Next Issue
Volume 8, June
Previous Issue
Volume 7, December
 
 

Membranes, Volume 8, Issue 1 (March 2018) – 16 articles

Cover Story (view full-size image): This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs), based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K2B12H12) as inorganic particles (IPs). The effect of IP loading on the gas separation performance of these MMMs was investigated by varying the IP content in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron microscopy, thermogravimetric analysis, single gas permeation tests and sorption measurements. Overall, increases in gas permeability and diffusivity were observed for all tested gases, suggesting that IPs could disrupt the polymer chain packing. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 8108 KiB  
Article
Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications
by Sara Escorihuela, Alberto Tena, Sergey Shishatskiy, Sonia Escolástico, Torsten Brinkmann, Jose Manuel Serra and Volker Abetz
Membranes 2018, 8(1), 16; https://doi.org/10.3390/membranes8010016 - 07 Mar 2018
Cited by 25 | Viewed by 8077
Abstract
Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84®, Matrimid 5218®, and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order [...] Read more.
Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84®, Matrimid 5218®, and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C*) for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid®, and 4.30 wt. % for P84®. A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84® ≥ Matrimid® >> 6FDA-6FpDA). The effect of the temperature on the permeance of prepared membranes was studied for H2, CH4, N2, O2, and CO2. As expected, activation energy of permeance for hydrogen was higher than for CO2, resulting in H2/CO2 selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures. Full article
(This article belongs to the Special Issue Polymeric Membranes for Gas Separation)
Show Figures

Graphical abstract

26 pages, 4129 KiB  
Review
Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review
by Nasser K. Awad, Haitao Niu, Usman Ali, Yosry S. Morsi and Tong Lin
Membranes 2018, 8(1), 15; https://doi.org/10.3390/membranes8010015 - 06 Mar 2018
Cited by 93 | Viewed by 10711
Abstract
Small-diameter blood vessels (SDBVs) are still a challenging task to prepare due to the occurrence of thrombosis formation, intimal hyperplasia, and aneurysmal dilation. Electrospinning technique, as a promising tissue engineering approach, can fabricate polymer fibrous scaffolds that satisfy requirements on the construction of [...] Read more.
Small-diameter blood vessels (SDBVs) are still a challenging task to prepare due to the occurrence of thrombosis formation, intimal hyperplasia, and aneurysmal dilation. Electrospinning technique, as a promising tissue engineering approach, can fabricate polymer fibrous scaffolds that satisfy requirements on the construction of extracellular matrix (ECM) of native blood vessel and promote the adhesion, proliferation, and growth of cells. In this review, we summarize the polymers that are deployed for the fabrication of SDBVs and classify them into three categories, synthetic polymers, natural polymers, and hybrid polymers. Furthermore, the biomechanical properties and the biological activities of the electrospun SBVs including anti-thrombogenic ability and cell response are discussed. Polymer blends seem to be a strategic way to fabricate SDBVs because it combines both suitable biomechanical properties coming from synthetic polymers and favorable sites to cell attachment coming from natural polymers. Full article
(This article belongs to the Special Issue Electrospun Nanofiber Membranes: Advances and Applications)
Show Figures

Figure 1

9 pages, 1679 KiB  
Article
Preparation and Characterization of TiO2/g-C3N4/PVDF Composite Membrane with Enhanced Physical Properties
by Huiya Wang, Ran Gong and Xinliang Qian
Membranes 2018, 8(1), 14; https://doi.org/10.3390/membranes8010014 - 05 Mar 2018
Cited by 18 | Viewed by 5605
Abstract
TiO2/g-C3N4/PVDF composite membranes were prepared by a phase inversion method. A comparison of the performance and morphology was carried out among pure PVDF, g-C3N4/PVDF, TiO2/PVDF and TiO2/g-C3N [...] Read more.
TiO2/g-C3N4/PVDF composite membranes were prepared by a phase inversion method. A comparison of the performance and morphology was carried out among pure PVDF, g-C3N4/PVDF, TiO2/PVDF and TiO2/g-C3N4/PVDF composite membranes. The results of permeability and instrumental analysis indicated that TiO2 and g-C3N4 organic-inorganic composites obviously changed the performance and structure of the PVDF membranes. The porosity and water content of 0.75TiO2/0.25g-C3N4/PVDF composite membranes were 97.3 and 188.3 L/(m2·h), respectively. The porosity and water content of the 0.75TiO2/0.25g-C3N4 membranes were increased by 20.8% and 27.4%, respectively, compared with that of pure PVDF membranes. This suggested that the combination of organic-inorganic composite with PVDF could remarkably improve UTS, membrane porosity and water content. Full article
(This article belongs to the Special Issue Composite Membranes: Synthesis and Characterization)
Show Figures

Figure 1

19 pages, 9576 KiB  
Article
Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition
by Imtiaz Ali, Omar A. Bamaga, Lassaad Gzara, M. Bassyouni, M. H. Abdel-Aziz, M. F. Soliman, Enrico Drioli and Mohammed Albeirutty
Membranes 2018, 8(1), 13; https://doi.org/10.3390/membranes8010013 - 05 Mar 2018
Cited by 50 | Viewed by 7799
Abstract
In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat [...] Read more.
In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability. Full article
Show Figures

Graphical abstract

14 pages, 2409 KiB  
Article
Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration
by Sandra Sánchez-González, Nazely Diban and Ane Urtiaga
Membranes 2018, 8(1), 12; https://doi.org/10.3390/membranes8010012 - 05 Mar 2018
Cited by 69 | Viewed by 5135
Abstract
The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds [...] Read more.
The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation. Full article
(This article belongs to the Special Issue Mixed Matrix Membranes)
Show Figures

Figure 1

17 pages, 4628 KiB  
Article
Application of PolyHIPE Membrane with Tricaprylmethylammonium Chloride for Cr(VI) Ion Separation: Parameters and Mechanism of Transport Relating to the Pore Structure
by Jyh-Herng Chen, Thi Tuyet Mai Le and Kai-Chung Hsu
Membranes 2018, 8(1), 11; https://doi.org/10.3390/membranes8010011 - 02 Mar 2018
Cited by 12 | Viewed by 3853
Abstract
The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene-co-2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure [...] Read more.
The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene-co-2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10−11 m2 s−1. Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

17 pages, 3554 KiB  
Article
Membranes: A Variety of Energy Landscapes for Many Transfer Opportunities
by Patrice Bacchin
Membranes 2018, 8(1), 10; https://doi.org/10.3390/membranes8010010 - 22 Feb 2018
Cited by 8 | Viewed by 3798
Abstract
A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in [...] Read more.
A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in the Darcy law is no longer written as the result of an osmotic pressure difference but rather as a function of colloid-membrane interactions. The ability of the model to describe the physics of the filtration is discussed in detail. This model is solved in a simplified energy landscape to derive analytical relationships that describe the selectivity and the counter-pressure from ab initio operating conditions. The model shows that the stiffness of the energy landscape has an impact on the process efficiency: a gradual increase in interactions (such as with hourglass pore shape) can reduce the separation energetic cost. It allows the introduction of a new paradigm to increase membrane efficiency: the accumulation that is inherent to the separation must be distributed across the membrane. Asymmetric interactions thus lead to direction-dependent transfer properties and the membrane exhibits diode behavior. These new transfer opportunities are discussed. Full article
Show Figures

Graphical abstract

13 pages, 5562 KiB  
Article
Performance and Fouling Study of Asymmetric PVDF Membrane Applied in the Concentration of Organic Fertilizer by Direct Contact Membrane Distillation (DCMD)
by Yanfei Liu, Tonghu Xiao, Chenghuan Bao, Jifei Zhang and Xing Yang
Membranes 2018, 8(1), 9; https://doi.org/10.3390/membranes8010009 - 16 Feb 2018
Cited by 11 | Viewed by 5786
Abstract
This study proposes using membrane distillation (MD) as an alternative to the conventional multi-stage flushing (MSF) process to concentrate a semi-product of organic fertilizer. By applying a unique asymmetric polyvinylidene fluoride (PVDF) membrane, which was specifically designed for MD applications using a nonsolvent [...] Read more.
This study proposes using membrane distillation (MD) as an alternative to the conventional multi-stage flushing (MSF) process to concentrate a semi-product of organic fertilizer. By applying a unique asymmetric polyvinylidene fluoride (PVDF) membrane, which was specifically designed for MD applications using a nonsolvent thermally induced phase separation (NTIPS) method, the direct contact membrane distillation (DCMD) performance was investigated in terms of its sustainability in permeation flux, fouling resistance, and anti-wetting properties. It was found that the permeation flux increased with increasing flow rate, while the top-surface facing feed mode was the preferred orientation to achieve 25% higher flux than the bottom-surface facing feed mode. Compared to the commercial polytetrafluoroethylene (PTFE) membrane, the asymmetric PVDF membrane exhibited excellent anti-fouling and sustainable flux, with less than 8% flux decline in a 15 h continuous operation, i.e., flux decreased slightly and was maintained as high as 74 kg·m−2·h−1 at 70 °C. Meanwhile, the lost flux was easily recovered by clean water rinsing. Overall 2.6 times concentration factor was achieved in 15 h MD operation, with 63.4% water being removed from the fertilizer sample. Further concentration could be achieved to reach the desired industrial standard of 5x concentration factor. Full article
(This article belongs to the Special Issue Seven Years of Membranes: Feature Paper 2017)
Show Figures

Figure 1

15 pages, 4174 KiB  
Article
Gas Transport in Glassy Polymers: Prediction of Diffusional Time Lag
by Matteo Minelli and Giulio C. Sarti
Membranes 2018, 8(1), 8; https://doi.org/10.3390/membranes8010008 - 03 Feb 2018
Cited by 27 | Viewed by 4270
Abstract
The transport of gases in glassy polymeric membranes has been analyzed by means of a fundamental approach based on the nonequilibrium thermodynamic model for glassy polymers (NET-GP) that considers the penetrant chemical potential gradient as the actual driving force of the diffusional process. [...] Read more.
The transport of gases in glassy polymeric membranes has been analyzed by means of a fundamental approach based on the nonequilibrium thermodynamic model for glassy polymers (NET-GP) that considers the penetrant chemical potential gradient as the actual driving force of the diffusional process. The diffusivity of a penetrant is thus described as the product of a purely kinetic quantity, the penetrant mobility, and a thermodynamic factor, accounting for the chemical potential dependence on its concentration in the polymer. The NET-GP approach, and the nonequilibrium lattice fluid (NELF) model in particular, describes the thermodynamic behavior of penetrant/polymer mixtures in the glassy state, at each pressure or composition. Moreover, the mobility is considered to follow a simple exponential dependence on penetrant concentration, as typically observed experimentally, using only two adjustable parameters, the infinite dilution penetrant mobility L10 and the plasticization factor β, both determined from the analysis of the dependence of steady state permeability on upstream pressure. The available literature data of diffusional time lag as a function of penetrant upstream pressure has been reviewed and compared with model predictions, obtained after the values of the two model parameters (L10 and β), have been conveniently determined from steady state permeability data. The model is shown to be able to describe very accurately the experimental time lag behaviors for all penetrant/polymer pairs inspected, including those presenting an increasing permeability with increasing upstream pressure. The model is thus more appropriate than the one based on Dual Mode Sorption, which usually provides an unsatisfactory description of time lag and required an ad hoc modification. Full article
(This article belongs to the Special Issue Advances in Liquid Membrane-Based Separation)
Show Figures

Figure 1

10 pages, 1100 KiB  
Article
Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane
by Xiaolei Zhang, Linhua Fan and Felicity A. Roddick
Membranes 2018, 8(1), 7; https://doi.org/10.3390/membranes8010007 - 01 Feb 2018
Cited by 16 | Viewed by 4072
Abstract
The influence of the interaction between aquatic humic substances and the algal organic matter (AOM) derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF) membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River [...] Read more.
The influence of the interaction between aquatic humic substances and the algal organic matter (AOM) derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF) membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA), and fulvic acid (FA). The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged), which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS) and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance. Full article
Show Figures

Figure 1

12 pages, 3374 KiB  
Article
The Effect of Surface Confined Gold Nanoparticles in Blocking the Extraction of Nitrate by PVC-Based Polymer Inclusion Membranes Containing Aliquat 336 as the Carrier
by Ya Ya N. Bonggotgetsakul, Robert W. Cattrall and Spas D. Kolev
Membranes 2018, 8(1), 6; https://doi.org/10.3390/membranes8010006 - 25 Jan 2018
Cited by 2 | Viewed by 4309
Abstract
Clusters of gold nanoparticles (AuNPs) formed on the surface of PVC-based polymer inclusion membranes (PIMs) with a liquid phase containing Aliquat 336 as the carrier and in some cases 1-dodecanol or 2-nitrophenol octyl ether as plasticizers were found to inhibit the extraction of [...] Read more.
Clusters of gold nanoparticles (AuNPs) formed on the surface of PVC-based polymer inclusion membranes (PIMs) with a liquid phase containing Aliquat 336 as the carrier and in some cases 1-dodecanol or 2-nitrophenol octyl ether as plasticizers were found to inhibit the extraction of nitrate by the PIMs. This observation was based on gradually increasing the mass of AuNPs on the membrane surface and testing the ability of the membrane to extract nitrate after each increase. In this way, it was possible to determine the so-called “critical AuNP masses” at which the studied membranes ceased to extract nitrate. On the basis of these results, it can be hypothesized that the surfaces of these PIMs are not homogeneous with respect to the distribution of their membrane liquid phases, which are present only at certain sites. Extraction takes place only at these sites, and at the “critical AuNP mass” of a PIM, all these extraction sites are blocked and the membrane loses its ability to extract. Full article
(This article belongs to the Special Issue Advances in Liquid Membrane-Based Separation)
Show Figures

Figure 1

39 pages, 5321 KiB  
Review
Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production
by David Alique, David Martinez-Diaz, Raul Sanz and Jose A. Calles
Membranes 2018, 8(1), 5; https://doi.org/10.3390/membranes8010005 - 23 Jan 2018
Cited by 115 | Viewed by 10357
Abstract
In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future [...] Read more.
In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in preparation of Pd-based alloys, and, finally; (v) some essential concluding remarks in addition to futures perspectives. Full article
(This article belongs to the Special Issue Pd-based Membranes: Overview and Perspectives)
Show Figures

Figure 1

27 pages, 6417 KiB  
Article
Development of a Scale-up Tool for Pervaporation Processes
by Holger Thiess, Axel Schmidt and Jochen Strube
Membranes 2018, 8(1), 4; https://doi.org/10.3390/membranes8010004 - 15 Jan 2018
Cited by 13 | Viewed by 5855
Abstract
In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in [...] Read more.
In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. Full article
Show Figures

Figure 1

3 pages, 143 KiB  
Editorial
Acknowledgement to Reviewers of Membranes in 2017
by Membranes Editorial Office
Membranes 2018, 8(1), 3; https://doi.org/10.3390/membranes8010003 - 12 Jan 2018
Cited by 2 | Viewed by 2755
Abstract
Peer review is an essential part in the publication process, ensuring that Membranes maintains high quality standards for its published papers [...]
Full article
18 pages, 5088 KiB  
Article
Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications
by Norhan Nady and Sherif H. Kandil
Membranes 2018, 8(1), 2; https://doi.org/10.3390/membranes8010002 - 03 Jan 2018
Cited by 38 | Viewed by 7223
Abstract
In this work, a chitosan–gelatin–ferulic acid blend was used in different ratios for preparing novel films that can be used in biomedical applications. Both acetic and formic acid were tested as solvents for the chitosan–gelatin–ferulic acid blend. Glycerol was tested as a plasticizer. [...] Read more.
In this work, a chitosan–gelatin–ferulic acid blend was used in different ratios for preparing novel films that can be used in biomedical applications. Both acetic and formic acid were tested as solvents for the chitosan–gelatin–ferulic acid blend. Glycerol was tested as a plasticizer. The thickness, mechanical strength, static water contact angle and water uptake of the prepared films were determined. Also, the prepared films were characterized using different analysis techniques such as Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Acetic acid produced continuous compact surfaces that are not recommended for testing in biomedical applications. The plasticized chitosan–gelatin–ferulic acid blend, using formic acid solvent, produced novel hexagonal porous films with a pore size of around 10–14 µm. This blend is recommended for preparing films (scaffolds) for testing in biomedical applications as it has the advantage of a decreased thickness. Full article
(This article belongs to the Special Issue Biological, Biomimetic, and Biomedical Applications of Membranes)
Show Figures

Figure 1

18 pages, 6132 KiB  
Article
Mixed Matrix Membranes of Boron Icosahedron and Polymers of Intrinsic Microporosity (PIM-1) for Gas Separation
by Muntazim Munir Khan, Sergey Shishatskiy and Volkan Filiz
Membranes 2018, 8(1), 1; https://doi.org/10.3390/membranes8010001 - 02 Jan 2018
Cited by 24 | Viewed by 7574
Abstract
This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K2B12H12) as inorganic particles (IPs). The effect of IP loading on [...] Read more.
This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K2B12H12) as inorganic particles (IPs). The effect of IP loading on the gas separation performance of these MMMs was investigated by varying the IP content (2.5, 5, 10 and 20 wt %) in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests and sorption measurement. The PIM1/K2B12H12 MMMs show good dispersion of the IPs (from 2.5 to 10 wt %) in the polymer matrix. The gas permeability of PIM1/K2B12H12 MMMs increases as the loading of IPs increases (up to 10 wt %) without sacrificing permselectivity. The sorption isotherm in PIM-1 and PIM1/K2B12H12 MMMs demonstrate typical dual-mode sorption behaviors for the gases CO2 and CH4. Full article
(This article belongs to the Special Issue Mixed Matrix Membranes)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop