

Article

Supplementary Material: Vanillin as an Antifouling and Hydrophilicity Promoter Agent in Surface Modification of Polyethersulfone Membrane

Mohammadamin Esmaeili¹*^(D), Tiina Virtanen ¹, Jussi Lahti ^{1,2}, Mika Mänttäri ¹ and Mari Kallioinen ^{1,2}

- ¹ LUT School of Engineering Science, Department of Separation and Purification Technology, Lappeenranta University of Technology; tiina.virtanen@lut.fi (T.V.); jussi.lahti@lut.fi (J.L.); mika.manttari@lut.fi (M.M.)
- ² LUT Re-Source Platform, Lappeenranta University of Technology, P.O.Box 20, 53851 Lappeenranta, Finland; mari.kallioinen@lut.fi (M.K.)
- * Correspondence: mohammadamin.esmaeili@lut.fi; Tel.: +358-44-968-3768

Received: 8 March 2019; Accepted: 18 April 2019; Published: 24 April 2019

Figure S1. PEG solution permeabilities before and after modification with vanillin. Polyethersulfone membranes (UH004 P) were modified by different concentration of vanillin (0.3 g/L, 0.8 g/L and 1.3 g/L) and each experiment was repeated thrice.

Figure S2. PEG solution permeabilities before and after modification with vanillin. Polyethersulfone membranes (UH004 P) were modified by different concentration of vanillin (1.8 g/L, 2.3 g/L and 2.8 g/L) and each experiment was repeated twice.

Figure S3. The UV absorption of vanillin in different concentrations at wavelength of 308 nm and pH 5.6.

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).