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Abstract: Membrane distillation (MD) is an attractive separation process that can work with heat
sources with low temperature differences and is less sensitive to concentration polarization and
membrane fouling than other pressure-driven membrane separation processes, thus allowing it to use
low-grade thermal energy, which is helpful to decrease the consumption of energy, treat concentrated
solutions, and improve water recovery rate. This paper provides a review of the integration of
MD with waste heat and renewable energy, such as solar radiation, salt-gradient solar ponds, and
geothermal energy, for desalination. In addition, MD hybrids with pressure-retarded osmosis (PRO),
multi-effect distillation (MED), reverse osmosis (RO), crystallization, forward osmosis (FO), and
bioreactors to dispose of concentrated solutions are also comprehensively summarized. A critical
analysis of the hybrid MD systems will be helpful for the research and development of MD technology
and will promote its application. Eventually, a possible research direction for MD is suggested.

Keywords: membrane distillation; hybrid systems; renewable energy; forward osmosis; reverse
osmosis

1. Introduction

The shortage of fresh water is one of the biggest challenges nowadays. It is becoming
more and more acute with the development of industry and population expansion [1–3].
The overall volume of water reservoirs might be enough to meet the current demand,
but unfortunately, saltwater, which we cannot drink or use for watering plants directly,
accounts for about 96.54% of water. Only 2.53% is fresh water, and less than 0.36% of the
fresh water is directly available to humans. In addition, approximately 70% of fresh water
is frozen in glaciers and polar ice caps and about 30% of the total fresh water is found
mainly as groundwater [4–6]. It is projected that by the year 2025, fresh water demand
will exceed supply by 56% due to persistent regional droughts and the shifting of the
population to urban coastal cities [7]. Therefore, seawater desalination is believed to be the
most promising approach to solve fresh water scarcity [8].

Nowadays, the commonly used desalination technologies can be categorized into
three generations [9]. The first-generation thermal-based desalination techniques, mainly
including multi-stage flash (MSF) distillation, multiple-effect distillation (MED), and ther-
mal vapor compression (TVC), have been developed over the past 70 years [10]. Among
them, MSF is the most widely used thermal process, and is mainly used in the Gulf region
of the Middle East, where fossil fuels are abundant [11,12]. As alternatives to the first-
generation, second-generation desalination techniques based on membrane operations
have been extensively used over the past 50 years. The second generation desalination
techniques embrace reverse osmosis (RO), nanofiltration (NF), microfiltration (MF), electro-
dialysis (ED), and so on [7,13]. Among them, RO is the most commonly used membrane
process in the industry [14]. However, RO is an energy-intensive process due to the high
salinity of the source and the concentration polarization phenomenon [15,16]. Each year,
large RO concentrate discharges leads to a significant loss of water resources and a disposal
problem [17].
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Further investigations have been performed to solve the disposal of produced brine
and reduce energy consumption. Membrane distillation (MD), forward osmosis (FO), and
capacitive deionization (CDI), which can be incorporated into third-generation desalination
techniques, have been brought forth as a result [9]. The MD process presents two significant
advantages that even RO does not have. On the one hand, the distillation temperature of
the MD process is mostly relatively low (currently typ. < 90 ◦C), which is below the normal
boiling point of the feed solution [18,19]. Therefore, it can use waste heat from industrial
processes or renewable energy (geothermal energy or solar energy), so it is helpful to
decrease the consumption of energy and realize practical/industrial implementations [20].
On the other hand, the membrane of MD is less sensitive to concentration polarization and
membrane fouling than other membrane separation processes such as the pressure-driven
membrane separation processes [18,21]. Hence, MD can be used to tackle concentrated
solutions, especially water recovery from high-salinity solutions, such as RO brine, which is
deemed to be the most promising future application of MD by the majority of both academic
and industry experts [22]. During the past decade, the number of papers published
on hybrid MD has increased significantly (based on the search with titles “membrane
distillation” and ““membrane distillation” AND “hybrid or integrated or coupled or
combined””) (Figure 1).
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Starting from the first patent related to MD (filed in 1963 by Bodell) and the first MD
paper (published in 1967 by Findley), there was slow growth in research on MD from the
1970s through the 1990s, but much progress has been made over the past three decades in
advancing the development of MD [9,21,22]. The progress and advancements have been
reviewed in different review articles. Bourawi et al. [21] comprehensively reviewed the
influence of operating variables (feed temperature, feed inlet concentration, feed circulation
velocity and stirring rate, permeate inlet temperature, temperature difference and mean
temperature effect, permeate flow velocity, and vapor pressure difference) and membrane
parameters (such as membrane thickness, membrane porosity, membrane pore size, pore
size distribution, pore tortuosity, membrane surface chemistry, and membrane module
geometry) on the MD process. Some technical reviews have extensively covered a wide
range of commercial MD membranes, membrane synthesis methods used for MD, and
recent progress in MD using electrospinning nanofibrous membranes [15,23,24]. The
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mechanisms of fouling, the control and scaling of fouling, and membrane wetting have
also been reviewed in detail [25–27]. Hitsov and co-workers [28] provided a critical review
of the mathematical modelling and discussed the pros and cons of the different models.
Ullah et al. [29] published a comprehensive analysis of the energy efficiency of the DCMD
process. However, a few review articles in the literature have discussed the hybrid systems
of MD, and some of them are listed in Table 1.

Table 1. List of recently published review papers cover the hybrid systems of MD process.

Author Title Year Hybrid Systems Ref.

Ullah et al. Energy efficiency of direct contact membrane distillation 2018 Solar [29]

Aamer et al. Membrane technology in renewable-energy-driven
desalination 2018 Solar and geothermal energy [30]

Li et al. Solar assisted sea water desalination: A review 2013 Solar [31]

Saffarini et al. Technical evaluation of stand-alone solar powered
membrane distillation systems 2012 Solar [32]

Charcosset A view of membrane processes and renewable energies
for desalination 2009 Solar [33]

Pangarkar et al. Review of membrane distillation process for
water purification 2016 Solar and multi-effect MD [34]

Wang et al.
Recent advances in membrane distillation processes:
Membrane development, configuration design and
application exploring

2015 Multi-effect MD, FO, crystallizer,
bioreactor, and solar [35]

Ashoor et al. Principles and applications of direct contact membrane
distillation (DCMD): A comprehensive review 2016

Solar, crystallization, waste heat,
geothermal energy, freeze

desalination, photocatalysis, UF,
and FO

[19]

González et al. Membrane distillation: Perspectives for sustainable and
improved desalination 2017

Multi-effect MD, solar, waste
heat, geothermal, and zero

liquid discharge
[36]

Camacho et al. Advances in Membrane Distillation for Water
Desalination and Purification Applications 2013 RO, NF, FO, crystallization, solar,

geothermal, and waste heat [37]

Salmón et al. Membrane crystallization via membrane distillation 2018 Crystallization [38]

Jiang et al.
Progress in membrane distillation crystallization: Process
models, crystallization control and
innovative applications

2017 Crystallization [39]

Bruggen

Integrated Membrane Separation Processes for Recycling
of Valuable Wastewater Streams: Nanofiltration,
Membrane Distillation, and Membrane
Crystallizers Revisited

2013 NF and crystallizers [40]

Goh et al.
Membrane Distillation Bioreactor (MDBR)—A lower
Green-House-Gas (GHG) option for industrial
wastewater reclamation

2015 Bioreactor [41]

Zhang et al. Review of thermal efficiency and heat recycling in
membrane distillation processes 2015 Multi-effect MD [42]

Curcio et al. Membrane Distillation and Related
Operations—A Review 2005 Crystallization [16]

Gopi et al. Perspective of renewable desalination by using
membrane distillation Solar [43]

Ghaffour et al. Membrane distillation hybrids for water production and
energy efficiency enhancement: A critical review 2019 RO, BR, MVC, MED, MSF, MDC,

AD, FO, and PRO [44]
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Table 1. Cont.

Author Title Year Hybrid Systems Ref.

Choi et al.
Membrane distillation crystallization for brine mining
and zero liquid discharge: opportunities, challenges, and
recent progress

2019 Crystallization [45]

Naidu et al. Hybrid membrane distillation: Resource, nutrient and
energy recovery 2020 Crystallizer, adsorbent, FO,

bioreactor, PRO, and RED [46]

Ahmed et al. Alternative heating techniques in membrane distillation:
A review 2020 Waste heat and solar [47]

Though these reviews included hybrid systems of MD, they only introduced one aspect
of coupling systems. They were not comprehensive. Especially over the past 10 years, a
number of studies related to using renewable energy or waste heat to drive the MD process
and using MD to tackle concentrated solutions have been undertaken. Thus, it is deemed
necessary to provide a comprehensive review of the application of hybrid systems of MD.
The structure of this review is outlined below.

The first portion of this review includes a brief overview of the fundamentals and
configurations of MD. The second portion of this review emphasizes an up-to-date MD
process powered by waste heat and renewable energy sources, such as geothermal energy
and solar energy. The third portion of this review focuses on applying MD to treat concen-
trated solutions from RO, MED, etc. The higher-salinity effluent from the MD process can
be used to generate electricity, and can be further treated to achieve zero-liquid discharge
(ZLD) or to recover solid crystals such as sodium chloride and valuable minerals.

In the last part, the integration of MD with FO and a bioreactor is described and a
future research direction for MD is suggested.

2. The Fundamentals and Configurations of MD
2.1. Fundamentals of MD

Membrane distillation is a separation technique that couples a thermally driven dis-
tillation process and a membrane separation process. This technique has been known
for about 50 years [48–53]. Simultaneous heat and mass transfer through a micro-porous
hydrophobic membrane occurs during the MD process [54]. Heat is transferred by the
latent heat carried by water vapor and conduction through the membrane matrix and the
vapor trapped inside the pores. With the volatile component being transported through
the membrane pores, the mass is transferred [55]. The driving force of the MD process is
the partial vapor pressure difference generated by the temperature difference between the
hot liquid feed side and the cold permeate side of the membrane or the difference between
the water activities of the two solutions [56,57].

2.2. MD Configurations

According to types of the driving forces, the configurations of MD can be divided into
two categories. The first category includes direct contact membrane distillation (DCMD),
air gap membrane distillation (AGMD), sweeping gas membrane distillation (SGMD),
vacuum membrane distillation (VMD), and permeate gap membrane distillation (PGMD),
the driving forces of which are created by temperature gradients. The other category
includes osmotic membrane distillation (OMD), the driving force of which is a concentration
gradient.

The most common configuration of MD is DCMD in which hot feed saline water and
cold permeate water are in direct contact with the membrane [48]. More than 60% of MD
studies related to DCMD systems have been carried out using the simplest configuration of
DCMD, whose condensation step can be placed inside the MD module [24]. DCMD requires
the least equipment, and its operation is simple [48]. Therefore, it is widely employed for
desalination, especially for seawater desalination in remote rural areas where technical
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support is immature and budgets are small [58]. However, the main drawback of DCMD is
the large amounts of heat loss from the hot side to the cold side [59].

The conductive heat loss of DCMD can be significantly reduced by introducing some
stagnant air between the membrane and the condensation surface [59]. This configuration
is called AGMD, and it has the highest energy efficiency among the single-stage MD
modes [60]. In addition, internal heat recovery is more probable for AGMD compared
to other modes [61]. Nonetheless, additional resistance to mass transfer is created by the
stagnant air when the water vapor passes through the gap to the condensation surface,
which results in lower permeate fluxes and is considered a disadvantage [62].

The lower permeate fluxes of AGMD can be avoided if a cold inert gas is used to sweep
the vapor on the permeate membrane side to condense outside the membrane module,
or if a vacuum pump is applied to the distillate side of the MD module to remove the
permeated molecules from the distillate side [59,61]. These configurations are known as
SGMD and VMD, respectively. Both of them enhance the mass transfer coefficient and
reduce the heat loss due to conduction, and VMD presents the highest permeate flux and
lowest heat loss due to conduction among DCMD, AGMD, SGMD, and VMD [54,59,61].
SGMD and VMD are typically used to remove a volatile organic or dissolved gas from
an aqueous solution [63]. However, the main disadvantages of SGMD and VMD are that
they increase the processing costs due to the additional condenser and vacuum pump, and
that they make heat recovery difficult because the condensation takes place outside the
membrane module [61].

To solve the decrease in flux caused by the air gap, special materials, such as polyurethane,
polypropylene mesh, sand, or de-ionized water, can also be used to replace the stagnant
air [64,65]. This configuration is known as material gap membrane distillation (MGMD),
which can be understood as a modification of AGMD [66]. In reality, only permeate
water can be used in the gap of the module to avoid distillate contamination [65]. There-
fore, permeate gap membrane distillation (PGMD) is studied more than polyurethane,
polypropylene mesh, and sand gap MD. Simultaneously, the PGMD configuration directly
couples the heat recovery within the module better than SGMD and VMD [67].

OMD is a DCMD variant that combines DCMD and OD in one process [68]. The OMD
process, which was patented at the end of the last century, is most often used to remove
water from liquid foods, such as fruit and milk, and various nonfood aqueous solutions that
are not thermally resistant [68]. The main advantages of OMD are that it can concentrate
solutions at lower temperatures compared with other MD configurations and effectively
increase the transmembrane fluxes by introducing an activity gradient [69,70]. However,
OMD is strongly affected by the concentration polarization, particularly on the permeate
side [71]. A comparison of the different MD configurations is given in Table 2.

Table 2. Advantages and disadvantages analysis of conventional MD configurations.

Mode Scheme Advantages Disadvantages

DCMD
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Table 2. Cont.

Mode Scheme Advantages Disadvantages

SGMD
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3. Renewable Energy and Waste Heat Coupled with MD

MD is a phase-change desalination process that requires plenty of energy to achieve
separation [50]. The use of renewable energy and industrial waste heat in the MD process
not only reduces the consumption of conventional fossil fuels, such as oil and gas, but
also decreases carbon dioxide emissions and air pollution due to the combustion of fossil
fuels [72]. The main conventional renewable energies for desalination include solar and
geothermal. A comparison of the number of journal articles from Web of Science about
“membrane distillation driven by renewable energy” is given in Figure 2. It shows that
solar powered MD processes have been the most widely investigated and implemented,
representing 76% of the studies. The second most investigated renewable energy is geother-
mal, which accounts for 14% of the studies. Wind, nuclear, and tidal energy represent 5%,
4%, and 1% of the published articles, respectively.
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Besides the conventional renewable energy sources, industrial waste heat is a source
that is already available and has great utilization value. As will be discussed in Section 3.3,
waste heat can be acquired from industrial processes and has great potential to power
MD processes and lowers the operating cost of water production [73]. In the following
subsections, the author presents a detailed introduction to each renewable-driven MD
configuration.

3.1. Solar Energy-Driven MD
3.1.1. Solar Radiation-Assisted MD

The most abundant and focused renewable energy source is solar radiation, which
provides virtually unlimited energy [30,74]. Solar-driven MD desalination processes have
been extensively studied by many researchers and practitioners [36]. One of the reasons
for interest in solar energy driving MD is that MD has the ability to tolerate discontinuous,
fluctuating, and unpredictable operating conditions and to run with a small temperature
difference [37,75,76]. Solar radiation can be used to heat a feed solution directly or indirectly
via solar collectors, such as flat plate collectors (FPCs), evacuated tube collectors (ETCs),
PV panels, and compound parabolic collectors (CPCs), and can also be applied to generate
electricity via photovoltaics (PVs) to run auxiliary equipment such as circulation pumps
and valves for automatically operated systems [30,36,77].

Two different layouts can be adopted in solar-powered MD desalination systems:
single-loop and two-loop systems [78,79]. In a single-loop system (often referred to as a
compact system), the seawater is heated directly by solar collectors, and then enters into
the membrane module (Figure 3a) [79,80]. The advantages of such systems are that they are
suitable for small-capacity production and that the configuration is very simple, without
a heat exchanger or heat storage facility [76,81]. However, the materials used in the solar
collectors must be anti-corrosion and anti-scaling due to the seawater recirculating through
the single loop [36,79]. Compared to a compact system, a two-loop system (Figure 3b) is
more complex. This configuration includes two independent loops, a solar loop and a
desalination loop, connected by a heat exchanger [36,82,83]. The solar loop is operated with
tap water as a heat transfer fluid, while the desalination loop is operated with seawater [77].
Hence, it can achieve better control of corrosion and scaling problems [79]. A two-loop
system can also use a heat storage facility to store surplus energy if enough radiation
is available, which allows the extended operation of MD modules after sunset [36,79].
However, the maximum feed temperature of the seawater in a desalination loop is lower
than the highest temperature in a solar loop due to the energy loss of the heat exchanger [79].

Membranes 2024, 14, x FOR PEER REVIEW 7 of 23 
 

 

Besides the conventional renewable energy sources, industrial waste heat is a source 
that is already available and has great utilization value. As will be discussed in Section 
3.3, waste heat can be acquired from industrial processes and has great potential to power 
MD processes and lowers the operating cost of water production [73]. In the following 
subsections, the author presents a detailed introduction to each renewable-driven MD 
configuration. 

3.1. Solar Energy-Driven MD 
3.1.1. Solar Radiation-Assisted MD 

The most abundant and focused renewable energy source is solar radiation, which 
provides virtually unlimited energy [30,74]. Solar-driven MD desalination processes have 
been extensively studied by many researchers and practitioners [36]. One of the reasons 
for interest in solar energy driving MD is that MD has the ability to tolerate discontinuous, 
fluctuating, and unpredictable operating conditions and to run with a small temperature 
difference [37,75,76]. Solar radiation can be used to heat a feed solution directly or indi-
rectly via solar collectors, such as flat plate collectors (FPCs), evacuated tube collectors 
(ETCs), PV panels, and compound parabolic collectors (CPCs), and can also be applied to 
generate electricity via photovoltaics (PVs) to run auxiliary equipment such as circulation 
pumps and valves for automatically operated systems [30,36,77]. 

Two different layouts can be adopted in solar-powered MD desalination systems: 
single-loop and two-loop systems [78,79]. In a single-loop system (often referred to as a 
compact system), the seawater is heated directly by solar collectors, and then enters into 
the membrane module (Figure 3a) [79,80]. The advantages of such systems are that they 
are suitable for small-capacity production and that the configuration is very simple, with-
out a heat exchanger or heat storage facility [76,81]. However, the materials used in the 
solar collectors must be anti-corrosion and anti-scaling due to the seawater recirculating 
through the single loop [36,79]. Compared to a compact system, a two-loop system (Figure 
3b) is more complex. This configuration includes two independent loops, a solar loop and 
a desalination loop, connected by a heat exchanger [36,82,83]. The solar loop is operated 
with tap water as a heat transfer fluid, while the desalination loop is operated with sea-
water [77]. Hence, it can achieve better control of corrosion and scaling problems [79]. A 
two-loop system can also use a heat storage facility to store surplus energy if enough ra-
diation is available, which allows the extended operation of MD modules after sunset 
[36,79]. However, the maximum feed temperature of the seawater in a desalination loop 
is lower than the highest temperature in a solar loop due to the energy loss of the heat 
exchanger [79]. 

 
Figure 3. Scheme of solar-driven MD system: (a) single-loop system; (b) two-loop system.



Membranes 2024, 14, 25 8 of 23

Many experiments and simulations of solar-assisted MD systems for desalination have
been carried out by several researchers. Chang et al. [84] have analyzed the performance of
a solar membrane distillation desalination system using both experimental and simulation
approaches. The authors used a dynamic mathematical model, which included a control
algorithm and was verified using experimental results, to optimize the analysis of the sys-
tem and revealed the operation strategy for maximum water production. The performance
of the system was about 80% of the maximum water production for sunny day operation.
Zaragoza et al. [85] evaluated various configurations of solar-driven MD and came to the
conclusion that spiral-wound modules or multi-effect systems should be considered to im-
prove efficiency. Raluy et al. [86] presented a five-year operational period of a solar-assisted
single-loop MD system installed in Spain. They found that the water production ranged
between 5 and 120 L/d, and the conductivity of the distillate water varied between 20 and
200 µS/cm. Gil et al. [87] designed four direct control schemes and a reference governor in
a solar-powered MD facility. They reached the conclusion that settling times were reduced
by more than half and could obtain the operation temperature at the inlet of the distillation
module. Gil et al. [88] also proposed a two-layer hierarchical control system that has been
tested in a simulation and an experiment to optimize the solar-driven MD facility according
to distillate production and thermal energy. The authors concluded that the daily distillate
production could improve to 14–20 L and the thermal energy demand could be reduced to
0.41–1.21 kWh/m3. Chen et al. [89] proposed a pseudo steady-state method to assess the
total annual cost (TAC) of a discontinuous and fluctuating solar-assisted MD desalination
facility. They reached the conclusion that the optimal TAC was about USD 280,000 at
500 W/m2. Abdallah et al. [90] designed a completely autonomous solar-driven MD unit,
in which the feed solution was heated by solar collectors and the electric power of the
auxiliary equipment was generated by PV panels. Simulations of the unit operating showed
that distillate production varied from 35 L/h to 70 L/h. Additionally, Table 3 summarizes
the performances of some solar-assisted MD systems.

Table 3. The performances of some solar-assisted MD systems.

Authors Type of MD Module Type of Study Year Result

Elzahaby et al. [48] A tubular membrane for
DCMD setup Experiment and theory 2016

Maximum productivity: 40.587 kg/day
Daily efficiency: 60.06%

GOR: 0.624

Shim et al. [91] Solar-powered DCMD Experiment 2015
Heat energy consumption:

896 kW h/m3~1433 kW h/m3;
GOR: 0.44~0.70

Kim et al. [51] A solar-assisted hollow fiber
DCMD module Simulation 2013

Total distillate: 31,000 kg/day
Specific thermal energy
consumption: decreased

Chafidz et al. [76]
A solar-powered vacuum

multi-effect membrane
distillation system

Experiment 2016

Overall volume distillate: about 70 kg
Conductivity: about 4.7 µS/cm

Maximum production: 382.56 kg/day
Flux: 1.5 L/(m2 h)~2.6 L/(m2 h)

Kabeel et al. [92] Solar-driven DCMD Experiment 2017 GOR: 0.49
Maximum productivity: 33.55 kg/day

Duong et al. [93] A spiral-wound
DCMD module Simulation 2017 Distillate: 140 kg/day

Some efforts have also been made to evaluate the economy of solar-driven MD systems.
Saffarini et al. [81] found that a DCMD system with a heat recovery device was more cost-
efficient than an AGMD or VMD system. Banat and Jwaied [94] calculated the distillate
production cost of compact and large autonomous solar-driven MD systems. The costs were
USD 15 USD/m3 and USD 18 USD/m3, respectively, and could be significantly reduced by
prolonging the lifetimes of the membranes and units. Moore et al. [95] optimized an SGMD
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desalination system with solar thermal collectors and PV panels. They found that the cost
of water was about USD 85 USD/m3, with the membrane modules and thermal collectors
accounting for the majority of the cost. In addition, some simulations and theoretical
analyses of solar-powered multi-stage MD have been carried out. It was found that it
had better performance than a one-stage system in terms of water production, thermal
efficiency, and flux [32,58,96,97].

Although the cost of the distillate produced by a solar-driven MD system is relatively
expensive compared with other conventional desalination technologies (e.g., RO, MED,
and MSF), solar-powered MD systems remain applicable for potable water production
in remote and arid areas [34]. In addition, a solar-powered MD system can be energy
self-sufficient and requires little maintenance [53]. Solar-powered MD systems are more
commonly applied in small applications. Therefore, more studies should be conducted
to assess and evaluate the actual operation of large-scale solar-assisted MD units [36]. In
addition, more experiments related to solar-assisted multi-stage MD systems are needed to
enhance the performance of the systems.

3.1.2. Salt-Gradient Solar Pond-Powered MD

A salt-gradient solar pond (SGSP) is a stable artificial saltwater pond that is used to
absorb and store solar radiation [98,99]. An SGSP consists of three characteristic zones:
an upper convective zone (UCZ), a non-convective zone (NCZ), and a lower convective
zone (LCZ) [100]. The UCZ is at the top of the pond, including a relatively thin layer
of water with very low salinity, and the temperature of the water is close to the ambient
temperature [101,102]. The NCZ is under the UCZ, and the saline density and temperature
of the water in the NCZ increase gradually with depth. Its function is to suppress the con-
vection process in the pond and act as an insulator between the UCZ and the LCZ [101,102].
The last zone is the LCZ, which is at the bottom of the pond. The saturated brine in the
LCZ can absorb and store solar radiation to heat buildings or provide a hot feed for the MD
process [103,104]. SGSPs have been widely researched due to their low cost and ability to
store solar radiation for a long time [105]. Recently, several studies have been conducted to
analyze the performance of an SGSP-powered DCMD system. Suárez et al. [106] developed
a model to evaluate the performance of an SGSP-driven DCMD system. The authors found
that it was possible for distillate production to reach about 2.7 × 10−3 m3d−1 per m2 of
SGSP. Soon after, Suárez et al. [107] conducted the first experimental study of an SGSP-
powered DCMD system to produce fresh water. They reached the conclusion that the
average distillate flux of the coupled system could obtain 1.0 Lh−1 per m2 of membrane.
Nakoa et al. [108] carried out an experiment using an SGSP-assisted DCMD system for fresh
water production. They found that the fluxes would decrease due to the significant concen-
tration and temperature polarization induced by laminar flow. Suárez and Urtubia [109]
investigated the performance of an SGSP-powered DCMD system. The authors reached
the conclusion that the maximum fresh water flow rates were about 3.0 L d−1 per m2 of
solar pond.

Membrane distillation powered by a salt-gradient solar pond is an economical and
sustainable method for desalination to produce drinkable water. Further research into the
economics and practical applications of the systems is needed.

3.2. Geothermal Energy-Assisted MD

Compared to solar energy, geothermal energy has the advantage of continuous relia-
bility, availability, stability, and independence from the weather [110–112]. In the process
of producing drinkable water, geothermal water can directly or indirectly be used as a
feed solution to desalinate or for heating feed water from other sources with heat exchang-
ers, respectively [113,114]. However, it is not suitable for MSF due to the low grade of
geothermal heat or MED because of the corrosive chemical species brought by geothermal
water [30,115]. In a coupled geothermal and RO system, it is necessary to convert geother-
mal heat into electricity to power a RO plant, which causes huge energy losses [30,116]. MD
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can make full use of low-grade geothermal water and resists corrosion. Therefore, it can be
coupled effectively to geothermal water for desalination. However, it has not been widely
studied. Recently, Sarbatly and Chiam [117] presented an energy evaluation of geothermal
water acting as a feed solution for VMD to produce drinkable water. The authors reached
the conclusion that the cost of water production was USD 0.5 USD/m3 for a 20,000 m3/d
VMD desalination plant operated with geothermal energy, and the cost increased by 144%
without using geothermal energy.

Geothermal energy-powered MD desalination is promising. Therefore, more studies
should be conducted to address the problems of long-term operation and the corrosion of
equipment [115,118].

3.3. Waste Heat-Powered MD

Waste heat is everywhere in life, especially in industrial production. MD desalination
research has been widely conducted to produce high-quality water using waste heat from
industrial production. Four different types of waste heat sources were selected for MD
studies, including engine waste heat generated by marine vessels, natural gas compressor
stations, a recirculating cooling water system, and a gas-fired power station [73,119–121].
In their study, Koo et al. [119] optimized the performance of a VMD process driven by
waste heat generated from marine vessels. They analyzed the parameters of the operating
conditions and found that an increase in the temperature of the feed water would result in
an increase in water flux. Lokare et al. [73] evaluated the potential of a DCMD desalination
system powered by waste heat from natural gas compressor stations. They developed a
mathematical model to predict the flux performance. They came to the conclusion that the
flux and heat recovery efficiency increased with the feed temperature. Waste heat from
a recirculating cooling water process was utilized for a DCMD system to produce pure
water, which reduced the cost of pure water production and maintenance of a pipeline [120].
Dow et al. [121] explored the viability of DCMD driven by waste heat from a gas-fired
power station. The authors found that the system had no significant flux change due to a
pretreatment or the unique fouling mechanisms in MD.

Studies show that cheap waste heat can be used by MD systems to produce high-
quality distillates. It is financially beneficial to use waste heat to power MD desalination
systems due to its competitiveness compared to RO and MED [122]. Therefore, more
studies related to waste heat-driven MD systems should be conducted.

4. Disposal of Concentrated Brine with MD

It is a big challenge to dispose of the highly concentrated effluent by-products of
desalination processes [123]. Discharging the effluent into the ocean in huge amounts
would disturb the ecosystem and have negative impacts on the environment [124,125].
Injecting the effluent into the ground would cost a lot and would also pollute fresh water
aquifers [126]. Therefore, new ways to dispose of the effluent should be developed for
sustainable and cost-effective desalination [127]. MD is a promising way to dispose of
concentrated brine due to its low sensitivity to salt concentrations [128]. It can increase the
recovery ratio of water whilst minimizing the volume of concentrated brine [129,130]. As
shown in Figure 4, higher-salinity effluent can be used to generate electricity by coupling
it with the pressure-retarded osmosis (PRO) process, the reverse electrodialysis (RED)
process, the capacitive mixing (CAPMIX) process, or further treatment to achieve zero
liquid discharge (ZLD) [131,132]. It can also be combined with crystallization to recover
solid crystals such as sodium chloride and valuable minerals [133,134].
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4.1. Power Generation
4.1.1. PRO-MD Hybrid

Compared to other desalination processes (such as RO and MED), MD can dispose of
a wide range of highly concentrated feed solutions [135,136]. Therefore, MD can act as a
complementary process to further concentrate brines from a RO system or a MED system
to enhance the recovery of drinkable water and reduce the volume of brines [137–139].
Simultaneously, higher-salinity effluent can be supplied to a pressure-retarded osmosis
(PRO) system for osmotic power generation [140]. The concept of a RO-MD-PRO system is
shown in Figure 5. In the RO-MD-PRO process, MD further concentrates the distillate of RO
to generate concentrated and pure water, and PRO converts osmotic energy into electricity
using a hydro-turbine, which can save energy [141–143]. Kim et al. [144] analyzed the
feasibility of the RO-MD-PRO hybrid process using numerical approaches. The authors
found that the RO-MD-PRO hybrid process reduced the special energy consumption
and minimized marine environmental impacts compared to stand-alone RO process. The
maximum SEC was ~1.6 kWh/m3 at a brine division ratio of 1.0, which was a 17% reduction
compared to the stand-alone RO process. Choi et al. [145] also evaluated the performance
and economics of the RO-MD-PRO hybrid system using a theoretical analysis. They
obtained results similar to Kim et al. Chae et al. [146] proposed a new dimensionless
performance index to compare the energy efficiency between RO-PRO and RO-MD-PRO
systems after running several simulations. Using low-grade energy, the simulation results
showed that the RO-MD-PRO system had a higher energy efficiency than the RO-PRO
system. The simulation results of this research may provide a new roadmap for the study of
PRO-hybridized processes. Lee et al. [147] carried out a numerical analysis of a combined
multi-stage VMD (MVMD) and PRO system and theoretically studied the distillate and
power production of the MVMD-PRO system with different inlet feed flow (from 3 kg/min
to 12 kg/min) rates and recycling flow ratios (5–90%). In their research, a maximum power
density of 9.7 W/m2 was achieved in the case of feed and draw solutions at 0.5 kg/min and
a constant hydraulic pressure difference. Several studies related to the performance of the
MD-PRO system are summarized in Table 4. From Table 4, we can see that the MD-PRO
system can produce both fresh water and electricity. Simultaneously, the energy efficiency
of the system is also improved.

Unfortunately, research on the proposed hybrid system has focused on numerical
approaches and theoretical analysis, and few studies have experimentally analyzed the
hybrid system. Consequently, more experiments should be conducted on the hybrid system
to improve its commercial practicability.
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Table 4. Summary the performance of some hybrid MD-PRO systems.

Draw Solution Configuration Nature of Work Performance Operating Conditions Ref.

NaCl PRO-MD Simulation
1. Production of water

and electricity.
2. Energy efficiency: 9.8%.

Hot and cold working
temperature: 60 ◦C

and 20 ◦C.
[142]

NaCl PRO-MD Simulation

1. Production of water
and electricity.

2. Optimal thickness: ~90 µm.
3. Pore radius: ~0.09 µm.
4. Saving energy: 0.1738 kWh/m3.
5. Loss of 3% permeate water flux.

Replacing the DCMD
with the PRO-MD.

[143]

NaCl PRO-MD Experiment

1. Production of water and
osmotic power.

2. Ultrahigh power densities:
31 W/m2 and 9.3 W/m2.

Feed: deionized water
and real wastewater

[140]

NaCl MVDM-PRO Simulation

1. Production of water and
power generation.

2. Maximum power density:
9.7 W/m2.

Feed: river water
Flow rate: 0.5 kg/min [147]

NaCl RO-MD-PRO Simulation
1. Production of water and

energy generation.
2. Outperforming stand-alone RO.

Specific energy
consumption and the

environmental
footprint: reduced.

[144]

NaCl RO-MD-PRO Simulation 1. RO-MD-PRO has a higher
energy efficiency than RO-PRO.

Using an economic
heat source. [146]

4.1.2. MD-RED Hybrid

In the combined membrane distillation and reverse electrodialysis (MD-RED) system,
RED converts the Gibbs free energy by mixing the concentrate produced by MD and a
diluent, which can convert low-grade heat into electricity [148–150]. Several studies related
to the hybrid MD-RED system have been conducted by Tufa et al. and Long et al. [131,151].
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They reported that a larger NaCl concentration induced greater electrical efficiency.
Mercer et al. [150] tested the integration of MD with RED to provide pure water and electri-
cal power and provided the first successful demonstration of a hybrid MD-RED system for
energy recovery from waste heat, which was an opportunity for off-grid decentralized sani-
tation. In another study, Micari et al. [148] provided a detailed description of the behavior of
a real RED-MD heat engine and evaluated the performance of the combined system under
different operating conditions (such as concentration, velocity, and membrane thickness).
Although the integrated MD-RED system outperforms the MD system, the specific costs of
the MD and RED equipment are still high, which restricts the development and application
of the hybrid system. Therefore, an optimization of the membrane should be performed to
enhance the performance of the hybrid process. In addition, a thermo-economic analysis
should be conducted for its commercial implementation.

4.2. MD-ZLD Hybrid

In recent years, zero-liquid discharge (ZLD) has attracted renewed interest worldwide
because it has the advantages of decreasing environmental pollution and improving water
sustainability [136,152]. In order to achieve ZLD, thermal-based technologies, such as
brine concentrators and solar ponds, and membrane-based ZLD technologies, such as ED,
MD, and FO, can be used [136,152]. Tong et al. [152] highlighted the evolution of ZLD
from thermal-based to membrane-based processes by thoroughly analyzing the pros and
cons of these technologies. Among these technologies, more and more attention has been
paid to MD [153]. Schwantes et al. [153] presented a techno-economic comparison of MD
and mechanical vapor compression (MVC) in the same ZLD application. They came to
the conclusion that MD could be about 40% cheaper than MVC when the distillate was
100 m3/day and up to 75% cheaper under the condition of a free waste heat-assisted MD
system. Tufa et al. [154] proposed a novel approach integrating DCMD with RED systems
to dispose of SWRO brines. The coupled systems could not only produce distillate water
via an MD process and generate electricity via a RED process but also achieved near-zero-
liquid discharge. Nakoa et al. [155] discussed the combination of a DCMD system with a
SGSP to achieve ZLD desalination. The authors used the hot concentrated water in the
NCZ as a feed solution and injected the discharged saline water into the LCZ of the SGSP.
The integrated systems may lead to ZLD desalination, while the treatment capacity of the
concentrated solution is limited.

Regarding the further development of using MD to achieve ZLD, more research on
scaled-up MD plants should be conducted, and the membrane lifetime should be extended.
ZLD will become more and more attractive and promising.

4.3. MD Crystallization

Membrane distillation crystallization (MDC) is an integrated process of MD and
crystallization in which pure water is produced via MD and the concentrated brine from
the MD system is sent to a crystallizer to recover a valuable crystal product [39,156,157]. A
schematic of an MDC system is shown in Figure 6. Edwie and Chung [158] analyzed an
MDC system used to treat saturated brine solutions to produce pure water and salt crystals.
They came to the conclusion that as the feed temperature increased, the yields of NaCl
crystals and pure water would increase, and so would the scaling and membrane wetting.
The membrane flux increased first then reduced sharply when the feed temperature was
over 60 ◦C or 70 ◦C due to the occurrences of membrane scaling and wetting facilitated by
salt oversaturation at the boundary layer. Ji et al. [159] conducted an experimental study on
the treatment of artificial RO concentrates and natural RO brines using MDC. The authors
found that crystallization kinetics were greatly affected by organics in the natural RO
retentate. Ali et al. [160] carried out experimental and theoretical research on the treatment
of produced water using an integrated MF plus DCMD/membrane crystallization system.
By comparing the performances of the integrated processes and MSF in terms of process
intensification metrics, the authors reached the conclusion that the coupled system had
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a better performance than the MSF system according to the productivity/size ratio and
productivity/weight ratio metrics.
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Further applications of MDC have been carried out in the treatment of industrial
wastewater to recover lithium chloride, boric acid, sodium sulfate, and ethylene
glycol [161–164]. MDC also serves as a potential method to realize ZLD. Guo et al. [157]
and Chen et al. [165] have explored the use of MDC to achieve ZLD.

However, the potential fouling, scaling, and wetting of the membranes caused by
organic materials and inorganic scales are serious problems in the treatment of concentrated
brine and will cause reductions in permeate quality, permeate flux, module efficiency, and
the lifetimes of the membranes [166–170]. Thus, further studies related to membrane
fouling control and scaling reduction are needed before the commercialization of MD
systems for the disposal of concentrated brine [166,171,172]. Simultaneously, a long-term
stable process of concentrated brine treatment using MD is also needed.

5. Other Hybrid MD Systems

In general, coupled MD systems have been widely studied and applied for their ability
to tackle brine and use low-grade energy. New types of MD hybrids with mechanical
vapor compression (MVC), adsorption desalination (AD), FO, or bioreactors have been
researched [173–176]. Among the new hybrid MD systems for solution treatment, the
integration of MD with FO or a bioreactor is most common.

5.1. Integration of MD with FO

As a new membrane process, FO has attracted a lot of attention due to its low-fouling
characteristics [177,178]. Its driving force is the osmotic pressure difference between the feed
solution and the draw solution, which plays an important role in the FO process [179,180].
Some draw solutions that have been applied include NaCl, MgCl2, glucose, high charge
of phosphate, EDTA-2Na, and so on [181–183]. Wang et al. [173] and Liu et al. [184] have
reported that a FO-MD hybrid system could be stabilized at different NaCl concentrations.
Nguyen et al. [180] demonstrated that a MgCl2 draw solution with small concentrations
of Al2(SO4)3 performs better in water flux compared with pure MgCl2 because of its
high osmotic pressure and lower reverse salt flux. However, the FO process must be
coupled with other techniques to re-concentrate the draw solution and produce fresh water
because it is a dilution process [178,185]. MD is an excellent process to regenerate a FO
draw solution compared with conventional pressure-driven membrane processes such as
MF, UF, NF, and RO [183,184,186]. As shown in Figure 7, the FO-MD hybrid system is
a closed-loop system in which the FO process is used to dewater the feed solution and
provide a pretreatment stage for the subsequent MD process, which solves the problem
of MD membrane fouling and improves energy efficiency and water recovery, whereas
the MD process is employed to the recover the diluted draw solution and produce pure
water [178,186–188].
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Recently, a FO-MD hybrid system has received wide attention for treating high-
concentration solutions. Zhou et al. [189] optimized the operating conditions (such as the
flow rates of the feed solution and draw solution and the concentration of the draw
solution) of the FO process and the temperature of the inlet solution in the MD process.
The authors found that the combined FO-MD system that had been optimized could
be applied to efficiently treat high-salinity hazardous, and the coupled FO-MD system
was more effective than individual FO or MD systems in the rejection of contaminants.
Husnain et al. [178] designed an original three-channel FO-MD module for wastewater
reuse and Lu et al. [190] applied the three-channel FO-MD module integrated with UF
to treat oily water. The three-channel FO-MD module has the advantages of an inherent
flux balancing mechanism and a compact structure. However, the heat conduction loss of
the module increases. Therefore, further research to improve the energy efficiency of the
coupled FO-MD system is needed. In addition, the antifouling ability of the membrane also
needs to improve due to the accumulation of contaminants in the draw solution [190,191].

5.2. Integration MD with Bioreactor

MDBR is a hybrid system that combines a bioreactor and MD, and can be used to
effectively remove trace organic contaminants (TrOCs), such as carbamazepine, oxyben-
zone, and steroid hormones, and produce volatile materials, such as distillate water and
ethanol [174,192–198]. Wijekoon et al. [197] evaluated the removal of TrOCs by an MDBR
system. The authors found that the MDBR system could effectively remove more than
95% of all TrOCs and was not affected by the performance of the bioreactor. However, the
removal of total nitrogen and recalcitrant TrOCs was reduced due to the salinity build-up
that occurred during MDBR operation. Song et al. [198] explored producing pure water
and biogas using a coupled anaerobic membrane bioreactor–membrane distillation system.
The authors concluded that the biogas production varied between 0.3 and 0.5 L/g COD
added (about 65% methane) and that the conductivity of the distillate water was low.
Nguyen et al. [196] confirmed that a hybrid system of attached growth biofilm and MDBR
could reduce membrane fouling, remove nutrients, and produce drinkable water. However,
the flux of the coupled system is not high. Therefore, further studies should research the
optimization of overall system performance such as reactor design and the hydrodynamics
of the system [41,199,200].

6. Conclusions and Future Outlook

This review first gives a brief overview of the fundamentals of MD and compares
the advantages and disadvantages of different MD configurations. Then, it covers how
MD is driven by waste heat and renewable energy sources and how MD is applied to
treat concentrated solutions. Lastly, it describes the integration of MD with FO and the
bioreactor process. The analysis of current MD research reveals that membrane distillation
is an attractive desalination process due to its good capability to be integrated with other
industrial processes such as solar energy, RO, MED, crystallization, FO, and bioreactors.
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Despite the great potential of membrane distillation, its application and development
have been hampered by the wetting and fouling of the membrane, low flux, and high
energy consumption. Therefore, further studies related to membrane fouling control and
scaling reduction are needed before the commercialization of MD systems for the disposal
of concentrated brine. Simultaneously, studies on the modification of the membrane, novel
membrane material, and the optimization of the membrane structure are needed to improve
the anti-wetting properties of the membrane and to achieve high flux and a long-term
stable process of concentrated brine treatment. An optimization of the overall system
performance, such as the reactor design, the membrane module, and the hydrodynamics of
the system, would be useful to increase energy efficiency and permeate flux. A detailed
thermo-economic analysis would help its commercial implementation. Therefore, a heating
technique, such as photothermal heating, electrothermal heating, or induction heating,
coupled with MD is attractive because it directly heats the solution near the membrane
surface, improving energy efficiency. In addition, further research on the coupling of
membrane distillation with other systems is needed to expand its application.
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