S1 of S23

Supplementary Materials: Modelling Mixed-Gas Sorption in Glassy Polymers for CO₂ Removal: A Sensitivity Analysis of the Dual Mode Sorption Model

Eleonora Ricci, Maria Grazia De Angelis

1. Mixed-Gas Sorption Predictions with Dual Mode Sorption Model Best Fit Parameter Sets Obtained Through Different Parametrization Routes

1.1. Error-Weighted Sum of Squared Errors

Figures S1 to S3 show the comparison between mixed-gas sorption of CO_2 and CH_4 in PTMSP, PIM-1 and TZ-PIM calculated with the Dual Mode Sorption (DMS) model using two different best-fit parameter sets. Solid lines in the figures are obtained with best-fit parameters resulting from the minimization of the sum of squared errors, weighted using the experimental confidence intervals:

$$\chi^{2} = \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \left[c_{i} - \left(k_{D,i} f_{i} + \frac{C'_{H,i} b_{i} f_{i}}{1 + b_{i} f_{i}} \right) \right]^{2}$$
(S1)

 σ_i represents the confidence interval associated with the experimental value of the concentration c_i , N is the total number of experimental points, f_i is the gas fugacity and $k_{D,i}$, $C'_{H,i}$, b_i are the DMS parameters for the polymer-*i* penetrant couple.

Dashed lines in the figures are obtained with best-fit parameters resulting from minimizing the sum of squared errors, unweighted:

$$\chi^{2} = \sum_{i=1}^{N} \left[c_{i} - \left(k_{D,i} f_{i} + \frac{C'_{H,i} b_{i} f_{i}}{1 + b_{i} f_{i}} \right) \right]^{2}$$
(S2)

The parameter sets obtained using Equation S1 or Equation S2 are reported in Table 1 and Table 2 in the main text, respectively.

Figure S1. Sorption isotherms of (**a**) CO₂ and (**b**) CH₄ at 35 °C in poly(trimethylsilyl propyne) (PTMSP), in pure and mixed-gas conditions (Black squares: pure gas; Red circles: ~10% CO₂ mixture; Green triangles: ~20% CO₂ mixture; Blue diamonds: ~50% CO₂ mixture). Exp. data from [1]. Solid lines are Dual Mode Sorption (DMS) model predictions obtained using the parameters reported in Table 1 in the main text. Dashed lines are DMS model predictions obtained with parameters reported in Table 2 in the main text.

Figure S2. Sorption isotherms of CO₂ and CH₄ at 25 °C (**a**,**b**), 35 °C (**c**,**d**), 50 °C (**e**,**f**) in PIM-1, in pure and mixed-gas conditions (Black squares: pure gas; Red circles: ~10% CO₂ mixture; triangles: ~30% CO₂ mixture; Blue diamonds: ~50% CO₂ mixture). Experimental data from [2,3]. Solid lines represent DMS model predictions obtained using the parameters reported in Table 1 in the main text. Dashed lines are DMS model predictions obtained with parameters reported in Table 2 in the main text.

Figure S3. Sorption isotherms of CO₂ and CH₄ at 25 °C (**a**,**b**), 35 °C (**c**,**d**), 50 °C (**e**,**f**) in TZ-PIM, in pure and mixed-gas conditions (Black squares: pure gas; Red circles: ~10% CO₂ mixture; Green triangles: ~30% CO₂ mixture; Blue diamonds: ~50% CO₂ mixture). Experimental data from [4]. Solid lines represent DMS model predictions obtained using the parameters reported in Table 1 in the main text. Dashed lines are DMS model predictions obtained with parameters reported in Table 2 in the main text.

1.2. Constrained Temperature Dependence

Figures S4 and S5 show the comparison between mixed-gas sorption of CO₂ and CH₄ in PIM-1 and TZ-PIM calculated with the Dual Mode Sorption (DMS) model using two different best-fit parameter sets.

Dashed lines in the figures are obtained with best-fit parameters reported in Table 1 in the main text, resulting from minimizing the sum of squared errors, unweighted (Equation S2).

Solid lines in the figures are obtained with best-fit parameters reported in Table 2 in the main text, resulting from the simultaneous minimization of the sum of squared errors at three temperatures, imposing a van't Hof temperature dependence to b and k_D , and constraining C'_H to decrease as temperature increases.

Figure S4. Sorption isotherms of CO₂ and CH₄ at 25 °C (**a**,**b**), 35 °C (**c**,**d**), 50 °C (**e**,**f**) in PIM-1, in pure and mixed-gas conditions (Black squares: pure gas; Red circles: ~10% CO₂ mixture; Green triangles: ~30% CO₂ mixture; Blue diamonds: ~50% CO₂ mixture). Experimental data from [2,3]. Solid lines represent DMS model predictions obtained using the parameters reported in Table 3 in the main text. Dashed lines are DMS model predictions obtained with parameters reported in Table 1 in the main text.

Figure S5. Sorption isotherms of CO₂ and CH₄ at 25 °C (**a**,**b**), 35 °C (**c**,**d**), 50 °C (**e**,**f**) in TZ-PIM, in pure and mixed-gas conditions (Black squares: pure gas; Red circles: ~10% CO₂ mixture; Green triangles: ~30% CO₂ mixture; Blue diamonds: ~50% CO₂ mixture). Experimental data from [4]. Solid lines represent DMS model predictions obtained using the parameters reported in Table 3 in the main text. Dashed lines are DMS model predictions obtained with parameters reported in Table 1 in the main text.

2. Sensitivity Analysis of the Dual Mode Sorption Model Predictions of CO₂ and CH₄ Sorption in PIM-1 in Multicomponent Conditions

2.1. Effect of b_{CO_2} on the Calculated Mixed-Gas Sorption of CH₄ in PIM-1

Figure S6. Isosurfaces the DMS model parameter space for CH₄ sorption in PIM-1 at 35 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CO_2} .

Figure S7. Isosurfaces the DMS model parameter space for CH₄ sorption in PIM-1 at 50 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CO_2} .

2.2. Confidence Intervals of CO₂/PIM-1 DMS Model Parameters

Figure S8. (a) Surfaces enclosing the range where DMS parameter sets yield $SEE < SEE_{max}$ in the prediction of CO₂ sorption in PIM-1 at three different temperatures; (b) CO₂ sorption isotherms in PIM-1 at 25, 35 and 50 °C, calculated with all the parameter sets enclosed by the corresponding coloured regions in the plot on the left.

Table S1. Confidence intervals of the fugacity-based DMS parameters yielding and average relative deviation < 1.5% in the calculation of CO₂ sorption in PIM-1 at three different temperatures.

Т (°С)	$\binom{k_{D,CO_2}}{cm_{STP}^3}$	$ \begin{pmatrix} C'_{H,CO_2} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \end{pmatrix} $	b _{CO2} (bar ⁻¹)
25	$4.046^{+0.253}_{-0.552}$	$90.04^{+16.57}_{-6.50}$	$0.710{}^{+0.272}_{-0.291}$
35	$2.890^{+0.311}_{-0.308}$	$94.83^{+12.53}_{-10.15}$	$0.388^{+0.133}_{-0.083}$
50	$1.596^{+0.325}_{-0.096}$	$89.30_{-10.88}^{+6.47}$	$0.290^{+0.105}_{-0.053}$

2.3. Uncertainty in Mixed-Gas Sorption of CO2 in PIM-1

Set 1 and Set 2 reported in Table S2 correspond, respectively, to the highest and lowest accuracy in the prediction of mixed-gas sorption of CO₂ in PIM-1, among all the parameter sets belonging to the confidence regions displayed in Figure S8.

Table S2. DMS model fugacity-based parameter sets used in the calculation of mixed-gas sorption of CO₂ in PIM-1 reported in Figure S9.

	T (°C)	$\begin{pmatrix} k_{D,CO_2} \\ cm_{STP}^3 \\ \overline{cm_{pol}^3 bar} \end{pmatrix}$	$ \begin{pmatrix} C'_{H,CO_2} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \end{pmatrix} $	b _{CO2} (bar ⁻¹)	$\frac{SEE_{pure}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$	$\overline{SEE}_{mix} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)$
	25	4.284	84.93	0.822	1.998	2.41
Set 1	35	3.156	85.69	0.518	1.791	2.28
	50	1.906	78.01	0.395	1.498	1.92
	25	3.532	105.85	0.413	1.999	6.00
Set 2	35	2.599	105.40	0.299	1.797	4.93
	50	1.500	94.87	0.238	1.482	2.77

Figure S9. Dual Mode Sorption model mixed-gas predictions of CO₂ sorption in PIM-1 at 25 °C (**a**), 35 °C (**b**), 50 °C (**c**) obtained with the two parameter sets reported in Table S2.

Figure S10. Isosurfaces the DMS model parameter space for CO₂ sorption in PIM-1 at 25 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CH_a} .

Figure S11. Isosurfaces the DMS model parameter space for CO₂ sorption in PIM-1 at 35 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CH_4} .

Figure S12. Isosurfaces in the DMS model parameter space for CO₂ sorption in PIM-1 at 50 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CH_4} .

3. Sensitivity Analysis of the Dual Mode Sorption Model Predictions of CO₂ and CH₄ Sorption in TZ-PIM in Multicomponent Conditions

3.1. Confidence Intervals of CO₂/TZ-PIM and CH₄/TZ-PIM DMS Model Parameters

Figure S13. Surfaces enclosing the range where DMS parameter sets yield $SEE < SEE_{max}$ in the prediction of (a) CO₂ and (c) CH₄ sorption in TZ-PIM at three different temperatures; (b) CO₂ and (d) CH₄ sorption isotherms in TZ-PIM calculated with all the parameter sets enclosed by the corresponding coloured region in the plot on the left.

Table S3. Confidence intervals of the fugacity-based DMS parameters (average relative deviation < 1.5%) for CO₂ and CH₄ sorption in TZ-PIM at three different temperatures.

Т (°С)	$\binom{k_{D,CO_2}}{cm_{STP}^3}$	$ \begin{pmatrix} C'_{H,CO_2} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \end{pmatrix} $	b _{C02} (bar ⁻¹)	$\begin{pmatrix} k_{D,CH_4} \\ (\frac{cm_{STP}^3}{cm_{pol}^3bar} \end{pmatrix}$	$C'_{H,CH_4} \ \left(rac{cm^3_{STP}}{cm^3_{pol}} ight)$	b _{СН4} (bar ⁻¹)
25	$4.127^{+0.224}_{-0.234}$	$70.58^{+5.75}_{-5.28}$	$1.127 {}^{+0.474}_{-0.278}$	$1.400^{+0.191}_{-0.226}$	$48.09^{+9.50}_{-7.13}$	$0.214 {}^{+0.080}_{-0.055}$
35	$1.982^{+0.226}_{-0.255}$	$89.53^{+8.15}_{-7.18}$	$0.378^{+0.084}_{-0.062}$	$0.378^{+0.066}_{-0.378}$	$67.12^{+27.58}_{-3.99}$	$0.087{}^{+0.012}_{-0.029}$
50	$0.903^{+0.307}_{-0.346}$	$92.42^{+12.85}_{-10.35}$	$0.263 {}^{+0.070}_{-0.055}$	$0.350{}^{+0.244}_{-0.292}$	$51.41^{+22.33}_{-13.26}$	$0.101^{+0.047}_{-0.035}$

3.2. Uncertainty in Mixed-Gas Sorption of CO2 and CH4 in TZ-PIM

Set 1 and Set 2 reported in Table S3 correspond, respectively, to the highest and lowest accuracy in the prediction of mixed-gas sorption of CO₂ and CH₄ in TZ-PIM, among all the parameter sets belonging to the confidence regions displayed in Figure S13.

	Т (°С)	$\binom{k_{D,CO_2}}{\binom{cm_{STP}^3}{cm_{pol}^3bar}}$	$ \begin{pmatrix} C'_{H,CO_2} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \end{pmatrix} $	b _{c02} (bar ⁻¹)	$\frac{SEE_{pure}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$	$\frac{\overline{SEE}_{mix}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$
	25	4.179	70.03	1.270	1.993	7.62
Set 1	35	2.150	84.07	0.454	1.898	5.16
	50	1.153	83.35	0.333	1.591	7.60
	25	3.961	75.19	0.849	1.995	9.35
Set 2	35	1.807	95.82	0.316	1.896	7.50
	50	0.626	103.55	0.209	1.597	11.07
	Т (°С)	$\binom{k_{D,CH_4}}{cm_{STP}^3}$	$ \begin{pmatrix} C'_{H,CH_4} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \end{pmatrix} $	b_{CH_4} (bar ⁻¹)	$\frac{SEE_{pure}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$	$\frac{\overline{SEE}_{mix}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$
	Т (°С) 25	$\frac{k_{D,CH_4}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$ 1.393	$\frac{C'_{H,CH_4}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3}\right)}$ 47.23	<i>b</i> _{CH4} (<i>bar</i> ⁻¹)	$\frac{SEE_{pure}}{\left(\frac{cm_{STP}^{3}}{cm_{pol}^{3}bar}\right)}$ 1.049	$\frac{\overline{SEE}_{mix}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$ 1.83
Set 1	T (°C) 25 35	$\frac{k_{D,CH_4}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$ 1.393 0.280	$ \begin{array}{r} C'_{H,CH_4} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \\ $	<i>b</i> _{CH4} (<i>bar</i> ⁻¹) 0.239 0.081	$\frac{SEE_{pure}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$ 1.049 0.947	$ \frac{\overline{SEE}_{mix}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)} $ 1.83 1.14
Set 1	T (°C) 25 35 50	$ \begin{array}{c} k_{D,CH_4} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3bar} \right) \\ \hline 1.393 \\ 0.280 \\ 0.010 \end{array} $	$ \begin{array}{r} C'_{H,CH_4} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \\ 47.23 \\ 73.01 \\ 71.73 \end{array} $	<i>b</i> _{CH4} (<i>bar</i> ⁻¹) 0.239 0.081 0.067	SEE_{pure} $\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)$ 1.049 0.947 0.798	\overline{SEE}_{mix} $\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)$ 1.83 1.14 2.17
Set 1	T (°C) 25 35 50 25	$\frac{k_{D,CH_4}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)}$ 1.393 0.280 0.010 1.174	$\frac{C'_{H,CH_4}}{\left(\frac{cm_{STP}^3}{cm_{pol}^3}\right)}$ $\frac{47.23}{73.01}$ $\frac{71.73}{57.59}$	b _{CH4} (bar ⁻¹) 0.239 0.081 0.067 0.160	$\frac{SEE_{pure}}{\left(\frac{cm_{STP}^{3}}{cm_{pol}^{3}bar}\right)}$ 1.049 0.947 0.798 1.068	\overline{SEE}_{mix} $\left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right)$ 1.83 1.14 2.17 3.73
Set 1 Set 2	T (°C) 25 35 50 25 35	$ \begin{array}{c} k_{D,CH_4} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3bar} \right) \\ \hline 1.393 \\ 0.280 \\ 0.010 \\ \hline 1.174 \\ 0.071 \end{array} $	$\begin{array}{c} C_{H,CH_4}' \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3} \right) \\ 47.23 \\ 73.01 \\ 71.73 \\ 57.59 \\ 93.98 \end{array}$	b _{CH4} (bar ⁻¹) 0.239 0.081 0.067 0.160 0.058	$SEE_{pure} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3bar}\right) \\ 1.049 \\ 0.947 \\ 0.798 \\ 1.068 \\ 0.949 \\ \end{cases}$	$ \overline{SEE}_{mix} \\ \left(\frac{cm_{STP}^3}{cm_{pol}^3 bar} \right) \\ 1.83 \\ 1.14 \\ 2.17 \\ 3.73 \\ 3.34 $

Table S4. DMS model fugacity-based parameter sets used in the calculation of mixed-gas sorption of CO_2 and CH_4 in TZ-PIM reported in Figure S14.

Figure S14. Dual Mode Sorption model mixed-gas predictions of CO₂ and CH₄ at 25 °C (**a**,**b**), 35 °C (**c**,**d**), 50 °C (**e**,**f**) in TZ-PIM, obtained with the two parameter sets reported in in Table S3. Solid lines are obtained with Set 1, dashed ones with Set 2.

3.3. Effect of b_{CO2} on the Calculated Mixed-Gas Sorption of CH4 in TZ-PIM

Figure S15. Isosurfaces in the DMS model parameter space for CH₄ sorption in TZ-PIM at 25 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CO_2} .

Figure S16. Isosurfaces in the DMS model parameter space for CH₄ sorption in TZ-PIM at 35 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CO_2} .

Figure S17. Isosurfaces in the DMS model parameter space for CH₄ sorption in TZ-PIM at 50 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CO_2} .

Figure S18. Isosurfaces in the DMS model parameter space for CO₂ sorption in TZ-PIM at 25 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CH_a} .

Figure S19. Isosurfaces in the DMS model parameter space for CO₂ sorption in TZ-PIM at 35 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CH_4} .

Figure S20. Isosurfaces in the DMS model parameter space for CO₂ sorption in TZ-PIM at 50 °C corresponding to $SEE_{pure} < SEE_{max}$, coloured according to the average SEE_{mix} obtained with different values within the confidence interval of b_{CH_a} .

References

- Vopička, O.; De Angelis, M.G.; Sarti, G.C. Mixed gas sorption in glassy polymeric membranes: I. CO₂/CH₄ and n-C₄/CH₄ mixtures sorption in poly(1-trimethylsilyl-1-propyne) (PTMSP). *J. Membr. Sci.* 2013, 449, 97– 108, doi:10.1016/j.memsci.2013.06.065.
- Vopička, O.; De Angelis, M.G.; Du, N.; Li, N.; Guiver, M.D.; Sarti, G.C. Mixed gas sorption in glassy polymeric membranes: II. CO₂/CH₄ mixtures in a polymer of intrinsic microporosity (PIM-1). *J. Membr. Sci.* 2014, 459, 264–276, doi:10.1016/j.memsci.2014.02.003.
- Gemeda, A.E.; De Angelis, M.G.; Du, N.; Li, N.; Guiver, M.D.; Sarti, G.C. Mixed gas sorption in glassy polymeric membranes. III. CO₂/CH₄ mixtures in a polymer of intrinsic microporosity (PIM-1): Effect of temperature. *J. Membr. Sci.* 2017, 524, 746–757, doi:10.1016/j.memsci.2016.11.053.
- 4. Ricci, E.; Gemeda, A.E.; Du, N.; Li, N.; De Angelis, M.G.; Guiver, M.D.; Sarti, G.C. Sorption of the CO₂/CH₄ mixture in TZ-PIM, PIM-1 and PTMSP: experimental data and NELF-model based analysis of competitive sorption and its impact on the selectivity. *J. Membr. Sci.* **2018**, submitted for publication.

 \odot 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).