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Abstract: Several types of liquid membrane and solid-state reference electrodes based on different
plastics were fabricated. In the membranes studied, equitransferent organic (QB) and inorganic salts
(KCl) are dispersed in polyvinyl chloride (PVC), polyurethane (PU), urea-formaldehyde resin (UF),
polyvinyl acetate (PVA), as well as remelted KCl in order to show the matrix impact on the reference
membranes’ behavior. The comparison of potentiometic performance was made using specially
designed standardized testing protocols. A problem in the reference electrode research and literature
has been a lack of standardized testing, which leads to difficulties in comparing different types,
qualities, and properties of reference electrodes. Herein, several protocols were developed to test the
electrodes’ performance with respect to stability over time, pH sensitivity, ionic strength, and various
ionic species. All of the prepared reference electrodes performed well in at least some respect and
would be suitable for certain applications as described in the text. Most of the reference types,
however, demonstrated some weakness that had not been previously highlighted in the literature,
due in large part to the lack of exhaustive and/or consistent testing protocols.

Keywords: potentiometry; reference electrode; solid contact; heterogenous membranes;
polymer membranes

1. Introduction

Potentiometry, applied routinely in environmental measurements, process analysis,
and extensively in clinical chemistry, regained research interest owing to revolutionary developments in
electrode design and new materials used. An evident boost to the development activity came with the
invention of solid-contact electrodes, which paved the way to all-solid-state electrodes. These electrodes
are fully integrated, which allows for different architectures, miniaturization, favorable electrochemical
and metrological properties, sterilization, and mass production by unified techniques, such as injection
molding or 3D printing [1].

Along with indicator electrodes, their partners in galvanic cells, reference electrodes were
developed. As in the case of ion-sensors this was achieved by using ion-to-electron transducing layers,
e.g., conducting polymers (CPs) [2].

The reference electrode (RE) is an indispensable and crucial component in potentiometry and
open-circuit sensor technology as well as a reference point in amperometric measurements. The failure

Membranes 2019, 9, 161; doi:10.3390/membranes9120161 www.mdpi.com/journal/membranes

http://www.mdpi.com/journal/membranes
http://www.mdpi.com
https://orcid.org/0000-0003-3644-7296
http://dx.doi.org/10.3390/membranes9120161
http://www.mdpi.com/journal/membranes
https://www.mdpi.com/2077-0375/9/12/161?type=check_update&version=2


Membranes 2019, 9, 161 2 of 22

of the reference electrode means the failure of the entire system. Thus, the quality of the reference
electrode is critical in electrochemical measurements, and especially those where multi-parameter
analyses are performed. Furthermore, most of the lifetime and size reduction gains from the indicator
electrode optimization with CPs are superfluous if the reference electrode cannot be miniaturized in an
identical manner.

The classical method of making a reference electrode is by using an electrode of the second kind
(Ag/AgCl or Hg/Hg2Cl2) in contact with a solution of a chloride electrolyte, so that the potential
determining process is fast and reversible, while the potential itself is stable and reproducible over
time, because the composition of the electrolyte is maintained constant. The latter is achieved
by placing the electrode in a compartment separate from the sample. This separation, however,
allows some electrolytic contact via the salt bridge. To minimize the diffusion potential generated at this
junction, the bridge is filled with an equitransferent electrolyte, typically KCl, at a high concentration.
Therefore, also in the electrode compartment, the chloride electrolyte is often KCl. A redox electrode
(of the 0th kind) in a solution containing a redox couple is sometimes used instead of a RE of the second
kind. In principle, this approach is the same as described above.

The quality of the reference electrode is especially important in the direct potentiometric
measurement of pH and blood electrolytes where the potential of several indicating electrodes
is measured, often in a high-throughput and minimal sample volume automatic analyzer, and where
the sample concentrations are measured over a broad range (pH), or in the range where junction
potentials are particularly variable (blood electrolytes). In zero-current potentiometry, it is expected
that a reference electrode supports reliable measurements. In other words, it is expected that it is
sufficiently stable, that it is not fouled by the samples, and that the reference electrode itself does not
contaminate the samples. Ideally, it is expected that a reference electrode is easy to manufacture and
use, service-free, cheap, and robust.

Although this would seem fairly easy to accomplish, the large body of literature on the subject
would argue otherwise [3–20]. The nature of the liquid junction at the salt-bridge plays an especially
critical role. When, for instance, the liquid junction becomes clogged, or if the liquid junction is
poorly manufactured, errors arise from substantial liquid-junction potentials, which vary with the ionic
composition of the solution under test. Optimally, the reference electrode would be of the free-diffusion
type or ideally junctionless. The reference junction becomes more and more critical when the ionic
strength of the liquid under test is very high or very low, as with, e.g., natural waters and especially
power plant water. It has furthermore been shown that calculated residual liquid junctions for these
types of samples do not always match what is experimentally exhibited. The contribution of the liquid
junction potential arising at the filling solution/sample interface requires often a firm comprehension
of potentiometry and possible correction [3,19,20].

Furthermore, miniaturization of liquid-junction-type conventional reference electrodes is difficult,
due to the requirement of regular maintenance and a vertical working position. Attempts have been
made to develop small REs using the classical approach [21]. The electrolyte (KCl) was placed in a
porous material deposited on a flat Ag/AgCl pellet as the substrate. On top of this “immobilized”
KCl, the authors placed a film, also porous but with much smaller pores to slow down the release of
KCl from the electrode and the contamination of the internal layer with the species from the sample.
Obviously, the failure in this approach is lifetime: the smaller the electrode, the faster it is depleted of
KCl and contaminated by the sample. Indeed, the authors of [21] reported a 20–90-min lifetime.

Of practical relevance, there are other approaches to the reference electrode, in particular those not
utilizing a liquid junction. Since most potentiometric measurements for analytical and thermodynamic
purposes are made using cells with liquid junctions, the diffusion potential is observed. A diffusion
potential occurs at the boundary between two electrolytes of different composition, where there is a
concentration gradient, and thus ion diffusion takes place. Due to different ionic mobilities, some of
the ions move faster than others. The different diffusion flows lead to charge separation, and thus an
electric field is established. The electric field holds the fast-moving ions and accelerates the slower ions.
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In the end, a steady state is attained in which equal amounts of the involved ions are transported by a
combination of migration and diffusion. Using standard thermodynamic relationships and integrating
over the entire boundary region for all species, it can be shown that [22,23]:

ED =
−RT

F

B∫
A

∑
i

ti
zi

d ln ai (1)

where ED is the diffusion potential, A and B denote two solutions with different compositions, and ti,
zi, and ai are the transference number, charge, and activity of the ith species, respectively, R is the gas
constant, T is the temperature, and F is the Faraday constant. It must be noted that this equation is
valid regardless of the physical nature of the liquid junction, but, as it involves single ion activities,
it cannot be evaluated purely within the framework of thermodynamics. In order to integrate this
equation, non-thermodynamic assumptions must be made. The simplest approach mathematically is
to assume linear concentration gradients across the liquid junction and constant activity coefficients
and ionic mobilities, which results in the well-known Henderson equation [23–25]:
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where, A and B denote two solutions with different composition, ui is the mobility, ci is the
concentration, zi is the charge, R is the gas constant, T is the temperature, and F is the Faraday
constant. Various alternative equations have been derived over the years, but in general, although they
may be regarded as more rigorous, no significant differences in calculated diffusion potentials can be
expected in most cases.

In direct potentiometry, even small changes in the junction potential can lead to erroneous results,
especially when the analytical potential range is narrow. One example is human serum, where the
usual concentration ranges for ionized calcium, potassium, and sodium are normally 1.0–1.5, 3.0–6.0,
and 120–160 mmol/L, which respectively corresponds to potential intervals of 5.2, 17.8, and 6.4 mV [19].
Furthermore, using Henderson’s equation, we can only estimate the diffusion potential. In some cases,
this estimation is good enough but in others (human serum) it is questionable. Thus, a few criteria can
be formulated with which to evaluate a reference electrode:

(1) The absolute value of the diffusion potential at the liquid junction should be as small as possible.
(2) Changes to the diffusion potential resulting from changes in the sample composition should be as

small as possible.
(3) Changes to the diffusion potential resulting from changes to the reference electrode composition

should be as small as possible.

These aims are usually achieved by using a high concentration of electrolyte in the bridge of the
reference electrode such as 3 M KCl. Such bridges, called hypertonic in biological research, have an
intrinsic disadvantage, which is the possibility of denaturation of proteins and/or crystallization of the
electrolyte itself. Both may cause instability in the reference electrode potential. The problem may be
avoided by using dilute solution in the bridge (isotonic bridge). However, this leads to higher diffusion
potentials since isotonic bridges are more sensitive to changes in the sample ionic strength. All of the
requirements described make it challenging to build an ideal reference electrode. For the same reason,
the number of research papers on reference electrodes is disproportionately small compared to the
number of papers on indicator electrodes.

In the past 25 years reference electrode research has begun to regain serious attention [26–70].
Beyond the conventional designs prevalent worldwide, several other compelling approaches have

been explored:
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i. Equitransferent Salts Dispersed in a Polymer or Other Solid

The challenge of designing functional solid contact reference electrodes was undertaken by
Russel who offered a solid-state membrane for reference electrodes made of a polyvinyl resin doped
with a very large amount of KCl (1:1 w/w KCl/resin) fabricated under the commercial name, REFEX.
The electrochemical characterization of this material was delivered in 1994 [26–28]. Surprisingly,
despite the heavy salt loading and large surface area in contact with the liquid sample, the reported
leakage of KCl into the sample solution is less than what occurs with conventional ceramic frit
junctions. The junction potential is quick to stabilize and relatively constant with time even in
media with a very low ionic strength. There are also a number of other papers presenting similar
constructions using different polymers or resins, e.g., pressed Al2O3-PTFE, urea-formaldehyde,
poly(methyl methacrylate)—propylene carbonate, and/or polyester resin [29–33]. An all-solid reference
electrode consisting of a sintered Ag/AgCl mixture embedded in solid remelted KCl was as well
proposed [34]. Although these concepts are rather different on the surface, the unifying factor is the
controlled release of equitransferent salt from either a polymer matrix, dense glass, or ceramic sinter.
Variations of all-solid-state reference electrodes with polycrystalline powders of tungsten-substituted
alkali molybdenum bronzes mixed with polyester resin were offered [33–35]. These reference electrodes
showed no response to changing pH, Na+ concentration or redox potential. Unfortunately, all of these
electrodes showed a relatively high electrical resistance (about 1–500 MΩ), and it was reportedly not
possible to get reproducible results.

Recently, the pioneering idea of Russel was extended in the research of Lewenstam’s group [70].
Granholm et al. showed that the REs can be produced by dispersing KCl in polypropylene during
injection-molding [71], while Mousavi el al. [72] demonstrated that the polymer of a solid-state reference
electrode can serve as an embodiment for ion sensors.

Furthermore, it was demonstrated that the PVC heterogenous membranes with silver bromide-KBr
salts work superbly as the all-solid-state reference electrodes [73] and that both KBr- and KCl-containing
reference membranes are excellent internal solid contact for ion-selective electrodes [74].

These reports provide the signal of a breakthrough in the reference electrode technology which
may be called “heterogenous membrane revolution” [73,74]. Material-wise, two aspects of novelty are
striking: (1) the application of inorganic salts, and (2) new inert binders which constitute a composite
membrane and mechanically processable membranes suitable for electrochemical measurements.

ii. Two Ion-Selective Electrode (ISE) Membranes Connected in Parallel

This concept, while illustrative, is only useful in extremely rare cases and has been thoroughly
discussed elsewhere [38,39].

iii. Compensated Cationic and Anionic Response in a Polymer Membrane or Conducting Polymer
Film owing to Close-to-Equal Permeability

Ionic liquids [44–49], quaternary ammonium borates [42,50–54,60,61], or other materials [51,52,
55,56] are dispersed in, e.g., polyurethane [21,41,55–58], poly(vinyl chloride) (PVC) [42,50,51,60,61],
poly(vinyl chloride) carboxylated polymer [21], or polyacrylate [52–54]. Mediating layers such as
Nafion are also sometimes applied [40,41,58]. These also variably make use of a conventional inner
solution or solid-contact internal materials consisting of conducting polymers, and/or KCl, or NaCl
saturated in water, agar, PVC, silicone rubber, mixtures thereof, or other matrices.

An RE with 1-dodecyl-3-methylimidazolium chloride ionic liquid as membrane electrolyte was
described in [44]. In fact, this electrode is actually a quasi-reference electrode (QRE) since it works
only if the sample contains a high sulfate background. This is not surprising, as it has previously
been reported that a similar ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, had been
developed into a sulfate ion-selective electrode [62].

Further improvement of many, if not most, of these reference electrodes requires a more detailed
knowledge of the functional mechanism. For instance, if the mechanism relies on the distribution
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potential or on the release of QB from membrane to sample, the use of a solid contact construction
instead of the conventional setup with internal filling solution is possible. If, however, the electrodes
work due to the release of an inorganic electrolyte (e.g., KCl) extracted from the internal filling matrix
(be it liquid or solid), further miniaturization is questionable. It seems unlikely that the latter mechanism
would be prevalent, as there have been reports of solid-contact reference electrodes (SCREs) lasting
for an extended period of up to two years [21]. However, the stability of one type of SCRE cannot
preclude another type of SCRE having another functional mechanism altogether, and therefore each
type must in the end be considered separately unless certain general aspects allow for the assumption
of a universal functional mechanism.

iv. Polyion-Sensitive ISEs Used as Reference Electrodes

This approach extends interesting concepts introduced with the advent of potentiometric
membrane electrodes that are responsive to polyionic analytes [63,64]. The main principle is quite
simple: if a membrane electrode can be made responsive to a highly charged analyte, the resulting
Nernstian response function will exhibit a very small electrode slope that is inversely proportional to the
charge of the analyte. If some amount of this analyte is continuously present at the membrane surface,
the resulting potential will be nearly independent of its concentration. Since some well-established
anticoagulants (such as heparin) are polyions, and membrane electrodes have been specifically designed
to measure such anticoagulants in blood, it seems possible to design reference electrode membranes
for use in blood samples. The primary disadvantage of this concept is that highly lipohilic ions may
ion-exchange with the polyion in the membrane, thereby increasing its response to small ions.

v. Modified Conducting Polymer Reference Electrodes

This classification comprises pH-buffered, multi-layer and overoxidized junctionless reference
electrodes with only electrochemically deposited conducting polymers on the conducting
substrate [50,65–68]. A more versatile solution was proposed in [69]. The electrode described
contained a layer of a conducting polymer (PEDOT or PMPy) doped with a high concentration of pH
buffer. The electrode, in fact, was pH-sensitive, but the sample pH in the vicinity of the electrode was
buffered by the electrode itself, thus ensuring a constant potential regardless of the composition of
the sample.

Our goal in this work was not to take one variety and improve upon it with the exclusion of
all others. Questions of mechanism, miniaturization, etc. are avoided. In this report, we attempt to
reproduce and compare electrodes at least similar to those described in [26–28,30,35,55–58,60,61], or as
we designated them, REFEX (PVA), urea-formaldehyde (UF), remelted KCl (RKCl), and PVC-(QB(PVC)),
and polyurethane-based (QB(PU)) conventional membrane electrodes, where the membranes were
loaded with the lipophilic salt, tetrabutyl ammonium tetrabutyl borate (QB).

2. Materials and Methods

For the primary reference electrode, against which all other references were tested, we used a
Thermo Orion Ross Ultra double-junction reference electrode purchased from Thermo Fisher Scientific,
Waltham, MA, USA. The behaviors of the electrodes were compared with two commercial electrodes:
an Orion Ross Sureflow double-junction reference electrode purchased from Thermo Fisher Scientific,
Waltham, Massachusetts, USA and a REFEX reference electrode obtained from Refex Sensors Ltd,
Westport, C. Mayo, Ireland.

2.1. Chemicals and Materials

Aqueous standard and test solutions were prepared from analytical grade reagents and Elga
deionized water (18.2 MΩ·cm). Selectophore®grade high molecular weight poly(vinyl chloride)
(PVC), and tetrahydrofuran (THF) were purchased from Sigma Aldrich (Steinheim, Germany).
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Tetrabutylammonium tetrabutylborate (97%, QB), 2,2-dimethoxy-2-phenylacetophenone (DMPP),
vinyl acetate (≥99.0%, VA), poly(vinyl acetate) (Mw ~100,000), silver wire (≥99.9%), potassium chloride
(≥99.0%), formaldehyde solution (purum, 37% in water stabilized with 10% methanol), urea (≥99.5%),
sodium acetate (≥99%), and DIN19266 pH 4.008, 6.865, 7.413, and 9.180 buffer standard solutions
were purchased from Sigma Aldrich (Steinheim, Germany). Tecothane®polyurethane (PU) was
obtained from Lubrizol. Air release additive BYK®-A 515 was obtained from Algol Chemicals Oy
(Espoo, Finland).

2.2. Preparations

i. Preparation of Basic Cocktails for Membranes

For the purpose of this report, the term “basic cocktail” refers to solutions of PVC or PU,
plasticizer, and organic electrolyte (if applicable) in THF. These cocktails are fully transparent
homogeneous solutions.

Basic cocktails were prepared as follows: appropriate amounts of organic electrolyte (QB) [60,61]
were placed into 4 ml sample vials. The required exact weights of other components were calculated in
accordance with the actual weight of the organic electrolyte and then added. The vials were shaken to
mix the ingredients and then THF was added. The vials were allowed to spin on a Stuart SRT6 roller
mixer overnight to ensure complete dissolution of the PVC or PU. An ultrasound was used when the
PVC proved difficult to dissolve. A 15% dry mass was used with the PVC basic cocktails and an 8%
dry mas was used with the PU basic cocktails.

ii. Preparation of Ag/AgCl Electrodes

All steps were conducted in a dust-free fume hood.
Washing: Ag (99.9%) pins were first soaked in acetone for 10 min. The pins were placed on

lint-free paper and the acetone was allowed to evaporate. The pins were then soaked in HCl (37%) for
20 min to get characteristic metallic color of silver. The HCl was neutralized with NaOH and the pins
removed. The pins were rinsed four times with deionized water and again allowed to dry on lint-free
paper in a dust-free fume hood. The Ag pins were then inserted and glued into hard PVC caps.

Chloridization: Up to 150 pins were chloridized at one time, using an I-tech IT6322 power supply
(IT6322 30V/3A*2CH + 5V/3A*1CH) equipped with three channels. Jigs by which 50 pins could
be connected to one of the anode channels of the power source were set on top of the base vessels
containing 1 M HCl. Platinum counter electrodes placed in all four corners of each chloridizaton vessel
were connected to the cathodes of the power supply. The volume of HCl was adjusted so that all
of the Ag below the cap of the pin was submerged. A current of 20 ± 3 mA was applied for 1.5 h.
The pins were then rinsed, first with tap water and then carefully with deionized water and then dried
overnight. All the pins were checked under a microscope to prove uniform coverage of silver by AgCl.
The region close to the plastic cap was covered with a thin layer of Loctite 9483 A&B glue to cover any
Ag uncovered with AgCl from having any contact with the sample, and to prevent KCl creep through
the cap to the electrical connection above.

2.3. Electrode and Body Types

Two main classifications of REs were produced. Membrane-based reference electrodes were made
of two types (QB (PVC) and QB (PU)), using the same body type. The completely solid-state reference
electrodes (SSREs) consisted of three types: remelted KCl reference electrodes, urea-formaldehyde
(UF) resin reference electrodes, and poly(vinyl acetate) (PVA). All these RE types are schematically
shown in Figure 1.

i. Conventional Liquid Contact Membrane-Based REs
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Figure 1. Schematic diagrams of reference electrodes (REs) used. On the left side general scheme of
RE, where 1) is the Ag/AgCl electrode, 2) is the internal solution or solid contact, 3) is the membrane
or frit. On the right side: (i.) RE with QB (PVC) and QB (PU) membranes, (ii.) RE with remelted
inorganic salts (RKCl), (iii.) urea-formaldehyde (UF) resin-based RE, and (iv.) RE with PVA membrane.
More detailed characterization of (i.–iv.) type is provided in the text.

Basic membrane cocktails were prepared as described above. 2 mL of the cocktail was poured
into a 24.0 mm glass ring mounted onto a glass plate. The ring was covered with a paper and the THF
allowed to evaporate for at least 24 h. A cork borer was used to cut 8.0 mm membrane discs from the
master membrane. These 8 mm discs were subsequently mounted into Phillips bodies (see: Figure 1i.)

ii. Molten/Remelted KCl Reference Electrode

The electrode body had to withstand high temperatures and mechanical stress during heating.
Quartz glass satisfied these requirements. Two quartz frit porosities were tested, with the denser one
giving better performance. Potassium chloride was heated to 500 ◦C to remove the water. Then the
body of the electrode was filled with potassium chloride, and the Ag/AgCl wire (2 mm diameter) was
suspended in the KCl. The body was placed in the furnace and heated/cooled in three temperature
steps of 25 ◦C→ 500 ◦C→ 820 ◦C→ 750 ◦C (cooling) with the rates 4, 2, and −0.5 ◦C/min, respectively.
The electrode was kept in the furnace until the temperature returned to 25 ◦C, about 20 h. The silver
wire extending out of the KCl was attached to a Metrohm connector model 6.1241.060. (see: Figure 1ii.)

iii. Urea-Formaldehyde Resin + 25–50% w/w KCl Reference Electrodes

The urea-formaldehyde resin was fabricated as described previously [30]. Numerous trials with
different mold types resulted in the conclusion that the UF polymer resin did not adhere well to any
mold material at our disposal. The poor adhesion allowed the sample to penetrate up the walls of
the electrode in an inconsistent fashion. This resulted in some variation in results depending on the
surface area of the UF in contact with the sample and tightness of fit to the mold. Limiting the surface
area of UF in contact with solution was quite effective in reducing this problem. The best electrodes
were those made in 40–200 µL micropipette tips. Wrapping with teflon tape as recommended by the
authors in [30] was somewhat effective in reducing penetration of water, but the best results were
nonetheless obtained with the micropipette bodies. (see: Figure 1iii.)

iv. Polyvinyl Acetate (PVA) + 50–70% KCl Reference Electrodes
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Potassium chloride and sometimes also lithium chloride were ground in a mortar to get a fine
powder. The KCl and LiCl were dried for 30 min at 450–500 ◦C. The powdered salts were mixed with
VA and DMPP. The mixture was placed in a mold to form the RE body with the Ag/AgCl wire affixed
in the center of the mold. The mold was sealed and placed on a roller mixer (Stuart SRT6) below a 6 W
UV lamp (Vilber Lourmat). The mixture was then mixed for 2 min after which it was irradiated using
the UV lamp at 365 nm for 40–50 min (with mixing). After irradiation, the form was left for 2 h to cool
down. The mold was removed from the hardened mixture by cutting and peeling it off (if the form
was made of plastic) or cracking it off (if the form was made of glass). (see: Figure 1iv.)

2.4. Uniform Testing Protocols

In order to objectively compare the behavior and quality of the investigated reference electrodes of
different design, uniform testing protocols were devised and adopted. These protocols were developed
to test many factors that can influence the reference electrode behavior.

2.4.1. Stability Testing Protocol

The stability criteria arise in two ways. Firstly, the measuring equipment used to evaluate the
electrode stability has its own limitations, which we call the ‘equipment capability criterion’. The noise
from the instrumentation under optimal conditions accounts for approximately 0.005 mV of variation.
Secondly, the intended use of the electrode also presents its own set of limitations. These types of
limitations give rise to what we call the ‘method-based criterion’. If we are measuring in a standard
solution after each sample as is often done in clinical analysis, we require only that the drift is small
enough that it is negligible in the time frame of two measurements, e.g., 1 min. For instance, if we are
measuring Na+ in blood serum, with a normal range of 120–150 mM, with a required coefficient of
variation (CV) better than 0.25% [2], the drift could be no more than 0.015 mV/min or 0.87 mV/h as
long as it is a stable, regular drift.

On the other hand, as is more typical with, e.g., pH measurements where one would like to
measure without a subsequent standard, the reference must remain relatively stable for around one day.
In this latter case, we must also specify the intended accuracy of the method over that time span. If we
specify an accuracy of 0.1 pH units and assume that the pH electrode itself does not drift, we require a
(less stringent) stability of 0.25 mV/h. If we, for example, would rather have a pH test that required
calibration only once per week but with 0.2 pH unit accuracy, we would require a (more stringent)
stability of approx. 0.05 mV/h.

Potential stability can be described as a property of the electrode to maintain the same potential
in certain conditions. It is usually expressed as a standard deviation over a certain period of time.
There are two main sources of instability:

Noise, which is a random effect, can be diminished by increasing the number of measurements.
It is described as a standard deviation or as a span of the potential. If the noise is expressed as the span,
then there is a relation between span and standard deviation as follows: span ≈ 2 x SD. There can be
many sources of noise, such as electronic equipment, power supply network, the electrode itself, etc.

Drift, which is a systematic effect, might be corrected (bias) during measurements (considering
drift via mathematical formulae or conducting calibrations more frequently). It is usually described as
a change (shift) of the potential over time.

In real situations, noise and drift occur simultaneously and can be estimated. However, the drift
in most cases is beyond interest due to frequent recalibrations, repeated short measurement times or
software corrections, whereas the noise is taken into account to estimate uncertainty.

Measurements to investigate the long-term stability of the reference electrodes were carried out in
10−4 M KCl solution against the commercial ORION 800500U ROSS Ultra D/J RE. The measurements
were carried out in a Faraday cage. The data was recorded and collected using a Lawson Labs
16-channel potentiometer. Measurements were taken every 5 seconds and were obtained using the
EMF Suite 2.0 software. The standard deviations for measuring-times over 1, 10, and 20 h were
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calculated. To better compare the results while still being able to visibly see deviations, the potentials
were normalized for 1, 10, and 20 h by taking the first point as “0”. The drift was calculated as the
linear slope approximation by taking results from the final 30 h. The more stringent tolerance range is
represented as two red horizontal dotted lines in the figures. The total potential scale is adjusted to the
less stringent criterion, except in Figure 2c, where the range is represented by two black horizontal
dotted lines.

Figure 2. Stability over (a) 1 h, (b) 10 h, and (c) 20 h in 10−4 M KCl at 23 ◦C for 1. QB (PVC), 2. QB (PU),
3. RKCl, 4. PVA, 5. UF, 6. Sureflow, 7. REFEX, 8. Orion Ross Ultra.



Membranes 2019, 9, 161 10 of 22

2.4.2. pH Testing Protocol

The pH protocol was designed to test the reference electrodes’ stability in a relatively wide
range of pH samples and buffers for which the pH is well defined (see: Table 1). A literature search
was conducted to establish what samples have traditionally been used to test reference electrodes.
The software PHREEQCI was used to check these literature values, and good agreement was found
in all cases. The electrodes were measured for 5 min in each sample and the reported results are the
average of the final 2 min unless the result was not stable during that time interval.

Table 1. pH in different solution used.

Dilute Acids pH (Pitzer eq) [75–78]

1. 50 mM HCl 1.38
2. 10 mM HCl 2.05
3. 1 mM HCl 3.02

4. 0.1 mM HCl 4.01
5. 0.1 mM HCl + 0.1 M KCl 4.03
6. 0.1 mM HCl + 1 M KCl 4.09

Buffers & Dilute Buffers -

7. Orion PureWater buffer A 6.97
8. Orion PureWater buffer B 4.10

9. 50 mM potassium hydrogen phthalate 4.01
10. 10 mM potassium hydrogen phthalate 4.12

11. 100 mM HOAc/100 mM NaOAc 4.65
12. 10 mM HOAc/10 mM NaOAc 4.71

13. 25 mM KH2PO4/25 mM Na2HPO4 6.88
14. 2.5 mM KH2PO4/2.5 mM Na2HPO4 7.06

15. 10 mM disodium tetraborate 9.18 [79,80] }

16. 5 mM disodium tetraborate 9.20 [13], 9.21 [5], 9.19 [79]
} PHREEQCI’s database did not contain the relevant information for boric acid/borate, so values were found in
the literature.

2.4.3. pH Titration Procedure

Solutions of 0.05 M NaOH and 0.005 M HCl were prepared. The NaOH was standardized using
potassium hydrogen phthalate, and then used to titrate 100 ml of 0.005 M HCl in which the tested
reference electrodes were immersed. In Table 2 calculated pH values are given. The potentials were
recorded using a 16-Channel Lawson Lab potentiometer and EMF Suite 2.0 software. The potential
was measured for 5 min after each titration step.

Table 2. Calculated pH for pH titration.

NaOH mL 0 3.5 7.5 9 9.5 9.8 9.9 9.95 10.1 10.2 10.5 11 12 15

pH (calc) 2.30 2.50 2.93 3.34 3.64 4.04 4.34 4.64 9.66 9.96 10.35 10.65 10.95 11.34

2.4.4. Multi-Solution Testing Protocol (MSP)

This test aimed at studying the effect of the nature and the concentration of the sample electrolyte.
The electrode potentials were recorded in the solutions listed below: KCl 3.0 M, deionized water,
NaCl 0.01 M, KCl 0.01 M, HCl 0.01 M, deionized water, KCl 3.0 M, NaCl 0.1 M, KCl 0.1 M, NaBr 0.1
M, NaHCO3 0.1 M, KOH 0.001 M, HCl 0.01 M, and KCl 3.0 M, deionized water. The EMF readings
were recorded for 5 min in each sample and the reported results are the average of the final 2 min.
The electrodes were rinsed with deionized water between samples.
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3. Results and Discussion

As mentioned above, nowhere has anyone attempted to collect the reference electrodes of interest
by the several groups working in this area for comparison testing. Since these references have
been designed for different purposes, the tests that have been reported for each type have not been
uniform, which makes an independent comparison of them difficult. Such a comparison requires
some representative tests to demonstrate which of the references are best for potentiometric tests.
Here, we attempt to test in a common fashion the interferences of drift, noise, ionic strength, junction
potentials due to ionic mobility differentials, ionic species, pH and buffer species.

3.1. Stability

The first issue with any reference electrode is its stability over time. Different applications exert
different stresses upon a reference electrode. In our test regime, we chose to use a dilute 10−4 M KCl
solution as our sample and monitored the reference potential over a period of several days. Such a low
concentration was deemed to be enough of a challenge, especially for electrodes from which KCl is
presumed to diffuse out into the sample.

Most of the electrode types we studied performed adequately well to be used for clinical
measurements in which an online standard is used for E0 correction, and for pH measurements
where calibrations are performed daily. The former places no strong demand on reference electrode
stability other than that it not be particularly noisy, and all of the references measured could be used
for such an application. The latter criterion (pH) was more challenging, but for pH measurements
demanding only 0.1 pH unit accuracy, again all of the reference electrodes studied would be acceptable,
assuming no extremely large pH changes between samples. If the pH measurement accuracy should
be greater, or the calibration interval longer, the Orion Ross Ultra, QB (PVC), and QB (PU) references
demonstrated superior stability. Figure 2a–c shows the potentials’ stability of the various reference
electrodes graphed together.

The potentials of the QB (PVC) electrodes: QB30 (PVC)-02, QB30 (PVC)-03, and QB30 (PVC)-11
were quite stable. The standard deviations of QB30 (PVC)-11 for measuring times of 1, 10, and 20 h were
4, 6, and 11 µV respectively, and its drift over the last 30 h of testing was only 1 µV/h. Potential over
time for electrode QB30 (PVC)-11 is shown in Figure 2a–c. The QB (PU) electrodes performed similarly
well. The QB10 (PU) references showed relatively good stability and drift, but were outperformed in
every aspect by the QB25 (PU) for which the lowest drift of all test reference was recorded. The QB25
(PU) references were exceeded only by the Orion Ross Ultra reference electrode in terms of drift.
The stability of QB25 (PU)-05 is shown in Figure 2a–c.

The RKCl1 electrode was prepared in a body with a high-density frit (low porosity), whereas RKCl2
electrode with a lower density (higher porosity) frit. The two electrodes showed similar behavior and
the same parameters (see Table 3). The standard deviation for measuring times of 1, 10, and 20 h are 7,
42, and 66 µV respectively for the RKCl1 electrode, and 7, 12, and 77 µV respectively for the RKCl2
electrode. Both electrodes drifted 7 µV/h. Long-term time development of the potentials for RKCl1
are shown in Figure 2a–c. The standard potential for the RKCl1 electrode was −221.2 mV and for the
RKCl2 it was −221.9 mV against the ORION 800500U ROSS Ultra D/J electrode. These results also
showed good reproducibility regarding standard potential as well as stability.

The UFREs were also stable over a long period of time. All of the UFREs tested had a 20 h SD
below 0.2 mV, and in a few cases the SD was even lower than 0.1 mV. All of the UFREs also displayed
very small drift below 20 µV/h. These electrodes furthermore showed good reproducibility regarding
standard potential. The long time development of the potential of the electrode UF20f is shown in
Figure 2.
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Table 3. Stability data for the REs tested.

Electrode
Stability * [µV] Drift ** [µV/h]

1 h SD 10 h SD 20 h SD

QB30(PVC)-03 35 62 124 3
QB30(PVC)-11 4 6 11 1

QB10(PU)-1 5 29 94 23
QB10(PU)-3 8 28 163 19
QB25(PU)-3 3 35 42 0.8
QB25(PU)-5 3 27 36 0.4

RKCl1 7 12 66 7
RKCl2 7 12 77 7
PVA1 10 29 160 21
UF20e 16 34 42 16
UF20f 15 15 24 9

Orion Ross Ultra 3 4 4 0.02 ≈ 0
Orion Ross Sureflow 122 57 140 95

REFEX© 99 224 195 10

* Stability was calculated as the standard deviation for measuring times 1, 10, and 20 h. ** Drift was calculated as
the linear slope approximation from the final 30 h of measurement.

Our own PVA references also displayed good stability. Only one example, PVA1, is listed in
Table 3 since the stability test was not performed in its entirety with any other pieces. Its standard
deviations were not high, and it drifted little over time. The commercial REFEX© RE was, however,
the least stable of the commercial electrodes over time, and was characterized by significant noise.

Not surprisingly, the stability of an Orion Ross Ultra against another Orion Ross Ultra was very
good. However, strangely an Orion Ross Sureflow RE against the Orion Ross Ultra performed rather
poorly, and worse in terms of stability than many of our test references especially in terms of long-term
drift. The test was repeated several times with similar results. The experimental references tested here
all performed as well or better than the Orion Sureflow double-junction reference and far better than
the REFEX®.

3.2. pH Response

The pH response of the electrodes was tested in two ways. First, the references were exposed to a
series of samples and buffer solutions, to monitor deviations from normality in the potential measured
against the ORUDJRE. The buffers used are listed in the experimental section and below the x-axis in
Figure 3, and included most of the primary and secondary buffers. Beyond testing merely response
to pH, this test also looked at the reaction of the reference electrode to the chemical make-up of the
buffering agent and to the sample or buffer ionic strength. The ionic strengths in general were still far
higher than would be found in natural/environmental samples, although the 0.1 mM HCl approximates
acid rain.

For most of the experimental electrodes tested, the ionic strength of the buffer had a larger effect
than the buffer composition, as evidenced by the relatively large changes in reference response in the
measurements in HCl samples. Most telling is the return to nearly normal response upon addition of
0.1 M KCl, which hardly changes the pH. The QB (PU) 25 electrode is particularly impressive in the
measurements after the HCl samples, for which the standard deviation of the measured pH over all
samples was 0.2 mV. The Orion Sureflow and REFEX REs were very poor, the latter being so bad that
the test with it was discontinued after the acid samples.
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Figure 3. pH titrations with the various reference electrodes tested. 1(+) QB(PVC), 2(o) QB(PU), 3(�)
RKCl, 4(×) PVA, 5(�) UF, 6(�) Sureflow, 7(4) REFEX, 8(3) Orion Ross Ultra.

Second, the electrodes’ responses were monitored during a pH titration. As shown in Figure 4,
except for once again the REFEX© and perhaps Orion Sureflow references, all of the REs were useful
and stable in the pH range 4–10. These results also suggest that, of the experimental REs, the PVA-
and UF resin-based REs are the best choices for measurements below pH 4, while a QB (PVC) RE,
QB (PU) RE or UFRE is the best above pH 10. It seems that PVAREs are somewhat more sensitive
to pH above 10, probably due to hydrolysis of the matrix polymer. In spite of the slight sensitivity,
these REs show good parameters in terms of potential stability and reproducibility. The UFREs show
even better behavior, being almost insensitive to pH changes. However, in more acidic or alkaline
solution some potential deviation does occur. The commercial Orion Ross Ultra shows very good
parameters, although it too displays some sensitivity to pH above 11. Assuming both Orion Ross
Ultra reference electrodes are identical, this should not have been the case, so presumably one of our
Orion Ross Ultra references was partially clogged. Orion recommended procedures to allow freer
flow through the liquid junction to remedy this. The REFEX© which is probably based on PVA or
another ester resin is very sensitive to pH values, which leads to a rather high SD as shown in Table 4.
It should, however, be pointed out that a deviation of 1 mV is equivalent to an error of just under
0.02 pH units, so apart from the REFEX electrode, any of these would be suitable for fairly accurate pH
work. No work has been done to characterize the more complicated interactions of these references
with temperature and pH.

Table 4. Parameters of the tested REs in the pH titration.

RE
QB

(PVC)
30-11

QB
(PU)
25-3

QB
(PU)
25-5

RKCl PVA1 PVA6 UF20e UF20f Orion
Sureflow

Orion Ross
Ultra REFEX

SD [mV] 0.33 0.24 0.44 0.53 0.55 0.26 0.22 0.21 3.8 0.73 12
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Figure 4. pH titrations with the various reference electrodes tested. 1(+) QB(PVC), 2(o) QB(PU), 3(�)
RKCl, 4(×) PVA, 5(�) UF, 6(�) Sureflow, 7(4) REFEX, 8(3) Orion Ross Ultra.

3.3. Multi-Solution Protocol

The 3.0 M KCl, a number of 0.1 and 0.01 M solutions (described in the paragraph 3.4.4 and
represented on the x-axis in Figures 5 and 6), and deionized water were chosen to demonstrate the
influence of ionic strength. K+ and Na+ demonstrate the influence of the cation, Cl−, Br−, and HCO3

−

demonstrate the influence of the anion, while at the same time revealing the effect of disparate ion
mobilities. The 0.01 M HCl and 0.001 M KOH show the influence of pH.

Figure 5. MSP results for the experimental and commercial electrodes tested for this study. 1(+)
QB(PVC), 2(o) QB(PU), 3(�) RKCl, 4(×) PVA, 5(�) UF, 6(�) Sureflow, 7(4) REFEX, 8(3) Orion Ross Ultra.
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Figure 6. Effect of aging on the 1. QB(PVC), 2. UF, and 3. PVA reference electrodes (a) soon after
production and (b) after three months of semi-regular use.

The order of the electrolytes in the series was designed to ensure the minimization of side effects.
In particular, if electrodes drift over time, measurements in a number of 0.01 M solutions and 0.1 M
solutions one after another reveal the effect of cation or anion with minimal impact from the drift.
Measurements in highly alkaline media are relatively seldom, but on the other hand it is always difficult
to wash the electrodes and cell after alkaline solutions. This is why the concentration of hydroxide
(0.001 M KOH) was lower than that of other electrolytes, and the measurement in KOH was followed
by a measurement in 0.01 HCl.

Figure 5 shows the results for the experimental and commercial REs tested. The electrodes
incorporating the lipophilic salt QB performed the best, with little differentiation between the PVC
or PU supporting membrane. The other types tested also performed well, with the PVA and UF
solid REs slightly better than the remelted KCl REs. The Sureflow commercial reference performed
slightly more poorly, and the REFEX commercial RE performed very poorly, especially in the HCl and
KOH samples as noticed earlier in the pH testing. The remelted KCl and to a lesser extent the PVA
electrodes’ performance was influenced by the physical structure and morphology of the electrode
bodies. Changing the pH of the sample drastically resulted in generally negative errors in alkaline
samples and positive errors in acidic samples because of the glass sinter in the remelted KCl RE bodies
and the porosity of the PVA resin. Given enough time (>10–15 min), these errors self-correct but
over the short-term errors are recorded. The same effect was reproduced by using a glass sinter body
such as that used for the remelted KCl electrodes and filling it with the 20% KCl-UF resin. While its
performance generally matched that seen with pipette tip UFREs, the switch from bicarbonate to KOH
and then from KOH to HCl resulted in similar errors, as seen with the remelted KCl and PVA REs.
Presumably the porosity of the glass sinter was the cause since the same error was not observed with
UF micropipette tip REs. The same problem, but greatly exacerbated, is seen with the commercial
REFEX electrode.
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The age of the electrode also plays an important role, both with traditional types and with any
new type, but because of the ratio of the number of electrodes tested to the number of researchers
doing the testing, not all of the electrodes were tested uniformly. The QB (PVC) REs were made
first, thus allowing for a more thorough investigation of their lifetimes, followed in time order by the
solid remelted KCl, PVA, UF electrodes, and finally, the QB (PU) REs. The MSP results for the first
three types are shown in Figure 6. The QB (PVC) REs seem to improve somewhat over three months,
while the UFREs deteriorated slightly over that same time period. The PVA REs deteriorated more.
It is unknown due to the short time frame of the study whether or not these effects are real or due to
normal statistical variation.

The problems with UFREs are presumably due to the poor adhesion to every body-type tested
except for the glass sinter bodies also used for the remelted KCl REs. It was important to minimize
surface area contact between the UF resin and the sample, since a larger surface area in contact with
the sample resulted immediately in poor performance. However, even using a micropipette tip as
the body, which reduced the surface area to about 0.1 mm2, over time it was still evident that the
sample or conditioning solution had penetrated up the body walls into the electrode. With most pieces,
performance deterioration could already be observed after one month of regular use, although some
pieces lasted through the duration of the testing (4 months).

3.4. Comments on Manufacturing

Manufacturing of the various types of electrodes was variably challenging. In terms of cost,
the remelted KCl electrodes were highest, as the quartz body required for the high-temperature
preparation cost EUR 100 alone. The membrane-based reference QB (PVC) and QB (PU) were next in
line, since although the membranes are cheap to produce, the bodies into which they are mounted are
quite expensive. The solid electrodes were the least expensive, the final price depending on the mass
of the electrode, but realistically staying below EUR 1 per electrode.

In terms of complexity of production, the PVA solid references are perhaps most complex due to
production requiring distillation, multiple ‘ingredients’, many weighings, and the final polymerization
step using various types of initiator, air release agent, accelerator, etc. Problems with electrode hardness,
air bubbles, consistent polymerization of the bulk material, etc. must all be contended with. A switch
to using a ready polyester (PE) resin would facilitate the procedure, since one avoids distillation and
only two ingredients are needed in addition to the commercial hardener, and to a great extent the
problems listed above are also avoided. Unfortunately, initial forays with this approach have not
yielded equally good performance. It is likely that the commercial polyvinyl ester resins in use contain
proprietary ingredients that are not entirely inert with respect to the tested samples. Remelted KCl is
simple once one knows how to deal with the high temperatures. Membrane references are extremely
simple for anyone having any experience with ion-selective electrodes.

Tools for reference electrode production are also worth considering. PVA polymerized from the
monomer requires distillation apparatus, a mixing system and a UV lamp. UF REs required only a
distillation system. Membrane electrodes require almost no hardware, only a cork borer to cut the
membranes from the master membrane. Remelted KCl REs require an oven capable of >950 ◦C.

Polyurethane-based membrane reference electrodes took the longest to make only because the
polyurethane takes a few days to dissolve in THF. There is room for improvement in the choice of
solvent, but since THF is so ubiquitously used in ISE production, the fact that it can be used with
polyurethane is nevertheless a benefit. Otherwise, the PVC-based membrane electrodes require a day
for dissolution of the cocktail and another day for membrane casting, and a third day for conditioning.
The solid electrodes require some initial hours of preparation and between a few hours to a day for
electrode preparation. Conditioning can occur as quickly as in a few minutes, although we normally
used a whole day.

The rejection rate of the QB (PVC) references was particularly high, with the percentage rejected
between 70–80%. Membranes cut from the same parent membrane and placed into Phillips bodies did
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not even consistently function identically, indicating either variation in the Phillips bodies or some
other uncontrolled variable in the production process. Switching from PVC to PU solved the problem,
so the root cause was not pursued. The rejection rate with QB (PU) electrodes was below 20%. With the
solid references, rejection rates tended to be lower. The best was perhaps the UF resin-based references
in micropipette tips. PVA references did not always work identically. Problems were mostly likely
due to centering and depth of the Ag/AgCl wire in the bulk of the solid electrode, air bubbles, and/or
hardness after soaking in sample. In a real production process, centering, and depth of the Ag/AgCl
pin would be easy to solve. The removal of air bubbles and achieving the desired hardness of the
electrode would also not be difficult challenges to overcome with the correct equipment and longer
experience. Table 5 collects the production variables for easy comparison.

Table 5. Production variables for the various reference electrode types.

RE Type Cost Est. * Complexity
/Tooling

Production Time Total
(d)/Work (h) }

Rejection
Rate Issues Sum

QB30(PVC) 200 € § medium 3/2 80% rejection −−

QB25(PU) 200 € § medium 5/2 20% time to obtain ++

RKCl 120 € high 1/8 0% cost −

PVA 0.37 € high 1/2 10%
bubbles,

hardness, pin
placement

+

UF resin 0.43 € low 1/1 10% body wall
adhesion +

* Ag/AgCl pin price ignored in all cases; § Phillips body 99.5% of the total price; use of a simplified plastic body
drops the price by an order of magnitude.} work time to produce 10 electrodes.

4. Conclusions

The application of a unified set of measurement protocols to multiple reference electrodes allowed
us to gain a clearer picture of the shortcomings of the types in question, and to see clearly that these
recently reported references are all, in several ways, an improvement over some commercially available
but more traditional types of reference electrode. One major shortcoming of this work was the short
duration of the testing period which did not give any information concerning the lifetimes of the
electrodes. However, the majority of these electrodes are cheap to produce, and even after three months
they were mostly superior to two of the commercial electrodes tested.

It is recommended that, in the future work of other groups involved in the development of
reference electrodes, tests be conducted at least similar to those described here. Furthermore, it is
critical that the mV range on the y-axis of figures be kept as narrow as possible in order that the
reader can clearly differentiate whether or not the reference response is really stable. The goal with
a potentiometric reference should be stability to within at most a few mV, and when the y-axis is
expanded to hundreds of mV, a change of 10 mV is easily hidden by the sheer scale of the figure.
Thus, we recommend normalization of the results as much as possible, indicating the potential against,
e.g., Ag/AgCl in some other fashion as deemed necessary.

The solid reference types are of great interest because they offer easy fabrication and possibility
of dry storage, fast conditioning time, and low cost. A stable readout and low efflux of KCl into the
sample depend on morphology. The flexibility of the latter may be offered by the components of the
composite and fabrication patterns. In general, to make optimization of these electrodes most efficient,
there is a need for a theoretical support of their operation-module.

The clear winner of the empirical studies presented, in terms of performance presented, is the
QB(PU) reference electrode. Its stability, pH performance and MSP performance were all the best.
The results reported create a rich empirical base which will be used by the authors to elucidate the
mechanism of the electrochemical performance of the composite heterogeneous membranes. We are a
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step further to the point where novel 3D composite membrane structures will revolutionize the world
of 1D boundary membranes not only in theory, but in electrode fabrication and application scopes.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual
conceptualization, P.L., T.S. and A.L.; methodology, P.L. and A.L.; software, P.L., B.B.; validation, J.M., A.L.,
M.M.B. and R.F.; formal analysis, A.L.; investigation, P.L., B.B. and J.M.; resources, A.L.; data curation, P.L.;
writing—original draft preparation, P.L.; writing—review and editing, A.L., J.M.; visualization, P.L. and B.B.;
supervision, A.L.; project administration, A.L.; funding acquisition, A.L.

Funding: National Science Centre (NCN, Poland) financial support via research grant no. 2014/15/B/ST5/02185
is acknowledged.

Acknowledgments: Thanks to Lubrizol for donating polyurethane samples and to Algol Chemicals for
BYK®-A 515.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CP Conducting Polymer
DMPP 2,2-Dimethoxy-2-Phenylacetophenone
ISE Ion Selective Electrode
MSP Multi Solution Protocol
ORUDJRE Orion Ross Ultra Double Junction Reference Electrode
QB tetrabutylammonium tetrabutylborate
QB (PVC) RE Reference Electrode with QB/PVC Membranes
Example: QB30(PVC)-01 means the membrane No 01 with QB content 30% w/w dispersed in PVC
QB (PU) RE Reference Electrode with QB/PU Membranes
QRE Quasi Reference Electrode
PE Polyester
PEDOT Poly(3,4-Ethylenedioxythiophene)
PMPy Poly(1-Methylpyrrole)
PTFE Poly(Tetrafluoroethylene)
PU Polyurethane
PVA Poly(Vinyl Acetate)
PVC Poly(Vinyl Chloride)
RE Reference Electrode
RKCl Remelted KCl
SCs Solid Contacts
SCRE Solid Contact Reference Electrode
SD Standard Deviation
THF Tetrahydrofuran
UF Urea Formaldehyde Resin
UFREs Urea Formaldehyde Resin based Reference Electrode
UV Ultraviolet Lamp
VA Vinyl Acetate

References

1. Lewenstam, A. Routines and Challenges in Clinical Application of Electrochemical Ion-Sensors. Electroanalysis
2014, 26, 1171–1181. [CrossRef]

2. Lewenstam, A. Direct solid contact in reference electrodes. In Handbook of Reference Electrodes, 1st ed.;
Inzelt, G., Lewenstam, A., Scholz, F., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; pp. 279–288.

3. Illingworth, J.A. A common source of error in pH measurement. Biochem. J. 1981, 195, 259–262. [CrossRef]
[PubMed]

4. Brezinski, D.P. Use of half-cell barriers to eliminate junction clogging and thermal hysteresis in silver
silver-chloride reference electrodes. Anal. Chim. Acta. 1982, 134, 247–262. [CrossRef]

http://dx.doi.org/10.1002/elan.201400061
http://dx.doi.org/10.1042/bj1950259
http://www.ncbi.nlm.nih.gov/pubmed/7306051
http://dx.doi.org/10.1016/S0003-2670(01)84195-7


Membranes 2019, 9, 161 19 of 22

5. Covington, A.K.; Whalley, P.D.; Davison, W. Recommendations for the determination of pH in low ionic
strength fresh waters. Pure Appl. Chem. 1985, 57, 877–886. [CrossRef]

6. Davison, W.; Woof, C. Performance tests for the measurement of pH with glass electrodes in low ionic
strength solutions including natural waters. Anal. Chem. 1985, 57, 2567–2570. [CrossRef]

7. Davison, W.; Harbinson, T.R. Performance of reference electrodes with free-diffusion junctions: The effect of
ionic strength and bore size on junction with simple cylindrical geometry. Anal. Chim. Acta 1986, 187, 55–65.
[CrossRef]

8. Dohner, R.E.; Wegmann, D.; Morf, W.E.; Simon, W. Reference electrode with free-flowing free-diffusion
liquid junction. Anal. Chem. 1986, 58, 2585–2589. [CrossRef]

9. Brennan, C.J.; Peden, M.E. Theory and practice in the electrometric determination of pH in precipitation.
Atmos. Environ. 1987, 21, 901–907. [CrossRef]

10. Davison, W.; Harbison, T.R. Performance of flowing and quiescent free-diffusion junctions in potentiometric
measurements at low ionic strengths. Anal. Chem. 1987, 59, 2450–2456.

11. Davison, W.; Harbinson, T.R. Performance testing of pH electrodes suitable for low ionic strength solutions.
Analyst 1988, 113, 709–713. [CrossRef]

12. Midgley, D. Combination pH electrodes of special design-temperature characteristics and performance in
poorly-buffered waters. Talanta 1988, 35, 447–453. [CrossRef]

13. Davison, W.; Covington, A.K.; Whalley, P.D. Conventional residual liquid junction potentials in dilute
solutions. Anal. Chim. Acta 1989, 223, 441–447. [CrossRef]

14. Ito, S.; Hachiya, H.; Baba, K.; Asano, Y.; Wada, H. Improvement of the silver/silver chloride reference
electrode and its application to pH measurement. Talanta 1995, 42, 1685–1690. [CrossRef]

15. Ito, S.; Kobayashi, F.; Baba, K.; Asano, Y.; Wada, H. Development of long-term stable reference electrode with
fluoric resin liquid junction. Talanta 1996, 43, 135–142. [CrossRef]

16. Peters, G. A reference electrode with free-diffusion liquid junction for electrochemical measurements under
changing pressure conditions. Anal Chem. 1997, 69, 2362–2366. [CrossRef]

17. Ozeki, T.; Tsubosaka, Y.; Nakayama, S.; Ogawa, N.; Kimoto, T. Study of errors determination of hydrogen ion
concentrations in rainwater samples using glass electrode method. Anal. Sci. 1998, 14, 749–756. [CrossRef]

18. Kadis, R.; Leito, I. Evaluation of the residual liquid junction potential contribution to the uncertainty in
pH measurement: A case study on low ionic strength natural waters. Anal. Chim. Acta 2010, 664, 129–135.
[CrossRef]

19. Sokalski, T.; Maj-Zurawska, M.; Hulanicki, A.; Lewenstam, A. Optimization of a reference electrode with
constrained liquid junction for the measurements of ions. Electroanalysis 1999, 9, 632–636. [CrossRef]

20. Burnett, R.W.; Covington, A.K.; Fogh-Andersen, N.; Külpmann, W.R.; Lewenstam, A.; Maas, A.H.;
Müller-Plathe, O.; VanKessel, A.L.; Zijlstra, W.G. Use of ion-selective electrodes for blood-electrolyte
analysis. Recommendations for nomenclature, definitions and conventions. Clin. Chem. Lab. Med.
2000, 38, 363–370. [CrossRef]

21. Ha, J.; Martin, S.M.; Jeon, Y.; Yoon, I.J.; Brown, R.B.; Nam, H.; Cha, G.S. A polymeric junction membrane for
solid-state reference electrodes. Anal. Chim. Acta 2005, 549, 59–66. [CrossRef]

22. Bard, A.J.; Faulkner, L.R. Electrochemical Methods, 1st ed.; John Wiley and Sons, Inc.: New York, NY, USA,
2001.

23. Covington, A.K.; Rebelo, M.J.F. Reference electrodes and liquid junction effects in ion-selective electrode
potentiometry. Ion-Sel. Electrode Rev. 1983, 5, 93–128.

24. Henderson, P.Z. An equation for the calculation of potential difference at any liquid junction boundary. Z.
Phys. Chem. (Leipzig) 1907, 59, 118–127.

25. Hefter, G.T. Calculation of liquid junction potentials for equilibrium studies. Anal. Chem. 1982, 54, 2518–2524.
[CrossRef]

26. Diamond, D.; McEnroe, E.; McCarrick, M.; Lewenstam, A. Evaluation of a new solid-state reference electrode
junction material for ion-selective electrodes. Electroanalysis 1994, 6, 962–971. [CrossRef]

27. Rehm, D.; McEnroe, E.; Diamond, D. An all solid-state reference electrode based on a potassium chloride
doped vinyl ester resin. Anal. Proc. 1995, 32, 319–322. [CrossRef]

28. Desmond, D.; Lane, B.; Alderman, J.; Glennon, J.D.; Diamond, D.; Arrigan, D.W.M. Evaluation of miniaturised
solid state reference electrodes on a silicon- based component. Sens. Actuators B Chem. 1997, 44, 389–396.
[CrossRef]

http://dx.doi.org/10.1351/pac198557060877
http://dx.doi.org/10.1021/ac00290a031
http://dx.doi.org/10.1016/S0003-2670(00)82898-6
http://dx.doi.org/10.1021/ac00125a053
http://dx.doi.org/10.1016/0004-6981(87)90086-2
http://dx.doi.org/10.1039/an9881300709
http://dx.doi.org/10.1016/0039-9140(88)80106-1
http://dx.doi.org/10.1016/S0003-2670(00)84109-4
http://dx.doi.org/10.1016/0039-9140(95)01628-7
http://dx.doi.org/10.1016/0039-9140(95)01723-2
http://dx.doi.org/10.1021/ac961275t
http://dx.doi.org/10.2116/analsci.14.749
http://dx.doi.org/10.1016/j.aca.2010.02.007
http://dx.doi.org/10.1002/(SICI)1521-4109(199907)11:9&lt;632::AID-ELAN632&gt;3.0.CO;2-A
http://dx.doi.org/10.1515/CCLM.2000.052
http://dx.doi.org/10.1016/j.aca.2005.06.011
http://dx.doi.org/10.1021/ac00251a025
http://dx.doi.org/10.1002/elan.1140061108
http://dx.doi.org/10.1039/ai9953200319
http://dx.doi.org/10.1016/S0925-4005(97)00231-1


Membranes 2019, 9, 161 20 of 22

29. Jermann, R.; Tercier, M.-L.; Buffle, J. Pressure insensitive solid state reference electrode for in situ voltammetric
measurements in lake water. Anal. Chim. Acta 1992, 269, 49–58. [CrossRef]

30. Huang, C.L.; Ren, J.J.; Xu, D.F. Study on a new type of all-solid-state reference electrode. Chin. Chem. Lett.
1996, 7, 1019–1022.
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