behavior in Cross-Linked Liquid Crystalline Polyacrylate Membranes
by Feras Rabie, Lenka Poláková, Sebastian Fallas, Zdenka Sedlakova, Eva Marand and Stephen M. Martin
Membranes 2019, 9(8), 104; https://doi.org/10.3390/membranes9080104 - 20 Aug 2019
Cited by 2 | Viewed by 2899
Abstract
Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4′-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. [...] Read more.
Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4′-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. The phase behavior of the LCP membranes was characterized using differential scanning calorimetry (DSC) and X-ray scattering, and indicated the formation of a nematic liquid crystalline (LC) phase above the glass transition temperature. The single gas transport behavior of CO2, CH4, propane, and propylene in the cross-linked LCP membranes was investigated for a range of temperatures in the LC mesophase and the isotropic phase. Solubility of the gases was dependent not only on the condensability in the LC mesophase, but also on favorable molecular interactions of penetrant gas molecules exhibiting a charge separation, such as CO2 and propylene, with the ordered polar mesogenic side chains of the LCP. Selectivities for various gas pairs generally decreased with increasing temperature and were discontinuous across the nematic–sotropic transition. Sorption behavior of CO2 and propylene exhibited a significant change due to a decrease in favorable intermolecular interactions in the disordered isotropic phase. Higher cross-link densities in the membrane generally led to decreased selectivity at low temperatures when the main chain motion was limited by the lack of mesogen mobility in the ordered nematic phase. However, at higher temperatures, increasing the cross-link density increased selectivity as the cross-links acted to limit chain mobility. Mixed gas permeation measurements for propylene and propane showed close agreement with the results of the single gas permeation experiments. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Graphical abstract

14 pages, 4994 KiB  
Article
Development of Mass Production Technology of Highly Permeable Nano-Porous Supports for Silica-Based Separation Membranes
by Ken-ichi Sawamura, Shigeru Okamoto and Yoshihiro Todokoro
Membranes 2019, 9(8), 103; https://doi.org/10.3390/membranes9080103 - 16 Aug 2019
Cited by 4 | Viewed by 3000
Abstract
Silica-based membranes show both robust properties and high-permeability, offering us great potential for applying them to harsh conditions where conventional organic membranes cannot work. Despite the increasing number of paper and patents of silica-based membranes, their industrial applications have yet to be fully [...] Read more.
Silica-based membranes show both robust properties and high-permeability, offering us great potential for applying them to harsh conditions where conventional organic membranes cannot work. Despite the increasing number of paper and patents of silica-based membranes, their industrial applications have yet to be fully realized, possibly due to their lack of technologies on scaling-up and mass production. In particular, quality of membrane supports decisively impacts final quality of silica-based separation membranes. In this study, therefore, we have developed mass producing technologies of nano-porous supports (φ 12 mm, length 400 mm) with surface center pore size distribution of 1–10 nm, which are generally used as supports for preparing separation membranes with a pore size of less than 1 nm. The developed mass production apparatuses have enabled us to reproducibly produce nano-porous silica-based supports with high permeance (e.g., N2 permeance of more than 10−5 mol m−2 s−1·Pa−1) minimizing effects of membrane defects less than 0.1% of the total flux. The developed nano-porous supports have enabled us to reproducibly produce silica-based separation membranes with high permeace and selectivity (e.g., H2 permeance of about 5 × 10−6 mol m−2 s−1 Pa−1 and H2/SF6 permeance ratio of more than 2000). Full article
Show Figures

Graphical abstract

16 pages, 4219 KiB  
Article
Membrane Separation of the Base-Catalyzed Depolymerization of Black Liquor Retentate for Low-Molecular-Mass Compound Production
by Kena Li, Basel Al-Rudainy, Mingzhe Sun, Ola Wallberg, Christian Hulteberg and Per Tunå
Membranes 2019, 9(8), 102; https://doi.org/10.3390/membranes9080102 - 16 Aug 2019
Cited by 22 | Viewed by 4562
Abstract
One way of valorizing the lignin waste stream from the pulp and paper industries is depolymerizing it into low-molecular-mass compounds (LMMC). However, a common problem in the depolymerization of Kraft lignin is the low yields of small aromatic molecules obtained. In the present [...] Read more.
One way of valorizing the lignin waste stream from the pulp and paper industries is depolymerizing it into low-molecular-mass compounds (LMMC). However, a common problem in the depolymerization of Kraft lignin is the low yields of small aromatic molecules obtained. In the present work, the combination of the repeated depolymerization of lignin and the separation of LMMC from depolymerized lignin to upgrade them into value-added chemicals was studied. In so doing, we investigated the possibility of depolymerizing black liquor retentate (BLR). The base-catalyzed depolymerization of BLR was performed using a continuous flow reactor at 170–210 °C, with a 2 min residence time. The results obtained indicate that BLR can be depolymerized effectively under the experimental conditions. Depolymerized lignin LMMC can be successfully separated by a GR95PP membrane, and thus be protected from repolymerization. Through combining membrane filtration with base-catalyzed depolymerization, more than half of the lignin could be depolymerized into LMMC. Around 46 mg/g of lignin monomers (guaiacol, vanillin, acetovanillone, and acetosyringone), which can potentially be upgraded to high-valued chemicals, were produced. On the basis of our results, we suggest use of a recycling Kraft lignin depolymerization and filtration process for maximizing the production of LMMC under mild alkaline conditions. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Graphical abstract

19 pages, 7216 KiB  
Article
Role of Cellulose Micro and Nano Crystals in Thin Film and Support Layer of Nanocomposite Membranes for Brackish Water Desalination
by Mohammed Kadhom, Noor Albayati, Suhaib Salih, Mustafa Al-Furaiji, Mohamed Bayati and Baolin Deng
Membranes 2019, 9(8), 101; https://doi.org/10.3390/membranes9080101 - 15 Aug 2019
Cited by 32 | Viewed by 3158
Abstract
Reverse osmosis is a major process that produces soft water from saline water, and its output represents the majority of the overall desalination plants production. Developing efficient membranes for this process is the aim of many research groups and companies. In this work, [...] Read more.
Reverse osmosis is a major process that produces soft water from saline water, and its output represents the majority of the overall desalination plants production. Developing efficient membranes for this process is the aim of many research groups and companies. In this work, we studied the effect of adding cellulose micro crystals (CMCs) and cellulose nano crystals (CNCs) to the support layer and thin film nanocomposite (TFN) membrane on the desalination performance. SEM, TEM, ATR-FTIR, and contact angle measurements were used to characterize the membrane’s properties; and membrane’s performance were evaluated by water flux and NaCl rejection. Filling 2% of CNCs gel in the support layer improved the water flux by +40%, while salt rejection maintained almost the same, around 95%. However, no remarkable improvement was gained by adding CNCs gel to m-phenylenediamine (MPD) solution, which was used in TFN membrane preparation. Filling CMCs powder in TFN membrane led to a slight improvement in terms of water flux. Full article
(This article belongs to the Section Inorganic Membranes)
Show Figures

Figure 1

16 pages, 4670 KiB  
Article
Galactoglucomannan Recovery with Hydrophilic and Hydrophobic Membranes: Process Performance and Cost Estimations
by Basel Al-Rudainy, Mats Galbe, Frank Lipnizki and Ola Wallberg
Membranes 2019, 9(8), 99; https://doi.org/10.3390/membranes9080099 - 10 Aug 2019
Cited by 9 | Viewed by 4175
Abstract
In this study, we compared the GR51PP (hydrophobic/polysulfone) membrane with a series of hydrophilic (regenerated cellulose) membranes with the aim of increasing the retention of products and decreasing membrane fouling. The raw material used was a sodium-based spent sulfite liquor from the sulfite [...] Read more.
In this study, we compared the GR51PP (hydrophobic/polysulfone) membrane with a series of hydrophilic (regenerated cellulose) membranes with the aim of increasing the retention of products and decreasing membrane fouling. The raw material used was a sodium-based spent sulfite liquor from the sulfite pulping process of spruce and pine. The results show that the hydrophilic membranes were superior to the hydrophobic membranes in terms of higher fluxes (up to twice the magnitude), higher product retentions and less fouling (up to five times lower fouling). The fouling was probably caused by pore blocking as observed in earlier studies. However, the hydrophilic membranes had a lower affinity for lignin, which was indicated by the lower retention and fouling. This also resulted in a separation degree, which was higher compared with the hydrophobic membrane, thus yielding a higher galactoglucomannan (GGM) purity. 2D HSQC NMR results show that no major structural differences were present in the hydrophilic and hydrophobic retentates. A techno-economical evaluation resulted in the RC70PP being chosen as the most cost-efficient membrane in terms of flux and product recovery. Full article
(This article belongs to the Special Issue EWM 2019: Membranes for a Sustainable Future)
Show Figures

Graphical abstract

30 pages, 1522 KiB  
Review
Recent Progresses in Application of Membrane Bioreactors in Production of Biohydrogen
by Bahman Jabbari, Elham Jalilnejad, Kamran Ghasemzadeh and Adolfo Iulianelli
Membranes 2019, 9(8), 100; https://doi.org/10.3390/membranes9080100 - 10 Aug 2019
Cited by 39 | Viewed by 3860
Abstract
Biohydrogen is a clean and viable energy carrier generated through various green and renewable energy sources such as biomass. This review focused on the application of membrane bioreactors (MBRs), emphasizing the combination of these devices with biological processes, for bio-derived hydrogen production. Direct [...] Read more.
Biohydrogen is a clean and viable energy carrier generated through various green and renewable energy sources such as biomass. This review focused on the application of membrane bioreactors (MBRs), emphasizing the combination of these devices with biological processes, for bio-derived hydrogen production. Direct biophotolysis, indirect biophotolysis, photo-fermentation, dark fermentation, and conventional techniques are discussed as the common methods of biohydrogen production. The anaerobic process membrane bioreactors (AnMBRs) technology is presented and discussed as a preferable choice for producing biohydrogen due to its low cost and the ability of overcoming problems posed by carbon emissions. General features of AnMBRs and operational parameters are comprehensively overviewed. Although MBRs are being used as a well-established and mature technology with many full-scale plants around the world, membrane fouling still remains a serious obstacle and a future challenge. Therefore, this review highlights the main benefits and drawbacks of MBRs application, also discussing the comparison between organic and inorganic membranes utilization to determine which may constitute the best solution for providing pure hydrogen. Nevertheless, research is still needed to overcome remaining barriers to practical applications such as low yields and production rates, and to identify biohydrogen as one of the most appealing renewable energies in the future. Full article
Show Figures

Figure 1

35 pages, 3067 KiB  
Review
Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers
by Niki Vergadou and Doros N. Theodorou
Membranes 2019, 9(8), 98; https://doi.org/10.3390/membranes9080098 - 08 Aug 2019
Cited by 54 | Viewed by 7991
Abstract
With a wide range of applications, from energy and environmental engineering, such as in gas separations and water purification, to biomedical engineering and packaging, glassy polymeric materials remain in the core of novel membrane and state-of the art barrier technologies. This review focuses [...] Read more.
With a wide range of applications, from energy and environmental engineering, such as in gas separations and water purification, to biomedical engineering and packaging, glassy polymeric materials remain in the core of novel membrane and state-of the art barrier technologies. This review focuses on molecular simulation methodologies implemented for the study of sorption and diffusion of small molecules in dense glassy polymeric systems. Basic concepts are introduced and systematic methods for the generation of realistic polymer configurations are briefly presented. Challenges related to the long length and time scale phenomena that govern the permeation process in the glassy polymer matrix are described and molecular simulation approaches developed to address the multiscale problem at hand are discussed. Full article
(This article belongs to the Special Issue Gas Transport in Glassy Polymers)
Show Figures

Figure 1

13 pages, 2078 KiB  
Article
Exploring Submerged Forward Osmosis for Water Recovery and Pre-Concentration of Wastewater before Anaerobic Digestion: A Pilot Scale Study
by Federico Ferrari, Maite Pijuan, Ignasi Rodriguez-Roda and Gaetan Blandin
Membranes 2019, 9(8), 97; https://doi.org/10.3390/membranes9080097 - 05 Aug 2019
Cited by 26 | Viewed by 5448
Abstract
Applying forward osmosis directly on raw municipal wastewater is of high interest for the simultaneous production of a high quality permeate for water reuse and pre-concentrating wastewater for anaerobic digestion. This pilot scale study investigates, for the first time, the feasibility of concentrating [...] Read more.
Applying forward osmosis directly on raw municipal wastewater is of high interest for the simultaneous production of a high quality permeate for water reuse and pre-concentrating wastewater for anaerobic digestion. This pilot scale study investigates, for the first time, the feasibility of concentrating real raw municipal wastewater using a submerged plate and frame forward osmosis module (0.34 m2) to reach 70% water recovery. Membrane performance, fouling behavior, and effective concentration of wastewater compounds were examined. Two different draw solutions (NaCl and MgCl2), operating either with constant draw concentration or in batch with draw dilution over time, were evaluated. Impact of gas sparging on fouling and external concentration polarization was also assessed. Water fluxes up to 15 L m−2 h−1 were obtained with clean water and 35 g NaCl/L as feed and draw solution, respectively. When using real wastewater, submerged forward osmosis proved to be resilient to clogging, demonstrating its suitability for application on municipal or other complex wastewater; operating with 11.7 g NaCl/L constant draw solution, water and reverse salt fluxes up to 5.1 ± 1.0 L m−2 h−1 and 4.8 ± 2.6 g m−2 h−1 were observed, respectively. Positively, total and soluble chemical oxygen demand concentration factors of 2.47 ± 0.15 and 1.86 ± 0.08, respectively, were achieved, making wastewater more suitable for anaerobic treatment. Full article
(This article belongs to the Special Issue Forward Osmosis: Modelling and Applications)
Show Figures

Graphical abstract

18 pages, 3708 KiB  
Article
Antifouling Properties of Silver-Zinc Oxide Polyamide Thin Film Composite Membrane and Rejection of 2-Chlorophenol and 2,4-Dichlorophenol
by Kate Kotlhao, Isiaka A. Lawal, Richard M. Moutloali and Michael J. Klink
Membranes 2019, 9(8), 96; https://doi.org/10.3390/membranes9080096 - 05 Aug 2019
Cited by 18 | Viewed by 3756
Abstract
The silver-zinc oxide (Ag-ZnO) polyamide thin film composite (PA-TFC) membrane was prepared by interfacial polymerization. The Ag-ZnO/PA-TFC membrane was characterized by attenuated total reflectance fourier-transform infrared spectroscopy (ATR-FTIR) for polyamide functional groups and contact angle for surface hydrophilicity. The Ag-ZnO/PA-TFC membrane was further [...] Read more.
The silver-zinc oxide (Ag-ZnO) polyamide thin film composite (PA-TFC) membrane was prepared by interfacial polymerization. The Ag-ZnO/PA-TFC membrane was characterized by attenuated total reflectance fourier-transform infrared spectroscopy (ATR-FTIR) for polyamide functional groups and contact angle for surface hydrophilicity. The Ag-ZnO/PA-TFC membrane was further characterized by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) for morphology and surface roughness, respectively. The performance of the fabricated membrane was investigated using pure water flux, permeability, rejection, flux recovery, and fouling resistance using low molecular weight organic pollutants, 2-chlorophenol (2-CP) and 2,4-dichlorophenol (2,4-DCP). The results were compared to the neat (PA-TFC) membrane. It was observed that incorporation of Ag-ZnO nanocomposites into the PA-TFC membrane improved hydrophilicity, permeation, rejection, and fouling resistance properties of the membrane. The contact angle decreased from 62.8° to 54° for PA-TFC and the Ag-ZnO/PA-TFC membrane, respectively. The presence of Ag-ZnO enhanced permeability of the membrane from 0.9 (Lm−2h−1bar−1) to 1.9 (Lm−2h−1bar−1). Modification of the membrane with Ag-ZnO further showed an enhanced rejection of 2-CP and 2,4-DCP from 43% to 80% and 58% to 85%, respectively. The 2,4-DCP molecules were rejected more than 2-CP due to enhanced repulsive forces from the extra Cl ion. A high flux recovery of about 95% was achieved for the modified membrane compared to 64% for the neat membrane. The improved flux recovery was an indication of enhanced antifouling propensity. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Graphical abstract

12 pages, 5184 KiB  
Article
Correlation between Concentrations of Ni and Y in Y-Doped BaZrO3 Electrolyte in Co-Sintered Cells: A Case of Controlled NiO Activity by Using MgO-NiO Solid Solution as Anode Substrate
by Donglin Han, Kenji Kuno and Tetsuya Uda
Membranes 2019, 9(8), 95; https://doi.org/10.3390/membranes9080095 - 02 Aug 2019
Cited by 11 | Viewed by 3355
Abstract
BaZr0.8Y0.2O3-δ (BZY20) is promising to be applied as an electrolyte in fuel cells, electrolysis cells, etc. However, when a half cell composed of a BZY20 electrolyte layer and a BZY20-NiO composite anode substrate is co-sintered (1400–1600 °C), Ni [...] Read more.
BaZr0.8Y0.2O3-δ (BZY20) is promising to be applied as an electrolyte in fuel cells, electrolysis cells, etc. However, when a half cell composed of a BZY20 electrolyte layer and a BZY20-NiO composite anode substrate is co-sintered (1400–1600 °C), Ni diffuses from the anode substrate into the electrolyte layer. Y content in the electrolyte layer decreases dramatically, since BZY20 cannot be equilibrated with NiO at such high temperature. Such Ni diffusion and Y loss are detrimental to the electrochemical performance of the electrolyte layer. In this work, we added MgO-NiO solid solution into the anode substrate to adjust the NiO activity (aNiO) during the co-sintering process, and used three different co-sintering methods to control the BaO activity (aBaO). The results revealed that by decreasing aNiO in the system, the as-co-sintered electrolyte layer had the composition shifting towards the direction of high Y and low Ni cation ratios. A clear correlation between the intra-grain concentration of Ni and Y was confirmed. In other words, to prepare the electrolyte with the same Y cation ratio, the Ni diffusion into the electrolyte layer can be suppressed by using the MgO-NiO solid solution with a high MgO ratio and a low Ni ratio. Moreover, by increasing aBaO, we found that the Y cation ratio increased and approached the nominal value of the pristine BZY20, when Mg1−xNixO (x = 0.3 and 0.5) was used. In summary, both aNiO and aBaO play important roles in governing the composition of the electrolyte layer prepared by the co-sintering process. To evaluate the quality of the electrolyte layer, both the intra-grain Y and Ni concentrations should be carefully checked. Full article
(This article belongs to the Special Issue Ceramic Membranes for Fuel Cell Applications and Hydrogen Production)
Show Figures

Graphical abstract

12 pages, 4252 KiB  
Article
Silica-Based RO Membranes for Separation of Acidic Solution
by Katsunori Ishii, Ayumi Ikeda, Toshichika Takeuchi, Junko Yoshiura and Mikihiro Nomura
Membranes 2019, 9(8), 94; https://doi.org/10.3390/membranes9080094 - 01 Aug 2019
Cited by 9 | Viewed by 3900
Abstract
The development of acid separation membranes is important. Silica-based reverse osmosis (RO) membranes for sulfuric acid (H2SO4) solution separation were developed by using a counter diffusion chemical vapor deposition (CVD) method. Diphenyldimethoxysilane (DPhDMOS) was used as a silica precursor. [...] Read more.
The development of acid separation membranes is important. Silica-based reverse osmosis (RO) membranes for sulfuric acid (H2SO4) solution separation were developed by using a counter diffusion chemical vapor deposition (CVD) method. Diphenyldimethoxysilane (DPhDMOS) was used as a silica precursor. The deposited membrane showed the H2SO4 rejection of 81% with a total flux of 5.8 kg m−2 h−1 from the 10−3 mol L−1 of H2SO4. The γ-alumina substrate was damaged by the permeation of the H2SO4 solution. In order to improve acid stability, the silica substrates were developed. The acid stability was checked by the gas permeation tests after immersing in 1 mol L−1 of the H2SO4 solution for 24 h. The N2 permeance decreased by 11% with the acid treatment through the silica substrate, while the permeance decreased to 94% through the γ-alumina substrate. The flux and the rejection through the DPhDMOS-derived membrane on the silica substrate were stable in the 70 wt % H2SO4 solution. Full article
Show Figures

Graphical abstract

12 pages, 3763 KiB  
Article
Development of PVDF Ultrafiltration Membrane with Zwitterionic Block Copolymer Micelles as a Selective Layer
by Hajeeth Thankappan, Gauthier Bousquet, Mona Semsarilar, Antoine Venault, Yung Chang, Denis Bouyer and Damien Quemener
Membranes 2019, 9(8), 93; https://doi.org/10.3390/membranes9080093 - 01 Aug 2019
Cited by 9 | Viewed by 4452
Abstract
In recent years, block copolymer micellar assemblies with the formation of structured nanoparticles have been considered as an emerging technology in membrane science. In this work, the poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymer was directly synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization and self-assembled [...] Read more.
In recent years, block copolymer micellar assemblies with the formation of structured nanoparticles have been considered as an emerging technology in membrane science. In this work, the poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymer was directly synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization and self-assembled in a selective medium (2,2,2-trifluroethanol/water). Then, poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymers were casted onto a commercial PVDF membrane to form a thin porous selective layer. The prepared nanoparticles and the resulting membranes were fully characterized using microscopy methods (SEM and AFM), whereas the membrane performance was evaluated in terms of permeability and the molecular weight cut off. The results from this study demonstrate the preparation of an ultrafiltration membrane made from the assembly of poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymer micelles on the top of a PVDF membrane in the form of thin film. The copolymer chain orientation leads to a membrane surface enriched in hydrophilic PSBMA, which confers a suitable behavior for aqueous solution filtration on the membrane, while preserving the high chemical and mechanical resistance of the PVDF. Full article
(This article belongs to the Special Issue Block Copolymer-Based Membranes)
Show Figures

Graphical abstract

19 pages, 3099 KiB  
Article
Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes
by Jaime A. Idarraga-Mora, Michael A. Lemelin, Steven T. Weinman and Scott M. Husson
Membranes 2019, 9(8), 92; https://doi.org/10.3390/membranes9080092 - 26 Jul 2019
Cited by 11 | Viewed by 6593
Abstract
In this paper, we discuss the effect of alcohol contact on the transport properties of thin-film composite reverse osmosis membranes. Five commercial membranes were studied to quantify the changes in water permeance and sodium chloride rejection from contact with five C1–C4 monohydric, alcohols. [...] Read more.
In this paper, we discuss the effect of alcohol contact on the transport properties of thin-film composite reverse osmosis membranes. Five commercial membranes were studied to quantify the changes in water permeance and sodium chloride rejection from contact with five C1–C4 monohydric, alcohols. Water permeance generally increased without decreasing rejection after short-term contact. The extent of these changes depends on the membrane and alcohol used. Young′s modulus measurements showed decreased stiffness of the active layer after contacting the membranes with alcohol, suggesting plasticization. Data analysis using a dual-mode sorption model identified positive correlations of the initial water permeance, as well as the change in free energy of mixing between water and the alcohols, with the increase in water permeance after alcohol contact. We suggest that the mixing of water with the alcohols facilitates alcohol penetration into the active layer, likely by disrupting inter-chain hydrogen bonds, thus increasing the free volume for water permeation. Our studies provide a modeling framework to estimate the changes in transport properties after short-term contact with C1–C4 alcohols. Full article
Show Figures

Graphical abstract

13 pages, 5845 KiB  
Article
CFD Investigation of Spacer-Filled Channels for Membrane Distillation
by Mariagiorgia La Cerva, Andrea Cipollina, Michele Ciofalo, Mohammed Albeirutty, Nedim Turkmen, Salah Bouguecha and Giorgio Micale
Membranes 2019, 9(8), 91; https://doi.org/10.3390/membranes9080091 - 25 Jul 2019
Cited by 11 | Viewed by 3291
Abstract
The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure [...] Read more.
The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure drops. Therefore, in the design of MD modules, the choice of the spacer is crucial for process efficiency. In the present work, different overlapped spacers are investigated by computational fluid dynamics (CFD) and results are compared with experiments carried out with thermochromic liquid crystals (TLC). Results are reported for different flow attack angles and for Reynolds numbers (Re) ranging from ~200 to ~800. A good qualitative agreement between simulations and experiments can be observed for the areal distribution of the normalized heat transfer coefficient. Trends of the average heat transfer coefficient are reported as functions of Re for the geometries investigated, thus providing the basis for CFD-based correlations to be used in higher-scale process models. Full article
(This article belongs to the Special Issue Membrane Distillation Process)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop