
membranes

Article

Study of Gases Permeation in Necklace-Shaped
Dimethylsiloxane Polymers Bearing POSS Cages

Roman Selyanchyn 1,* , Shigenori Fujikawa 1,2,3,4, Naohiro Katsuta 5, Kazuya Suwa 6 and
Masashi Kunitake 5,*

1 WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; fujikawa.shigenori.137@m.kyushu-u.ac.jp

2 NanoMembrane Technologies Inc., 4-1, Kyudai-Shimachi, Nishi-ku, Fukuoka 819-0388, Japan
3 Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
4 Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku,

Yokohama 226-8503, Japan
5 Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku,

Kumamoto 860-8555, Japan; 159d8309@st.kumamoto-u.ac.jp
6 JNC Petrochemical Corporation, Ichihara Research Center; 5-1 Goikagan, Ichihara, Chiba 290-8551, Japan;

k.suwa@jnc-corp.co.jp
* Correspondence: romanselyanchyn@i2cner.kyushu-u.ac.jp (R.S.); kunitake@kumamoto-u.ac.jp (M.K.);

Tel.: +81-92-802-6877 (R.S.); +81-96-342-3673 (M.K.)

Received: 26 February 2019; Accepted: 11 April 2019; Published: 16 April 2019
����������
�������

Abstract: The transport of small gases (H2, CO2, N2, O2) through a series of novel membranes
based on necklace-shaped inorganic polymers (DMS@POSS), in which a polyhedral oligomeric
silsesquioxane (POSS) cage unit and soft chains of oligo-dimethyl siloxane (DMS) were alternately
connected, was investigated. The influence of the DMS chain length and crosslinking density of
the DMS@POSS on membrane properties were studied. The membranes revealed characteristic
structure-property relation towards both glass transition and gases transport. Specifically, clear
dependence of properties from the length of DMS units (or overall siloxane content) was revealed.
Gas transport properties, when compared to state-of-art polydimethylsiloxane and commercial
silicone rubber, demonstrated significantly higher selectivity of DMS@POSS for carbon dioxide
(in CO2/N2), hydrogen (in H2/N2) and oxygen (in O2/N2) but lowered permeability, proportional to
the amount of POSS in the material. With a precise control over mechanical and thermal properties
compared to conventional silicone rubbers, described materials could be considered as materials of
choice in niche gas separation or other applications.

Keywords: POSS; organic–inorganic hybrid; necklace shaped polymer; gas separation membrane

1. Introduction

Among the huge structural diversity of siloxane derivatives, polyhedral oligomeric silsesquioxane
(POSS) molecules, which possess discrete nanocage structures, have been attracting significant
fundamental and industrial interest [1]. Distinctive features of the POSS molecules (particles) are
their size in the range of 1–3 nm and the possibility of tailoring their properties by the introduction
of various functional groups on the surface. These feature make them very attractive candidates for
fabrication of organic–inorganic hybrid nanocomposites [2]. For instance, POSS molecules, when used
as fillers or components in polymer matrices, can provide gains in thermal stability [3] or modify
dielectric properties [4], generally without a big influence on transparency [5].

Recently, the necklace-shaped polymers, in which a “hard and bulky” unit and a “soft” chain such
as POSS and dimethyloligosiloxane (DMS) respectively, are alternately bonded in the polymer main
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chain, have attracted much attention as a primary polymer design leading to well-balanced nano-fusion.
We have reported the alternating siloxane copolymers consisted of a bifunctional POSS cage and a flexible
linear DMS chain segment [6–8]. The necklace-shaped linear polymers (thermoplastics), DMS@POSS,
are synthesized via stepwise polycondensation or ring opening (equilibrium) polymerization with a
bifunctional POSS cage molecule as a key precursor. Two synthetic routes allowed us to produce the
series of the polymers with structural varieties in terms of chain arrangements, namely the chain length
between POSS units, type of arrangement (fixed modulated and random), and the average molecular
weight. The library of polymers with structural variation are optimal to explore the correlation between
the primary nanostructure and properties of the polymers. For instance, the correlations between the
average length of the DMS chains and thermal properties such as glass transition temperatures and
decomposition temperature have elucidated the structures with significantly high heat resistance [8].
Other properties of POSS nanocomposites are yet to be investigated. In particular, the transport of gases
through the POSS containing hybrids is an important direction of research because these materials
could provide necessary alternatives over conventional organic polymers.

Several studies on gas permeation using polymer membranes containing POSS units have been
reported. For instance, Rahman et al. prepared nanocomposite membranes by incorporation of
poly(ethylene glycol) functionalized POSS (PEG-POSS) in commercial poly(ether-block-amide) (Pebax®

MH 1657). They demonstrated a two-fold increase in CO2 permeability without significant influence
on selectivity while other composite (with Pebax® 2533) showed enhancement in both selectivity and
permeability upon up to 30 wt% POSS incorporation [9]. Raaijmakers et al. synthesized hyper-cross-linked
polyPOSS−imide membranes with tailored intercage spacing showing that length and flexibility of their
imide bridges enabled tuning of gas permeability and selectivity in a broad temperature range [10,11].

As outlined by Madhavan et al. [2], in regard to gas separation, POSS derivatives have a unique
feature being an intermediate between that of silica (SiO2) and siloxane (R2SiO). Due to utilization of
DMS connection between POSS particles, the necklace-shaped DMS@POSS polymer materials that
we developed are even closer to the family of the polydimethylsiloxanes. Therefore, knowledge of
gas permeation in these hybrids is of high importance. Precise understanding of the relationship of
a structure and gas permeability property can show the way towards mechanically and thermally
stable membrane materials. Few studies have reported the composite materials that are based on
combination of POSS and PDMS. Chen et al. [12] used divinyl-hexa[(trimethoxysilyl)ethyl]-POSS as an
alternative cross-linker of the PDMS and demonstrated the improvement of the thermal stability and
mechanical properties (tensile strength, modulus, and hardness) with the increase of modified POSS
loading up to 20%. In other works, researchers have blended heptaphenylhydrogen silsesquioxanes
with high molecular weight PDMS and also observed the gradual change of thermal properties and
crystallization behavior with the loadings up to 10 wt% [13]. Several studies have also investigated the
gas permeability in the composites based specifically on POSS and PDMS. Madhavan et al. [2] reported
the decrease of permeability in composites containing CyPOSS (partially caged heptacyclopentyl
tricycloheptasiloxane triol) in PDMS-polyurethane (PDMS-PU) matrix. With the increase of loading
from 5% to 25%, permeability of CO2, O2 and N2 decreased, while CO2/N2 and O2/N2 selectivities
demonstrated an increase in selectivity. Interestingly, when the amine functionalized POSS was
introduced in similar PDMS-PU matrix both permeability and selectivity decreased with the content of
POSS-amine from 5% to 25% [14]. The decrease of H2 and CO2 permeabilities was observed in the
work of Rezakazemi [15] who used 2–6% of octatrimetoxy-POSS as filler.

In this work, the transport of small gases through the series of cross-linked polymer membranes
based on necklace-shaped DMS@POSS polymers (chemical structure given in Figure 1) was studied.
The thermosetting network polymers were prepared by crosslinking the silanol groups at the both ends
of the DMS@POSS macromers. By crosslinking only at both the ends of the polymers, it is possible
to retain the basic physicochemical properties of the original necklace-shaped polymers even in the
polymer networks. Variation of the DMS length and amount of crosslinker were used as parameters
for material variation.
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2. Materials and Methods

2.1. Membranes Fabrication

The synthesis and characterization of bifunctional POSS molecules and necklace-shaped
POSS-DMS polymers with “constant chain” and “random chain” arrangements by polycondensation
and ring opening polymerization have been reported in earlier works [6,8]. The membranes,
DMSx

y@POSS (where x is the average DMS length and y is the crosslinking ratio) were prepared by
casting of THF solution of a polymer precursor with a multi-functional silane cross-linking agent
MS-51 (Mitsubishi Chemical Corp., Tokyo, Japan) and dibutyltin dilaurate (Catalyst, Tokyo Chemical
Industry Co., Ltd., Tokyo, Japan) into a Teflon dish followed by heat treatment at 200 ◦C. The catalyst
concentration was typically 0.021 ppm by weight relative to the macromer. All of the polymer
membranes used were transparent, indicating amorphous structures. After crosslinking completion
materials are stable in normal environment and are not affected by environmental factors (e.g., high
humidity or high temperature). Table 1 provides the summary of the materials used in this study.

Table 1. Summary of the materials composition and the properties used to fabricate gas
separation membranes.

Material Code Average DMS
Length, n MW MN

Crosslinking Ratio,
MS-51:DMS@POSS

Siloxane Mass
Content, %

DMS4.4
15 @POSS 4.4 315,000 146,000 1:15 22.5

DMS4.0
15 @POSS 4.0 110,000 81,500 1:15 20.9

DMS3.4
5 @POSS 3.4 110,000 64,900 1:5 18.3

DMS3.4
15 @POSS 3.4 110,000 64,900 1:15 18.3

DMS3.4
30 @POSS 3.4 110,000 64,900 1:30 18.3

DMS2.0
15 @POSS 2.0 * 76,700 40,100 1:15 11.7

* Fixed length of dimethyl siloxane.

2.2. Characterization

The chemical structure of fabricated composite membranes was analyzed by Fourier transform
infrared spectroscopy (FTIR) using a scanning FTIR Microscope (Nicolet iN10 MX, ThermoFischer, Tokyo,
Japan). The test was conducted in the attenuated total reflectance (ATR) mode using actual membranes
for analysis in the scanning range of 4000–650 cm−1 with a resolution of 4 cm−1. Pressure was changed
accordingly with samples’ hardness in order to obtain maximum contact to obtain reliable spectra.
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Differential scanning calorimetry (DSC) was carried out using a NETZSCH instrument (DSC
204 F1 Phoenix®, NETZSCH, Selb, Germany) under a nitrogen atmosphere (50 mL·min−1). The samples
in an aluminum pan (mass ~3 mg) were cooled below the glass transition point (Tg) and re-heated to
well above Tg. The heating and cooling rate was set to 30 ◦C·min−1 with an empty aluminum pan used
as a reference. The Tg value was determined as the midpoint value between the onset and the end of a
step transition using the NETZSCH analysis software (Proteus Analysis, version 7.1.0).

2.3. Gas Permeability Measurement

For the gas permeation measurements, the polymer membranes were masked with alumina tape
(Bytac®) to provide an open circle of 2 cm diameter (a respective active surface area ~ 3.14 cm2) as
schematically shown in Figure 2a and optical photography of the actual sample in Figure 2b. Dry gases
permeation rates were measured at room temperature using GTR-11A/31A gas barrier testing system
(GTR Tec Corp., Kyoto, Japan) schematically given in Figure 2c. This system has three independent test
cells and operates the differential pressure method to measure the gas permeation rates (compliant with
ISO 15105-1 and JIS K7126 standards). In the machine, gas transport through the membrane is induced
by initial vacuum applied on the permeate side and gas compression applied on the feed side once
the valves are open. For all measurements, the standard total pressure difference was set to 200 kPa.
Gas collected in the test cell is automatically transferred to a gas chromatograph equipped with thermal
conductivity detector (TCD, G3700T, Yanaco, Kyoto, Japan) where total volume is detected respectively
to previously measured calibration line. Sample collection time was adjusted along with the permeation
properties of the membrane in a way to avoid significant change of transmembrane pressure.

Thickness of the membranes was measured by digital micrometer (Mitutoyo, Japan) and was in
the range 120–160 µm. A commercial silicone rubber membrane (Togawa Rubber Ltd., Japan) with
thickness of 500 µm was used as a reference. Gas permeation was measured for pure gases purchased
from (Fukuoka Sanso, Fukuoka, Japan) and each membrane sample was measured in several replicates
(5–15). Average values of permeability (p) in barrer units (1 barrer = 10−10 cm3(STP)·cm/cm2

·s·cmHg)
was calculated and is reported. The ideal selectivity between two different gases in a composite
membrane was calculated by taking the ratio of the permeabilities of different gases, αij = pi/pj, where
pi and pj are the permeabilities of fast gas i and slow gas j, respectively.
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Figure 2. (a) Schematic image of DMS@POSS membrane assembly for the gas transport measurement
in GTR-TEC machine; (b) Photography of the typical sample used for gas permeability measurements
(c) schematic image of the steel cell used for gas transport measurement in the GTR-TEC device.
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3. Results

3.1. Membranes Characterization

Figure 3 shows the typical ATR-FTIR spectra obtained for the DMSx
y@POSS and PDMS (silicone)

membranes. As seen, due to presence of methyl siloxane linkers between phenyl-POSS particles,
DMSx

y@POSS sample includes all signals characteristic for the polysiloxane, as indicated in the bottom
plot in Figure 3, particularly intense asymmetric Si-CH3 stretching (around 2960 cm−1), symmetric
CH3 deformations (1258 cm−1) Si-C stretching (790 cm−1), Si-O-Si stretching (1010 and 1075 cm−1).
Additionally, the DMSx

y@POSS samples clearly show the signals originating from the incorporated
phenyl-POSS, such as CH stretching in aromatic ring (3000–3100 cm−1), C-C stretching in the aromatic
ring (1600 cm−1 and 1430 cm−1), in-plane CH bending (shoulders around 1000 and 1070 cm−1), out of
plane CH bending (shoulder around 740 cm−1), as well as more complex Si-O-Si signals in the range of
650–900 cm−1 characteristic to POSS cages. Qualitatively, all samples used in the work give similar
FTIR spectral results, proving that, structurally, materials are similar to each other. Other spectra are
therefore not shown for clarity in this work.
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15 @POSS membrane (upper spectrum) compared to a

spectrum of conventional silicone rubber membrane (bottom spectrum).

In our earlier work, glass transition temperatures (Tg) were measured by thermal mechanical analysis
(TMA), in which Tg is detected using the indentation probe during the material gradual heating [8].
Here, we have conducted additionally dynamic scanning calorimetry to confirm the Tg of the actual
membrane samples. The result, given in Figure 4, shows clear glass transitions taking place in all samples.
As seen Tg value is proportional to the amount of POSS in materials (inversely proportional to the length
of DMS linker.) This structure-property relation provides an important demonstration of the control over
thermal properties one obtains by changing the way how material is synthesized.

The glass transition temperatures determined using TMA and DSC were in good agreement except
for DMS2.0

15 @POSS bearing the shortest DMS chain length (summarized in Table 2). DSC and TMA
measurements are methodologies to observe the melting of polymer chains and the softening of the
materials from microscopic and macroscopic aspects, respectively. In previous research, it was found that
the POSS-DMS alternating polymer of fixed chain length of 2 can reveal crystallinity, although other POSS
polymers bearing longer DMS chains demonstrate amorphous nature. This relatively low dispersibility of
the POSS units in the polymer matrix may be considered the reason for the difference in apparent Tg.
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demonstrating clear glass transition behavior (Tg indicated on each plot) which correlates with the
material composition, namely higher Tg corresponds to higher amount of POSS in material.

Table 2. Glass transition temperatures of the DMSx
y@POSS composite membranes measured by thermal

mechanical analysis (TMA) and dynamic scanning calorimetry (DSC).

Material Tg, ◦C
by TMA

Tg, ◦C
by DSC

DMS4.4
15 @POSS ~10 8.5

DMS4.0
15 @POSS 18.6 16.5

DMS3.4
5 @POSS 36.1 –

DMS3.4
15 @POSS 36.1 41.0

DMS3.4
30 @POSS 36.1 –

DMS2.0
15 @POSS ~100 62.0

3.2. Gases Permeation at Room Temperature

Figure 5 summarizes the measured pure gases selectivity as a function of permeability of fast gas
for the case of the most important from the industrial point of view, namely CO2/N2 (post combustion
CO2 capture at heat power plants), O2/N2 (oxygen enrichment/ nitrogen purification), and H2/N2

(hydrogen purification) as gas pairs for separation. Table 3 provides numerical values of the same
data. In Figure 5a,c,e the data measured for DMSx

y@POSS membranes is compared with the database
of measured organic polymer membranes reported in the literature so far [16], together with the most
recent Robeson upper bound established for the organic polymer membranes [17].

A detailed result for the CO2/N2 separation by DMSx
y@POSS membranes shows significantly higher

selectivity to CO2 for all membranes (α~25) compared to conventional PDMS [18] and commercial
silicone (α~11). However, at the same time, noteworthy reductions of permeability were observed for
all membranes, namely from ca. 440 barrers (in DMS4.4

15 @POSS) to ca. 120 barrers (in DMS2.0
15 @POSS).

Such behavior may be related to the increased content of the POSS component and/or decreased DMS
content in the different samples. Polydimethylsiloxane is known as highly permeable material [19];
therefore, it is plausible to relate the increased permeability with the increase of DMS content in the
membrane material.

One more observation that is given in Figure 5b shows no significant differences between the
DMS3.4

y @POSS membrane samples in respect to the cross-linking ratio. These results indicate that
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sufficient three-dimensional polymer networks were constructed even with a relatively low degree
of crosslinking. This is a promising finding as the crosslinking amount that is usually important for
control of mechanical properties of membranes may also substantially reduce the permeability [20].
Overall, for the CO2/N2 pair separation, we can say that DMSx

y@POSS membranes perform better than
the majority of conventional polymers, and have suitable separation parameters.

For the case of O2/N2 pair separation, all tested DMSx
y@POSS membranes, similar to previous

gas pair, demonstrated decreased permeability/increased selectivity compared to conventional PDMS
samples. However, contrary to the CO2/N2 data we do see some influence of crosslinking on the
gas permeation for DMS3.4

y @POSS membranes. Namely, denser crosslinking leads to the decrease in
both selectivity and permeability which is expected behavior as the crosslinking ratio may reduce the
free volume of the polymer reducing the diffusivity of gases. This finding also suggests the different
pathway of gas permeation compared to CO2 which didn’t demonstrate such behavior.

Finally, for the H2/N2 separation given in Figure 5e,f, we observe clear trade-off behavior, namely
samples with the highest selectivity show the smallest permeability and vice versa. The increase in
selectivity for hydrogen over nitrogen compared to conventional materials (5–10 times) is highest among
three gas pairs of industrial interest. This means that the structural difference of the membranes is less
notable for hydrogen gas where permeability decreased 4–8 times compared to PDMS. However, it is
unlikely that H2 can penetrate the POSS cages as the smallest gas because in such case we should have
observed much better permeability expected for materials with fine micropores [21].
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y@POSS samples (blue circle outline) polydimethylsiloxane and commercial silicone (red circle
outline) compared to the wide variety of organic polymers published in literature [16] and Robeson
upper bound [17]; (b) Same data represented in smaller scale to visualize the difference between
different materials (blue number next to the data point indicated the lengths of the DMS link, x in the
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Table 3. Summary of the gas permeabilities in DMS@POSS membranes compared to Sylgard PDMS
and commercial siloxane sheet.

Material
Average DMS

Length, n
Permeability, Barrer Siloxane Mass

Content, %H2 CO2 O2 N2

DMS2.0
15 @POSS 2.0 * 87 121 16 4.8 11.7

DMS3.4
5 @POSS 3.4 101 169 26 6.9 18.3

DMS3.4
15 @POSS 3.4 99 201 27 7.6 18.3

DMS3.4
30 @POSS 3.4 113 198 25 8.1 18.3

DMS4.0
15 @POSS 4.0 143 374 50 15.3 20.9

DMS4.4
15 @POSS 4.4 173 441 54 20.1 22.5

PDMS [18,22] n/a 573 2850 533 250 n/a *
Siloxane rubber n/a 1013 4343 828 387.2 n/a *

* Most likely close to 100% but the exact composition is unknown (commercial samples).

In order to clarify the dependence of gases permeability in the fabricated DMSx
y@POSS membranes

two more dependencies are given, in Figure 6—permeability as a function of gas kinetic diameter
and Figure 5—permeability as a function of DMS linker length (mass content of DMS in the material).
As seen in Figure 6a, permeability for different gases in DMSx

y@POSS membranes follows a similar
pattern as in conventional PDMS, i.e., the most permeable gas is carbon dioxide and the least permeable
is nitrogen. However, if we co-relate the changes in the DMSx

y@POSS membranes with PDMS we
can see a clear trend shown in Figure 6b, namely the highest change (decrease) of permeability takes
place in the membranes where POSS particles are linked with the shortest possible DMS connection
(DMS2.0

15 @POSS). Moreover, we observe the correlation of the change with gas kinetic diameter, i.e.,
the larger is the gas molecule, the bigger is the change (decrease) of permeability relative to PDMS alone.
This reflects more clearly the suggested above that the presence of phenyl terminated POSS particles in
the membrane is having the smallest influence on the permeation of the smallest gas molecule (H2),
and largest for the largest (N2); that is why the separation of H2 and N2 is most improved for this pair
compared to ordinary PDMS, as shown in Figure 5f.
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of DMS linker length (or total DMS mass content, upper x-scale) suggesting that it is the main factor 
defining the gas transport through the membranes; (b) Selectivity of the important gas pairs as a 
function of DMS content. 
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(T < Tg) and rubbery conditions (T > Tg) of the polymers. Results of both gases and selectivity 
dependence on temperature are given in Figure 8. Here, we see the behavior expected for the majority 
of organic polymers i.e. increase of permeability and decrease of selectivity when the temperature is 

Figure 6. (a) Permeability of measured gases (H2, CO2, O2, N2) in DMSx
y@POSS membranes as a

function of gas kinetic diameter compared to the PDMS [18], demonstrating similar pattern, however
with a much higher permeability decrease compared to PDMS for larger gases evidencing influence of
molecular size on permeability change; (b) Factor showing permeability decrease in all membranes
compared to PDMS (for all gases).

Finally, permeability and selectivity dependences on siloxane linker length (DMS mass content)
were built and are shown in Figure 7. Here, we can see a much clearer correlation of the permeability
change with the length of DMS linker or mass content of DMS (mass content of POSS) given in Figure 5a.
This confirms the idea that the higher the amount of POSS present in the membrane, the slower the gas
transport which plausibly happens mainly through the siloxane component of hybrid membranes.
A similar conclusion can be given for the selectivity dependence (Figure 7b), namely that it increases
with the mass content of POSS for each relevant gas pair.
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Figure 7. (a) Permeability of measured gases (H2, CO2, O2, N2) in DMS@POSS membranes as a function
of DMS linker length (or total DMS mass content, upper x-scale) suggesting that it is the main factor
defining the gas transport through the membranes; (b) Selectivity of the important gas pairs as a
function of DMS content.

3.3. Influence of the Temperature on the Gas Transport in DMS3.4
y @POSS Membranes

A unique feature of the used DMS@POSS materials is their glass transition temperatures as
given in Figure 4 and Table 2, lies close to the room temperature [8]. CO2 and N2 permeability of
three DMS3.4

y @POSS membranes were investigated in the broader temperature range, covering both
glassy (T < Tg) and rubbery conditions (T > Tg) of the polymers. Results of both gases and selectivity
dependence on temperature are given in Figure 8. Here, we see the behavior expected for the majority
of organic polymers i.e., increase of permeability and decrease of selectivity when the temperature
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is increased. This result confirms that the gas transport in these membranes is mainly governed by
the DMS moieties. However, due to confinement of DMS between less permeable (or non-permeable)
POSS particles activation energies of permeation (EP) are much higher for both nitrogen and carbon
dioxide compared to PDMS [18,22] (details in Table 4).
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Table 4. Permeation parameters for nitrogen (N2) and carbon dioxide (CO2) of DMS3.4
y @POSS

membranes with different crosslinking ratio derived from the Arrhenius plot in Figure 8. Data compared
to PDMS reported in literature [22].

Material P0, N2 EP (KJ/MOL), N2 P0, CO2 EP (KJ/MOL), CO2

DMS3.4
5 @POSS 1.41 × 106 30.3 1.19 × 105 16.6

DMS3.4
15 @POSS 1.17 × 106 28.3 1.06 × 105 14.8

DMS3.4
30 @POSS 1.44 × 106 30.2 1.95 × 105 17.2

PDMS [18,22] 3.46 × 104 12.2 4.81 × 103 1.3

4. Discussion

Few studies that have investigated the gas permeability in the POSS-containing composite
materials can be found in the literature. To the best of our knowledge, our study is the first report
of the gas permeability of the hybrids containing higher amount of POSS compared to amount of
polymeric linkers. In the ultimate case, our DMS2.0

15 @POSS hybrid membrane contains 88.3 wt% of
POSS, while reference studies using the composites where polymer matrix contains smaller amount
of POSS. For instance, Madhavan et al. used 5–25 wt% of CyPOSS (partially caged heptacyclopentyl
tricycloheptasiloxane triol) and 2.5–7.5 wt% of POSS-H (fully caged octakis(hydridodimethylsiloxy)
octasilsesquioxane) fillers in PDMS-polyurethane (PU) matrix [2]. In the work of Guerrero et al. [23],
the loading of amidine and lactamide functionalized POSS in polyvinyl alcohol (PVA) matrix was
changed in the range from 5 wt% to 50 wt%. Similarly, Rahman et al. used maximum of 30% loading
of PEG modified POSS in the CO2 philic polymers (Pebax® MH 1657 and Pebax® 2533) [9].

Regarding the gas permeability in the POSS-containing materials, membranes comprising CyPOSS
in PDMS-PU demonstrated a similar trend as observed in our study, i.e., significant decrease of the
CO2 permeability with the increased loading of the POSS increasing in the range from 5 to 25 wt% [2].
The same trend was reported in case of amidino-POSS and lactamide-POSS with the increase of
loading [20] as well as for other PDMS based composites with relatively smaller amount of POSS [14,15].
Unfortunately, none of these studies investigated the permeation of gases with different kinetic
diameters. Increase of the permeability was observed only in case of PEG-modified POSS incorporated
in Pebax polymers, however there was no selectivity increase depending on the POSS loading [9]
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suggesting that separation is still governed solely by the Pebax polymer matrix which is a well-known
CO2 philic polymer [24]. In our work, both gas permeability and selectivity depend on the amount
of siloxane (or the amount of POSS) in the material. However, the dependence of the permeability
on loading suggests that transport still takes place only through the siloxane part. Also, in contrast
to examples from the literature, we observed improvement of the selectivity which is proportional
to the amount of POSS component and highest improvement is observed for the hydrogen/nitrogen
pair. As one could notice, selectivity improvement is proportional to the differences of kinetic diameter
between two molecules under separation.

Based on the presented experimental data, the transport of the gas molecules in current DMS@POSS
composites takes place in the confined space filled with siloxane. Confined space adds significantly to
the size sieving phenomena, allowing faster diffusion of small molecules. As a result, in the materials
presented, two factors are defining the properties: size sieving around the densely packed POSS particles
and solution-diffusion through the siloxane that links POSS particles together. Therefore, we have
to conclude that the mass (volume) content of the siloxane in the material was the most significant
factor for the gas permeation. Similarly, in the work of Guerrero et al. CO2 permeability change was
only correlated to the degree of crystallinity of the POSS containing composite and no influence of the
molecular structure and the type of modification was observed [23].

5. Conclusions

Investigation of gas transport in the novel DMSx
y@POSS membranes showed the decrease of

permeability for all gases that was proportional to the increase of POSS loading. Similarly to other POSS
based membranes reported in the literature [10,11,21], it looks that the POSS components including the
diagonally protruded phenyl units are not accessible to gas molecules in the polymers, despite the fact
that the POSS cages are chemically bound to the polymer chain in the necklace morphology. Amounts of
the siloxane in the materials were the most significant factor for the gas permeation, suggesting that
gas is transported exclusively through the DMS chain moieties. As a result, permeability of all gases in
the DMSx

y@POSS membranes did not correlate significantly with kinetic diameter i.e., POSS molecules
micro porosity influence was not distinctively observed. In general, POSS-PDMS nanocomposites
perform similar to conventional organic polymers for gas separation (based on vicinity to upper bound).
The trend observed with the increase of the DMS linker length provides an important understanding
of the gradual property changes in the hybrid membranes. Applicability of these materials for small
gases separation will also depend on the mechanical properties of the membranes at lower thicknesses
(~100 nm) that are required to provide higher fluxes through the membranes [25]. We also believe
these type of materials can be useful in other areas instead of PDMS (apart of the gas separation) e.g.,
microfluidics. Lower gas permeabilities would be beneficial there, especially for the systems where
small molecular species can be absorbed in the material. As shown, in these DMS@POSS composites
gas permeation can be controlled within a relatively broad range, by the composition.
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