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Abstract: In this study, all-cellulose nanocomposite (ACNC) was successfully prepared through
a green and sustainable approach by using corn stalk as raw material, water as regeneration sol-
vent, and recyclable two-component ionic liquid/DMSO as the solvent to dissolve cellulose. The
morphology and structural properties of ACNC were determined by scanning electron microscopy,
transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction anal-
ysis, indicating homogeneity and good crystallinity. In addition, a comprehensive characterization
of ACNC showed that CNF not only improved the thermal stability and mechanical characteristics
of ACNC, but also significantly improved the oxygen barrier performance. The ACNC prepared in
this work has a good appearance, smooth surface, and good optical transparency, which provides a
potential application prospect for converting cellulose wastes such as corn straws into biodegradable
packaging materials and electronic device encapsulation materials.

Keywords: corn straw; regenerated cellulose membrane; all-cellulose nanocomposite; cellulose
nanofibers

1. Introduction

Plastic film packaging materials, derived from petrochemical synthetic polymers such
as polyethylene, are widely used because of their excellent properties, ease of processing,
and low cost. At the same time, most of them are non-biodegradable and unsustainable,
causing high consumption of petrol sources and having a huge impact on the environment.
It is urgent to use natural renewable resources instead of petroleum-based plastics to
prepare biodegradable packaging materials.

Cellulose is the most abundant resource in nature, and its films have biodegradability,
excellent mechanical properties and sustainability, etc., and are used as potential materials
for packaging and other applications [1]. However, cellulose is highly polar and hydrophilic,
and interacts weakly with any non-polar or hydrophobic materials resulting in suboptimal
properties of the final composite [2]. In the last decade, all-cellulose composite (ACC), as a
kind of bio-composite made of only cellulose has emerged, which is expected to overcome
the key problem of fiber-matrix adhesion in bio-composites by using chemically similar or
identical cellulose materials as matrix and reinforcement materials, and is a potential green
bio-composite packaging material [3].

There are two preparation methods for ACC. The first is a one-step method proposed
by Gindl et al. [4], which achieves partial cellulose dissolution by controlling the dissolution
conditions, and the dissolved part regenerates into the cellulose matrix in situ. The insoluble
part remains as ACC reinforcement. However, the material properties depend largely on
the degree of cellulose dissolution, which makes it difficult to achieve stable industrial
production. The second preparation method includes two steps, in which insoluble cellulose
is added to the fully dissolved part of the cellulose. In the process of solvent replacement,
the dissolved cellulose is regenerated into a continuous matrix, while the undissolved
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cellulose acts as reinforcement in the composite material. This method was originally
proposed by Nishino et al. [5]. Cellulose as a reinforcement phase includes regenerated
cellulose fiber, cellulose microfilament, and nanocellulose. Among them, the ACC prepared
by nanocellulose has a smooth surface and excellent optical transmittance due to its unique
nano size effect. Therefore, it is of great significance to extract cellulose nanofiber (CNF)
from cellulose material as a filler to prepare ACNC.

In addition to the inherent properties of reinforcement materials, many different
combinations of material sources, substrates, and solvent systems also provide ACNC
with a wide range of properties, and huge variations in formulations and processes also
prove to exist [6]. Mature industrial applications depend on stable and limited yields
of wood and cotton, and packaging materials are in high demand worldwide, so the
development and utilization of cellulose from new sources is a particularly meaningful
and important strategy [7]. Extensive research has been carried out on various sources of
cellulose, mainly from natural wastes such as straw, ramie, sisal, durian, etc. Corn straw,
as idle and huge reserves of resources, is one of the most intensively studied materials
in the cellulose regeneration process, but its research in ACNC is limited. At the same
time, the adaptability of solvents to different cellulose is different. For example, many
solvents are only suitable for cellulose sources with a low average degree of polymerization
(DP) and crystallinity [8]. Furthermore, the most commonly used solvent systems, such
as LiCl/Dimethylacetamide (DMAc), NaOH/urea, and ionic liquid (IL), all have their
own disadvantages. The disadvantage of LiCl/DMAc is that cellulose must be “activated”
before it can be dissolved in the solvent, which is expensive and time-consuming [6].
NaOH/urea usually requires low temperatures typically below 4 ◦C [9], while most ILs
require relatively high temperatures [10,11]. In addition, some solvent systems are also
highly toxic, corrosive, and volatile, leading to a higher degree of health and safety-related
issues [12]. It is of great significance to provide a green, stable, and controllable production
method using a proper solvent system with strong adaptability to the properties of raw
materials to prepare ACNC from agricultural waste.

In the preparation process of most ACNC, the actual content of ACNC is often difficult
to determine because the solvent can dissolve both the reinforcing agent and the matrix,
which greatly limits the stable industrial production potential of ACNC. In this study,
corn straw with high DP was used as the raw material, and a two-component ionic liq-
uid/dimethyl sulfoxide (DMSO) solvent system was used to dissolve the cellulose. We have
achieved the quantitative addition of CNF to obtain ACNC by using the two-component
IL/organic solvent system, which is a rarely explored process in terms of ACNC prepa-
ration [13]. It ensures that CNF, as the reinforcing agent, will not be eroded and fully
dissolved, so as to control the actual content of CNF to further achieve excellent and desired
performances. Meanwhile, both the IL and organic solvent DMSO are not involved in any
of the reactions. Thus, they can be recycled and reused in practical industrial applications,
which is both sustainable and economical. Finally, a quantitative and controllable method
was provided for the preparation of ACNC with stable performance. The morphology and
functional properties of the all-cellulose composites were systematically studied.

2. Materials and Methods
2.1. Materials

Corn straw pulp (CP) with 84% cellulose and 2.34% lignin content was purchased from
Jilin Chemical Fiber (Jilin, China). The DP of corn pulp was determined to be 1700~1750
based on the solution of copper ethylenediamine hydroxide (CUEN) with Ubbelohde
viscometer (Shanghai Qihang Glassware Factory, Shanghai, China), as described in [14].
All chemicals including DMSO, NaOH, ethanol, and ethylenediamine were of analytical
grade and were used for preparation without further purification (Beijing Chemical Works,
Beijing, China).
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2.2. Preparation of CNF Suspensions in DMSO

The whole preparation process is represented schematically in Figure 1. The corn
straw pulp board was added into 15.00 wt% sulfuric acid at 85 ◦C and stirred mechanically
at 500 rpm for 4 h with a solid-liquid ratio of 1:40 (wt/wt). The suspension was washed
with deionized water, centrifuged for concentration, and then dialyzed with water until it
was neutral. The obtained water suspension was then centrifuged in DMSO dispersion for
solvent exchange. The suspension was homogenized with ultra-Turrax (IKA) at 12,000 RPM
for 15 min. Finally, the mixture was treated with high pressure viscosifier (NS1001S2K,
GEA NiroSoavi Co., Cairate, Varese Province, Lombardy, Italy) for 10 passages at 790 MPa
to obtain CNF suspension in DMSO. Different concentrations of CNF suspensions (0.15,
0.30, 0.60, and 0.90 wt%) were obtained by diluting this suspension.
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2.3. Preparation of ACNC Membrane

The solvent system consisting of [Bu4N]+Ac−/DMSO was employed based on prior
literature, where [Bu4N]+Ac− refers to as tetrabutylammonium acetate [15]. As schemat-
ically illustrated in Figure 1, the two-component solvent was put into a 100-mL bottle,
and 3.5 g of CP was added. The dissolution process was monitored with a polarizing
microscope. At the temperature of 60 ◦C, most of the CP dissolved in 6 min, and the corn
straw cellulose containing a small amount of lignin dissolved quickly in the two-component
[Bu4N]+Ac−/DMSO solvent without pretreatment or activation, which was consistent
with reference [16]. As shown in Figure S1, 0–60 s, the amorphous zone of cellulose was
destroyed as the ionic liquid infiltrated the crystallization zone. At 360 s, dissolution was
almost completed, and there were no crystal particles in the field of vision. Thus, a uniform
cellulose solution was obtained by stirring at 300 rpm for 10 h at 60 ◦C in an oil bath
(Table S1).

The CNF dispersion and the cellulose solution were evenly mixed at 0–4 ◦C. Then, the
liquid mixture was poured onto a clean glass plate, and the film thickness was adjusted
to 300 µm with an automatic blade coater (Goldfull, Amoy, China). After blade coating,
the film was left to stand for 30 s, and then was soaked in deionized water to remove
the solvent system and obtain materials based on regenerated cellulose. The cellulose
film was dried at 75 ◦C for 30 min using a drum dryer (No.2575-I, KRK, Kuki, Japan).
The prepared regenerated cellulose membrane matrix was labeled as RC-C0, and ACNC
samples with different CNF contents were labeled as RC-C2, RC-C4, RC-C8, and RC-C12
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(CNF contents were 2.00 wt%, 4.00 wt%, 8.00 wt% and 12.00 wt% of cellulose in cellulose
solution, respectively).

2.4. Characterization of CNF
2.4.1. Determination of Mass Fraction

The constant dry weight of a clean weighing flask was recorded as m0. The CNF/DMSO
suspension was weighed in the weighing flask, and the mass was recorded as m1. The flask
and contents were then placed in a vacuum drying oven (120 ◦C, −0.1 MPa) for 6 h. After
cooling to room temperature, the dried flask was weighed to constant weight. The process
was repeated until the difference between the last two masses was less than 0.3 mg. The
final dry mass was recorded as m2, and the mass fraction (ws) was calculated according to

ws =
m2 − m0

m1 − m0
× 100% (1)

2.4.2. Transmission Electron Microscopy (TEM)

The morphology and size of CNF were determined by TEM (JEM-1010; JEOL, Tokyo,
Japan) at 80 kV. CNF dispersion droplets were placed on a copper network containing
carbon film coating to remove static electricity, and then negatively stained with phospho-
tungstic acid for analysis after drying.

2.5. Characterization of ACNC Membranes
2.5.1. Fourier Transform Infrared (FTIR) Spectroscopy

The chemical composition of the ACNC films was investigated using FTIR spec-
troscopy (Vertex 70v; Bruker, Karlsruhe, Germany) with the ATR technique. The sample
was vacuum-dried for 24 h before testing. First, the background air spectrum was collected
with the ATR accessory before each sample measurement. Then, sample measurements
were obtained by compressing the membrane sample onto the ATR crystal. All the spectral
measurements were performed within the mid-infrared range of 4000–400 cm−1. Finally,
the spectra were obtained with a resolution of 4 cm−1, accumulating 32 scans per spectrum.

2.5.2. X-ray Diffraction (XRD) Spectroscopy

The aggregation structure of the ACNC films was analyzed by XRD spectroscopy
using an XRD-6000 diffractometer (Shimadzu, Kyoto, Japan). Before measurement, the
sample was vacuum dried for 24 h. Spectra were acquired using CuK alpha radiation
(λ = 0.15418 nm) at 40 kV and 40 mA at a scan rate of 2◦/min, with 2θ = 5◦ to 50◦. Crys-
tallinity was calculated using MDI Jade 5.0 software (Materials Data, Inc., Livermore,
CA, USA).

2.5.3. Scanning Electron Microscopy (SEM)

The ACNC film microstructure was characterized by SEM (S-3400N; Hitachi, Tokyo,
Japan). The cellulose membranes were dried at room temperature and the mounted
sample was sputter-coated with gold before observation using an SBC-12 sputter coater
(Cressington, Watford, UK).

2.5.4. Thermogravimetric Analysis (TGA)

The thermal properties of the membranes were characterized by TGA (Jupiter STA
449 F3; NETZSCH, Bavaria, Germany). Prior to analysis, the samples were dried for 3 h at
105 ◦C in a drying oven. Measurements were recorded under a nitrogen atmosphere with a
heating rate of 10 ◦C/min from 50 ◦C to 450 ◦C.

2.5.5. Mechanical Properties

The membrane sample was cut into portions measuring 10 × 60 mm. The sample was
air-dried at room temperature for 24 h and the thickness of each sample was measured
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with a micrometer. The tensile strength and elongation at breakage of the dry samples were
measured by fixing the two ends of the samples on the electronic tensile apparatus. The
pulling speed of the moving head was 5 mm/min, and 15 portions from each sample were
tested and the data averaged.

2.5.6. Oxygen Permeability Measurements

Oxygen transmission rates of RC-C0 and the ACNC films were determined at 23 ◦C
and 50% and 80% RH (Relative Humidity) using a Labthink C203H (Labthink., Jinan, Shan-
dong Province, China) under standard conditions (ASTM 3985). Each measurement was
continued until the O2 transmission rate reached a stable value. The oxygen permeability
was determined from the oxygen transmission rate and the film thickness. Each sample
was divided into three 10 × 10 cm2 subsamples and each subsample was measured. The
results were obtained by calculating their average values. The relative standard deviations
for each film were within 5%.

2.5.7. Transparency Measurements

The optical transmittance of the film was measured by Shimadzu UV-1800 (Shimadzu,
Kyoto, Japan) spectrophotometer in the range of 380–780 nm. The sample of each regener-
ated cellulose film was placed directly on the sample holder, without using a colorimeter,
and the data were normalized according to the thickness.

3. Results and Discussion
3.1. Morphology Analysis of ACNC

The micro morphologies of corn straw CNF isolated by acid hydrolysis processes
and decomposed under strong mechanical action were observed in Figure 2a,b. The fibers
showed slight aggregation, probably because of hydrogen bonding. As seen in Figure 2a,b,
the CNF showed a rod-like or filamentary structure with a width of about 30–60 nm and a
length of 350–1500 nm. These results were similar to those reported in previous studies,
which suggested that the CNFs were successfully prepared [17,18].
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It is well known that good dispersion of the reinforcement phase in the matrix is the
key factor to improve the properties of composites. In order to explore the dispersion of
CNF in the matrix, SEM analysis was carried out on the cross section (left) and top view
(right) of ACNC with different CNF contents (Figure 2e).
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From the top-view SEM images, the RC-C0 in the absence of CNFs showed surface
relief, while RC-C4 and RC-C8 showed small aggregated particles, and all three samples
displayed a moderate surface roughness. However, it is not possible to observe the indi-
vidual fibers in the films due to their small size. From the cross-section SEM images, the
RC-C0 and RC-C4 were more homogeneous than RC-C8. The distribution of CNFs in the
composite films containing 12% CNFs was not as ideal as their distribution in films contain-
ing 8% or fewer CNFs. This may be due to the selective agglomeration of CNFs which led
to the inhomogeneity of the CNFs, as suggested by similar results in prior literature [19].

For pure regenerated cellulose membrane RC-C0, there were many nano-scale defects,
because it is difficult to control the uniformity of solvent diffusion through rapid solvent
exchange when cellulose solution is in contact with a coagulation bath [20]. The defects,
resulting in stress concentration of the film and insufficient cellulose adhesion, may have
a bad influence on the mechanical performance [21]. According to the SEM images in
Figure 2e, in the samples with the moderate addition of CNF (RC-C4 and RC-C8), the
reinforcing agent CNF displayed a uniform and orderly distribution in the cellulose matrix.
The morphology indicated excellent compatibility between the reinforcing agent and the
matrix, which was also beneficial to a good mechanical performance. The stress on the
substrate can easily be transferred to the reinforcing material, thus preventing the growth
of cracks [20]. However, as observed at the RC-C12 interface, locally high bulk solids were
formed under a higher cellulose phase load, while surrounding voids were observed due
to the lack of a matrix for the cementitious phase [13]. Compared with ACNC prepared by
similar methods and different solvent systems in other studies on corn stalk cellulose, the
cross section of CNF is still compact and has almost no defects when the CNF content is
8 wt%, which is of great significance for further improving mechanical properties [22].

3.2. Crystallinity, Molecular Structure, and Thermal Stability Analysis

The X-ray diffraction spectra of CP, CNF, RC-C0, and RC-C8 are shown in Figure 3a.
Left peaks at 14.9◦, 16.6◦, 22.6◦, and 34.5◦, which were present in the typical cellulose
I crystal diffraction pattern, correspond to the crystal planes of (110), (110), (200), and
(004) and are visible in the diffraction patterns of straw fiber pulp and CNF [23,24]. The
results indicate that after sulfuric acid hydrolysis and mechanical homogenization, the
crystal morphology of the cellulose did not change, and CNF still presented the crystal
morphology of cellulose I. Pure regenerated cellulose membrane (RC-C0) showed peaks at
12.5◦, 20.6◦, and 22.3◦ that corresponded to the (110), (110), and (200) crystal planes [25,26],
and suggested that regenerated cellulose showed some conversion to the type II crystal
structure. The peak shape of the prepared ACNC (RC-C8) was more similar to that of
the regenerated cellulose (RC-C0), which proved that cellulose II had an advantage in
ACNC. Comparison between RC-C0 and RC-C8 showed that RC-C8 had more obvious
shoulder peaks at around 12.5◦, 14.9◦, and 16.6◦. At the same time, the peak of RC-C8
at 20.6◦ was sharper than that of RC-C0, because the diffraction peak of 22.6◦ in CNF
was superposed with it [15]. This indicated that cellulose I and cellulose II coexisted
in ACNC, suggesting that CNF was successfully introduced into the cellulose matrix.
The crystal types of cellulose include type I, II, III, and IV, with type I having the best
mechanical properties. Therefore, it is expected that the composites will have better tensile
properties [27]. According to MDI Jade5.0, the crystallinities of CP, CNF, RC-C0, and RC-C8
were 61%, 79%, 37%, and 51%, respectively. It is concluded that the presence of CNF leads
to improved crystallinity of the regenerated cellulose membranes.
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Figure 3b illustrates the FTIR spectra of samples of CP, CNF, pure regenerated cellulose
membrane, and ACNC membranes used to characterize isomers and mixed crystals. The
spectra all show similar contours which indicated that no additional chemical reactions
occurred, and no derivatives were generated during the preparation of the regenerated
cellulose membrane. The peaks at 1234 cm−1 in all of the spectra corresponded to the
syringic ring and C–O stretching of lignin and xylan [28], indicating that a small part of
lignin existed in the raw material and the samples. The strong absorption peak at 1050 cm−1

belongs to the frame vibration of the cellulose (C–O–C) glycosidic bond [26], while the
absorption band at around 1420–1430 cm−1 is related to the CH2 scissoring motion at C6
and linked with the portion of crystalline structure in cellulose. The band that occurred
at 1420 cm−1 is characteristic of cellulose II and amorphous cellulose. This band may be
shifted to 1430 cm−1 when the content of cellulose I was higher [29], just as the CNF and CP
showed. With the increased content of CNF in ACNC, the absorption band at 1430 cm−1

was stronger, which pointed to the ACNC membrane as a typical mixed crystalline cellulose
material in which the crystal structure of CNF was well preserved. The wide peaks at
around 3400 cm−1 can be attributed to stretching vibration of –OH [30].

TGA measurements were performed to investigate the thermal stability of CNF, RC-C0,
and ACNC. TGA and DTG curves are shown in Figure 3c. At about 100 ◦C, free water and
bound water in the material were lost [17]. It is found that the main stage of mass loss
of ACNC appeared in the range of 250 ◦C to 380 ◦C. At this stage, all samples began to
decompose with volatilization similar to the cellulose-based materials described in [31].
Determined by the DTG curves, the maximum decomposition temperature (Tdmax) of
RC-C0, RC-C2, RC-C8, and CNF were 339.0, 342.1, 343.6, and 372.6 ◦C, respectively, and
the Tdmax of CNF was significantly higher than that of RC-CO. This can be attributed to the
differences in the crystallinity of cellulose films and the different interfacial interactions
between cellulose polymers and cellulose nanofibers [23]. ACNC fell somewhere between
RC-C0 and CNF, and the Tdmax increased with the increase of CNF content, revealing the
positive effect of CNF on the thermal stability of composites. The improvement of gas
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barrier properties also makes it difficult for decomposition gas to be released from the
nanocomposite, which also delays the degradation of the film to a certain extent [32]. The
higher thermal stability of the fillers with higher crystallinity index may also be the reason
for the improvement of the thermal stability of the composites studied [33].

3.3. Functional Properties of All-Biomass Films

The digital photo of ACNC is shown in Figure 4a. By naked eye observation, the film
surface is smooth and uniform. The text of the two images can be seen very clearly through
the film. The high transparency of ACNC can be attributed to efficient interfacial contact
between CNF and the matrix and the moderate surface roughness of RCNC [8,34]. The
transmittance results in the range 380–780 nm and at 550 nm are shown in Figures 4b and 4c,
respectively. The transmittance of all composite membrane materials at 550 nm was almost
higher than 85%, and the introduction of CNF did not significantly weaken the high
transparency of cellulose membranes. Specifically, the optical transmittance values of RC-
C2, RC-C4, RC-C8, and RC-C12 at 550 nm were 90.2%, 89.4%, 86.9%, and 84.5%, respectively.
The good transparency of ACNC membrane is also attributed to the better distribution of
CNF in the cellulose matrix shown in SEM images. It can be observed from SEM images in
Figure 2e that in RC-C4 and RC-C8, CNF was uniformly distributed in the matrix, which is
beneficial to a high transparency and also consistent with the optical transmittance results.
The similar results were observed in prior literature that the degree of transparency of the
all-cellulose nanocomposite films reflects the status of dispersion of CNF in the cellulose
matrix. The reason may be that inhomogeneous distribution of CNF causes large size
agglomerates, resulting in scattering and thus the decrease in optical transmittance [23].
At the same time, with the increase of CNF content, the optical performance of ACNC
decreased continuously, because the transparency of all-cellulose nanocomposite film
depends on the size effect and dispersion state of cellulose nanofibers. But ACNC still
has better transparency than several other cellulose-based nanocomposites in visible light
range, such as cellulose-graphene (below 70%), graphene oxide (below 80%), and carbon
nanotube (typically below 25%) nanocomposites. The comparison between our results and
literature data is summarized in Table S2. Therefore, these straw-based, optically good
all-biomass films were manufactured through a new, green, and stable process that can be
tried for some optical devices.

The mechanical properties of ACNC with different CNF contents are characterized
by elongation at break and tensile strength. Compared with the traditional composite
materials used today, the advantage of ACNC is the almost perfect chemical bonding at
the interface between the matrixes. The matrix and reinforcement materials are chemically
identical in favor of effective stress transfer and adhesion at their interfaces [35]. As
shown in Figure 4d,e, with the addition of CNF, the mechanical properties of ACNC were
significantly improved. Notably, the elongations at break of RC-C4 was as high as 13%.
The tensile strength of all CNF-reinforced ACNC samples were higher than that of RC-C0,
with RC-C8 exhibiting the highest value of 87 MPa. These results are summarized in Table
S3. The significant improvement in mechanical properties may be attributed to the strong
interfacial interaction between the matrix and reinforcement phase, which transferred
stress from the matrix to CNF, a rigid fiber with excellent mechanical properties [36].
Although both the matrix and the enhancement phase were composed of cellulose, the
enhancement efficiency of the cellulose enhancement phase showed improvement only at
low concentrations. When the concentration of the cellulose reinforcement phase in the
matrix was too high, CNF aggregation occurred, which may greatly limit the improvement
of the mechanical properties of ACNC [37,38]. Combined with the SEM (Figure 2d) analysis,
it may be that some of the CNF agglomerated with high orientation, which resulted in
the mechanical weakness perpendicular to this orientation. In addition, the composite
film prepared from corn straw cellulose obtained in this study has a similar and relatively
superior tensile strength to that of all-cellulose composite films prepared by extracting



Membranes 2024, 14, 16 9 of 13

cellulose and cellulose nano whisker (CNW) from corn straw using NaOH/thiourea as
solvent [22].
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During the comprehensive performance investigation of the prepared ACNC, it is
also found to have a significant oxygen barrier effect, as shown in Figure 4f, revealing
the influence of different contents of CNF on the oxygen permeability of the compos-
ite film material of cellulose. At RH50%, the oxygen permeability values of RC-C8 and
RC-C12 were 86.94 and 63.83 cm3 µm/(m2 day atm), respectively. According to the re-
ported criterion, a material with an oxygen permeability of 40–400 cm3·µm/(m2 day·atm)
(RH50%, RT) is defined as high oxygen barrier [39]. In this case, RC-C8 and RC-C12 are
both considered as high oxygen barriers. At a higher humidity of RH80%, RC-C8 and
RC-C12 also exhibited good oxygen barrier capability, with oxygen permeability values
of 690.37 and 430.54 cm3 µm/(m2 day atm), respectively. (At RH80%, RC-C0 film rup-
tured because of the pressure difference so the values cannot be obtained.) Morphological
analysis shows that this may be associated with the uneven diffusion of solvent in the
regeneration process, which leads to obvious defects in the cellulose membrane, and these
are the main channels through which oxygen passes [40,41]. In our study, after the intro-
duction of CNF, the oxygen resistance performance was reduced by more than 400 times.
Oxygen barrier performance enhancement, on the one hand, results from strengthening
the good compatibility with the substrate. On the other hand, CNF has a fibrous net-
work distributed in the matrix, so oxygen molecules have to follow a “zigzag diffusion
path” to permeate through the membrane. Thus, oxygen diffusion is suppressed with
an increased diffusion length. Finally, when CNF content reached 12 wt%, the oxygen
permeability of ACNC decreased to 63.83 cm3 µm/(m2 day atm). This is very competitive
compared to common plastic films, such as Polystyrene (PS) (100–150 cm3 µm/(m2 day
atm)), Poly(ethylene terephthalate)-12 (110 cm3 µm/(m2 day atm)), and Polypropylene-20
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(1500–1800 cm3 µm/(m2 day atm)) [42]. High-performance thin films with low perme-
ability are very attractive materials for electronic devices, such as flexible electrodes and
organic light-emitting diodes (OLEDs). Excellent gas resistance is a basic requirement
for packaging materials of electronic device encapsulation, because this type of film can
effectively prevent the diffusion of oxygen into the conductive layer, increasing the life of
electronic devices [43].

Compared to other all-cellulose nanocomposites/composites and cellulose-based
composites in prior literature, the ACNC in this work has a relatively facile preparation
at a moderate temperature, and also exhibit good mechanical and optical properties and
oxygen barrier performance (Table S2). Compared to most commercial polyolefin films such
as Polyethylene (PE) and Polypropylene (PP), the ACNC is biodegradable and has good
mechanical properties. As shown in Figure S2, there is a ~70% weight loss of RC-C8 when
being buried in the soil for 30 days, and these ACNC films all have higher tensile strengths
over 63 MPa (notably, the tensile strength RC-C8 is as high as 87 MPa) than PE and PP,
which show tensile strengths in a range of 20–40 MPa [44], making it a competitive green
alternative to packaging bags, packaging tapes, etc. In addition, swelling properties are
also important in terms of the application in packaging materials. Compared to literature
data on water uptake for the all-cellulose nanocomposites of ~34% [8], RC-C8 has a lower
water absorption of 21.3%, and these results are shown in Supplementary Materials.

4. Conclusions

In this research, CNF-reinforced ACNC membranes were obtained and characterized.
Compared with traditional preparation methods of all-cellulose composites, this study
adopted a green and sustainable approach using a recyclable two-component IL/DMSO
solvent system to subtly manipulate the distribution of CNF, which shows prospects for
practical use. In terms of the crystallinity and morphology, the coexistence of cellulose I
and cellulose II in the composite was confirmed by FTIR and XRD, and the crystallinity
of the composite was improved. SEM images showed that ACNC exhibited a homoge-
neous morphology with appropriate roughness. Meanwhile, the mechanical properties
and thermal stability of ACNC were also improved compared to a material based on re-
generated cellulose without the addition of CNF. In addition, the obtained ACNC also had
high optical transparency and good oxygen barrier performance. Based on these unique
properties, bio-based ACNC has the potential to replace industrial polymer plastics. Taking
all these results into account, among all ACNC samples with the added CNF contents of
2.00 wt%, 4.00 wt%, 8.00 wt%, and 12.00 wt%, RC-C8 had excellent thermal stability, high
optical transmittance (86.5% at 550 nm), good mechanical properties (with tensile strength
of 87 ± 4 MPa), outstanding oxygen barrier performance (86.94 cm3 µm/(m2 day atm) at
RH50%), and other excellent functional properties (biodegradability and swelling proper-
ties), so it can be considered the most promising in various applications of encapsulation of
electronic devices and other packaging materials.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/membranes14010016/s1, Figure S1: Images of corn straw pulp dissolved
in [Bu4N]+Ac-/DMSO at 60 ◦C at various time intervals, Figure S2: Weight loss of RC-C8 in the soil,
Table S1: Weight of CNF in CNF/cellulose dispersion, Table S2: Comparison with other all-cellulose
composites and cellulose-based composites. Table S3: Mechanical properties of the ACNC samples.
References [27,45–56] are cited in the Supplementary Materials.
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