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Abstract: A promising approach that uses the sol–gel method to manufacture new breathable active
films with self-cleaning and antibacterial surfaces is based on the PET membranes obtained via ion
track technology with a pore density of 10–7 cm−2 and a pore diameter of about 500 ± 15 nm, coated
with a layer of TiO2 anatase, with a thickness of up to 80 nm. The formation of the photocatalytically
active TiO2 anatase phase was confirmed using Raman analysis. Coating the PET membrane with a
layer of TiO2 increased the hydrophobicity of the system (CA increased from 64.2 to 92.4, and the
antibacterial activity was evaluated using Escherichia coli and Staphylococcus aureus bacteria with the
logarithmic reduction factors of 3.34 and 4.24, respectively).

Keywords: PET membrane; titanium dioxide; photocatalysis; packing technology; logarithmic
reduction factors

1. Introduction

The effect of self-cleaning surfaces created with functional coatings can be used in
a wide range of applications, from household paints to the functional coatings of micro-
electronics for space applications [1–3]. Due to their low costs, well-adapted production
technology, physical and chemical high stability, and low toxicity, TiO2 and ZnO are the
most common additives used for self-cleaning and antibacterial surfaces [4,5]. Titanium-
dioxide-based structures are widely used as sorbents and catalysts. TiO2 photocatalysts
can be activated via UV radiation and visible light and can decompose a large number
of organic compounds. For water and air purification purposes, titania can be used in
powder form or as film composites on substrates, which contributes to the expansion of
photocatalyst applications [6–8]. Under irradiation, electron–hole pairs form in TiO2, and
then charge carriers come to the particle surface, migrate over the surface, and may take
part in chemical reactions. This leads to the formation of free radicals that can oxidize (and
mineralize) almost any organic compound to CO2 and H2O.

The low production price and photocatalytic activity of TiO2 make it an interesting
material for purifying water or air from organic compounds. The most effective practical
application is the use of TiO2 as a coating applied to a structured or porous matrix [9]. The
thin-layer coating of a porous structure significantly increases the working surface of the
active substance and contributes to the intensification of the process. Surface morphology
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and chemical composition (for example, any additives or binders) are important for the
photoactivity and superhydrophobic properties of TiO2 films. Roughness and porous
structure will increase the working surface, ensuring the self-cleaning films’ effectiveness.
Another important aspect regarding coating is the increase in the contact angle of wetting.
In this case, molecules of organic substances contained in a stream of water or air will be
not so easily adsorbed on the functionalized TiO2 surface of the filtration membrane [10],
but the absorbed molecules under UV irradiation will be oxidized to carbon dioxide and
water or practically destroyed. These degraded organic contaminants will be easily washed
off with water due to the hydrophobic properties of the TiO2 coating [11]. In addition, the
generated free radicals will be detrimental to harmful microorganisms which are resistant
to ultraviolet light under normal conditions.

Investigations on TiO2 films have been devoted to the synthesis of nanostructured
titania in the form of nanoparticles, nanograined films, or the components of combined
materials (particularly polymer matrices) [12,13]. Polymer-based films could improve the
flexibility of photocatalytic active structure and expand the applications associated with
carrying out the complex purification of liquids (such as ultrafiltration or antibacterial
effects) [9,14].

As a rule, TiO2 thin films are fabricated by sol–gel dipping, including sols with
nanostructured titanium dioxide in particle form. This technology is easy to implement
and makes it possible to control the microstructure of both thin films and the properties
of gels themselves. There are methods used to create titanium dioxide thin films, such
as sputtering [15], ion beam deposition [16], and hydrothermal processes [17], but the
sol–gel deposition process has a lower cost and is technologically simple, flexible, and
easily scalable [18,19].

For a considerable amount of time, various aspects pertaining to the creation of thin
titanium dioxide films using the sol–gel method have been studied. In [20], the impacts of
the procedures used to create a nanosol and carry out deposition (immersion rate, acid con-
centration, and drying temperature) on the structural, optical, and photocatalytic properties
of TiO2 films were studied. In [21,22], the effects of precursors on the microstructure and
optical properties of TiO2 films were studied. In addition, the formation of thin titanium
dioxide films using a binder, which can increase the stability and durability of the functional
coating, such as PVA, PMMA, or PEG, was considered [13,23–25].

Previously, we obtained satisfactory results for the creation of thin mechanically stable
titanium dioxide without the use of a binder polymer on the surface of a track-etched mem-
brane (PET TM) via a sol–gel method with different active component concentrations [9].
Thus, in this study, we propose an approach that can be used to obtain breathable films with
a self-cleaning and antibacterial surface based on titanium-dioxide-coated PET membranes
(PET TMs) via sol–gel immersion, study their morphology and structural characteristics,
and also evaluate their photocatalytic and antibacterial activities.

2. Experimental
2.1. “PET TM + TiO2” Systems Formation

PET films 12 microns thick (Hostaphan®, Mitsubishi Polyester Film, Wiesbaden, Ger-
many) were irradiated on cyclotron DC-60 (Astana, Kazakhstan) with Kr ions with an
energy of 1.75 MeV/nucleon and fluence 10–7 cm−2 and then etched in 2.2M NaOH solu-
tion at 85 ◦C 7 min to obtain pores with diameters about 500 ± 15 nm [26,27].

Titania hydrosols were prepared using a two-step method. In the first stage, hydrated
titanium dioxide was precipitated from titanium tetrachloride solutions, and the obtained
precipitates were filtered and washed until the negative reaction to chlorine ions. In the
second stage, the resulting hydrated titanium dioxide precipitate was peptized using
monobasic inorganic acids. The radius R of sol particles was measured via DLS using the
spectrometer (Metertech 8001, Metertech Inc., Taipei City, Taiwan). The optical density D
and turbidity spectra of the sols were determined in a 10 mm wide cell, wavelength 566 nm.
The solid phase containing titanium dioxide in an obtained hydrosol was 0.5 wt.%. The
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resulting sols had a titania particle size of 15–50 nm, and the stability period of hydrosol
was more than 250 h. The pH of the hydrosol was less than 0.6–0.8.

For the production of “PET TM + TiO2” systems, membranes were immersed in a sol
with TiO2 concentration of 0.5 wt.% for 60 s, then washed in distilled water. Three layers
of TiO2 were formed, and then PET TM with deposited TiO2 was annealed at 120 ◦C for
15 min on air [28].

2.2. Morphology Control

The results of the titanium dioxide deposition were controlled by examining the
surface and cross-section of the sample “PET TM + TiO2” systems via scanning electron
microscopy (SEM, JEOL JCM-6000 Plus Neoscope microscope, JEOL, Akishima, Tokyo)
and energy dispersive analysis (EDA, JED-2300 Analysis Station at JEOL microscope, JEOL,
Akishima, Tokyo).

2.3. Structural Analysis and Measurement of Water and Gas Permeability

Structural features of “PET TM + TiO2” systems were checked via Raman spectroscopy
(Raman, INTEGRA Spectra, NT-MDT, Westzaan, The Netherlands). UV-vis spectra were
recorded on Specord-250 BU (Analytik Jena GmbH, Jena, Germany) on Integrating Spheres
in a range from 190 to 800 nm with a scan rate of 10 nm/s.

The air and water permeability were investigated to confirm the breathable properties
of “PET TM + TiO2” systems [27]. The equipment for the porous diameter measurements
via the manometric method for determining gas permeability was used for air permeability
tests. The discharge gas pressure in the primary chamber in the 4–20 kPa range and water
pressure in the 12–120 kPa range were applied. The membrane was considered permeable
if air intake could be registered in the receiving chamber at pressures less than or about
equal to atmosphere pressure.

2.4. Surface Adsorption Properties Control

The surface adsorption properties of the original and modified samples were evaluated
via the contact angle of water wetting (CA) with a volume of a drop of 10 µL. An image
of a lying liquid droplet was captured using a camera (resolution 100 × 100 dpi) at 100×
magnification. Determination of CA of the samples from the images was carried out in the
ImageJ program (https://imagej.nih.gov/ij/download.html, 10 August 2023), averaging
the bases of 5 measurements.

2.5. Analysis of Photocatalytic Activity

The photocatalytic activity of the systems was studied by the degree of decomposition
of the model pollutant Rhodamine B in an aqueous solution (2.5 mg/L). For the photo-
catalytic tests, 3 g of Rhodamine B solution was inserted into the reactor representing the
polypropylene Petri dish (20 mm in diameter) with the experimental sample of “PET TM
+ TiO2” system. The Petri dish was placed on the platform of IKA Vortex 4 digital with
orbital shaking trajectory (IKA-Werke GmbH & Co. KG, Staufen im Breisgau, Germany)
at 500 rpm to ensure the uniform mixing of the reaction solution and liquid access to the
sample surface. Photocatalysis was provided under UV irradiation within 4 h. Mercury
lamp 9 W with λmax 365 nm (Cixi Jindan Electric Appliances Factory, Zhangqi industrial
zone, Zhangqi, China) was used as a source and was located above the reactor at a distance
of 3 cm (Figure 1). The emission spectrum of used mercury lamp is given on the insert
in Figure 1. The second maximum at 404 nm (3.1 eV) has no significant influence on the
photocatalytic process because of its low energy. The change in the concentration of the an-
alyte in the solution was determined from the optical absorption spectra in the wavelength
range of 400–800 nm. Spectra normalization was realized via the maximum intensity of
absorption in the initial solution for all results. To determine the decomposition degree,
reference curve in the concentration range from 0 to 10 mg/L was exploited (Figure 2).
The curve area 0–2.5 mg/L was rebuilt according to the approximation equation with
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determined coefficient R2 = 0.9996 and then normalized again to 1 (Figure 2b). To use the
calibration curves, each time, the absorption spectrum of the initial solution with the maxi-
mum concentration (2.5 mg/L in this case) was recorded, according to which the remaining
measurements were normalized. The influence of dye absorption by the membrane on
the absorption spectra of solutions was not instrumentally recorded as significant. The
maximum registered absorption is about 5% after two hours of dark conditions; thus, we
started the main experiment with UV exposure straight (Figure 3). All absorption spectra
were registered at room temperature using the spectrophotometer MC 122M UVI-Vis (JSC
“SOLAR”, Minsk, Belarus).
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2.6. Antibacterial Properties Control

For the study of antibacterial activity, Escherichia coli (E. coli) and Staphylococcus aureus
(St. aureus) were used as test cultures. Then, 0.6 mL of the culture liquid was placed on
the sample of “PET TM + TiO2” systems, then the sample was irradiated with UV (365 nm,
0.01 mW/cm2) for 1 h while maintaining the temperature at 25 ◦C. Studies were carried
out using bacterial colonies in the presence of “PET TM + TiO2” systems with and without
a 5 × 5 cm size to take into account the effect of ultraviolet (UV) irradiation on bacterial
colonies. The control sample was kept in the dark for an hour simultaneously. Then,
0.1 mL of washout from the samples were placed in a nutrient medium, then incubated in a
thermostat for 48 h at a temperature of 30 ◦C. After cultivation, the number of colonies with
typical morphological signs was determined, followed by recalculation of colony-forming
units per 1 mL of solution (CFU/mL).
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3. Results and Discussion
3.1. Morphology Control

As a base for preparing the breathable films with self-cleaning and antibacterial
surfaces, ion-track PET membranes with pore diameters of 500 ± 15 nm were used. As
a result of the two-stage hydrolysis of titanium dioxide, a film coating of TiO2 sintered
nanoparticles uniformly distributed over the membrane surface was formed via the sol–gel
method on the surface of the polymer membrane (Figure 3a–c).

A high-resolution SEM image of a modified membrane shows that TM is covered with
a continuous layer and also has individual TiO2 nanoparticles with sizes up to 100 nm
formed on the membrane surface (Figure 3b). TiO2 is localized not only on the PET TM
surface but also on the pore walls. In this case, nanoparticles on pore walls have a smoother
shape compared to nanoparticles on the surface. According to the cross-section of the PET
TM (Figure 3c), the thickness of the titanium dioxide layer on the membrane surface is about
80 nm. EDA-mapping (Figure 3d–f) of the sample “PET TM + TiO2” surface demonstrates
a uniform distribution of titanium dioxide over the surface of the PET membrane. As we
previously reported [29], by changing the concentration of TiO2 in sol–gels, we were able
to decrease/increase the amount of absorbed TiO2 nanoparticles, but the morphology of
the function layer was changed from individual nanoparticles to their constant layer. The
optimized concentration was found to be 0.5 wt.%.

3.2. Structural Analysis

As previously reported [29], XRD studies indicate the presence of TiO2-anatase on the
surface of PET films in an amount of 23%.

The Raman spectrum of the “PET TM + TiO2” systems confirms the presence of TiO2-
anatase on the surface of PET films (Figure 4b). The characteristic Raman bands of the
anatase crystalline form are observed at 197, 396, 514, and 638 cm−1. Also, the Raman
bands of PET were found. The 1615 cm−1 peak of PET, as already mentioned, corresponds
to the Raman activity of the symmetric stretch of the skeletal 1,4-para substituted benzene
rings. The peak at 1485 cm−1 in the Raman spectrum of polyethylene terephthalate (PET)
is associated with vibrations of atoms in the aromatic ring structures of the polymer. This
peak corresponds to the stretching vibrations of C-C bonds in benzene rings, which are the
main structural elements of PET. The peak at 1294 cm−1 is due to vibrations of the C-C
bond in aromatic rings and may be associated with vibrations of the COC group. The peak
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in the region of 1652 cm−1 is associated with vibrations of carbonyl groups (C=O), which
are present in a part of the PET molecule. 1178 cm−1 peak of PET is associated with the
vibrations of C–O–C bonds. Additionally, 1726 cm−1 peak of PET is associated with C=O.
Peaks in 858, 1414, and 1367 cm−1 are substituted benzene rings, and peak in 3080 cm−1 is
associated with C–H bonds in the methyl groups.
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Figure 4. UV-vis spectra of initial PET TM and “PET TM + TiO2” (a) and Raman spectra of “PET TM
+ TiO2” systems (b).

The UV-vis spectra of initial PET TM and “PET TM + TiO2” (Figure 4b) are consistent
with the literature data [30]. In general, when a permanent layer of titanium dioxide is
formed on the surface of the TM, the absorption region of the sample expands compared
to the initial PET TM. The measurement of the absorption spectrum of TiO2 films is
complicated with the superposition of a large number of transitions and corresponds to
the anatase phase. Absorption is observed in the wavelength range of up to 400 nm. The
absorption peaks can be attributed to the following: the peak at 340 nm to the amorphous
phase (O 2p state) and the peak at 390 nm to the Ti 3d state. The adsorbed energy will be
spent on the photocatalytic process of decomposition of an organic substance, an example
of which can be the Rhodamine B dye taken in our work.

The air begins to pass through the membrane at an overpressure of 0.4 kPa; this is
the first value that can be recorded using the instrument, and it can be assumed that the
applied overpressure is lower than fixed.

Water passes through the membrane at an overpressure of 12 kPa (the minimum
recorded value). The water permeability of “PET TM + TiO2” systems is shown in Table 1.
The performance in this case is 3.057 mL/min*m2 (approximately one drop in 5 min).
A drop left on the surface of a functionalized membrane, fixed horizontally, percolates
within 4–5 min. It is possible to make a conclusion about the water permeability at a
lower overpressure.

Table 1. Water permeability of “PET TM + TiO2” systems.

Overpressure, kPa Performance, mL/min*m2

0 0

12 3.057

20 15.286

40 152

60 713

80 815

120 917
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3.3. Evaluation of Applicability
3.3.1. Surface Adsorption Properties Control

Considering that the main practical applications of breathable films with self-cleaning
and antibacterial surfaces are associated with the use of liquid media, the changes in
CA before and after the TiO2 functionalization of PET TM were checked. The original
PET TM is characterized by a wetting CA of 64.6 ± 2.5 degrees (Figure 5) [31]. The
nanostructured titanium dioxide coating modified the surface morphology and increased
CA to 92.4 ± 3.2 degrees, which improved the hydrophobic properties of TM. CA more
than 90 degrees of the “PET TM + TiO2” systems indicate weak hydrophobic properties.
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3.3.2. Analysis of Photocatalytic Activity

Figure 6 shows the evolution of the main absorption peak of Rhodamine B before
(1) and after (2) dark exposure for two hours (non-normalized spectra). A slight degra-
dation was evaluated. Figure 7 shows the absorption spectra of the initial test solution of
Rhodamine B and the solution after exposure in the presence of “PET TM + TiO2” systems.
To establish the absolute concentration of test dye, the normalized maxima of the absorption
peak (at 554 nm) were correlated with calibration curves (see Figure 2b), and the results are
collected in Table 2. The relative decrease in the Rhodamine B concentration in solution is
about 34% for the exposure to the “PET TM + TiO2” system under UV irradiation. Further-
more, in the absorption spectra, the maximum shift from 554 nm of the initial solution to
550 nm of the solution after exposure with the shoulder at 522 nm smoothing is observed. It
can be explained via the two processes of photodegradation of Rhodamine B, including the
“classical photo mineralization” process leading to the complete destruction of the pollutant
molecules and the accompanying process of the stepwise elimination of two diethylamino
groups in the Rhodamine B molecules that do not affect the chromophore structure. The
spectra evolution for the cases with “PET TM + TiO2” in the dark and under the daylight
demonstrates the main role of the photocatalytic destruction of the dye molecules in the
solution purification and not only due to the absorption via the membrane.

3.3.3. Antibacterial Properties Control

Membranes coated with titanium dioxide nanoparticles are capable of photocatalytic
decomposition of organic compounds, including causing oxidative stress for bacteria,
which, in turn, will affect their viability. The effect on bacterial viability was studied using
E. coli and St. aureus. The logarithmic reduction factor was taken as critically significant for
determining the antibacterial activity and was determined as follows:

Lg Red = lg(C/C0)

where Lg Red—logarithmic reduction factor; C0—cells concentration before the experiment;
and C—concentration of bacterial cells after the experiment. In our case, C was considered
in two versions: (1) CTiO2+UV—concentration of bacterial cells on the surface of “PET TM
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+ TiO2” systems after UV-irradiation and (2) CUV—control the concentration of cells after
UV-irradiation without “PET TM + TiO2” systems. The results are summarized in Table 3.
Also, visual images of cells with the developed system are shown in Figure 8.
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Figure 7. Absorption spectra (a) and relative concentration of Rhodamine B (b) of test solutions:
1—initial, 2—with “PET TM + TiO2” in the dark, 3—with “PET TM + TiO2” under the day light,
4—with “PET TM + TiO2” after UV exposure.

Table 2. Concentrations of Rhodamine B in test solution according to the calibration curve (Figure 2b).

Spectra (Figure 7) Normalized
Absorption, a.u.

Concentrarion of
Rhodamine B, mg/L

Decrease in
Concentration, mg/L

Decrease in
Concentration, %

1 1 2500 -- --

2 0.971 2431 0.069 2.76

3 0.959 2399 0.101 4.04

4 0.658 1654 0.846 33.84

Table 3. The results of the antibacterial activity investigation.

Test Bacteria
Concentration of Bacterial Cells, CFU/mL Lg Red

C0 Experiment CTiO2+UV Control CUV “PET TM + TiO2” + UV UV

E. coli 5.0 × 105 2.3 × 102 2.2 × 105 3.34 0.36
St. aureus 8.6 × 105 5.0 × 101 4.7 × 104 4.24 1.26
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A decrease in colony count was recorded for both E. coli and St. aureus strains and
recorded when irradiated with UV. However, when these strains were irradiated in the
presence of “PET TM + TiO2” systems, a significant decrease in the concentration of live
bacteria was established. It indicates that “PET TM + TiO2” systems exhibit antibacterial
activity against the E. coli and St. aureus; the logarithmic reduction factors are 3.34 and 4.24,
respectively.

Our PET TM + TiO2” systems use two mechanisms that contribute to the antibacterial
effect. The most significant contribution is made using the photocatalytic activity of
TiO2. When exposed to UV radiation on photocatalytically active substances, free radicals
(reactive oxygen species, ROS) are produced in the biological environment, which causes
lipid peroxidation, damage to membranes, and damage to the structure of DNA and
organelles of microorganisms. This is due to the transition under the action of light of a
valence electron to the conduction band of the photocatalytic material, as a result of which
ROS are also formed, mainly hydroxyl radicals (•OH), which play the role of holes in
an aqueous medium and lead to the oxidation of biological molecules. The main feature
of our PET TM + TiO2” systems is weak hydrophobicity due to which, in combination
with photocatalytic activity, small colonies of bacteria that can still develop (according to
the results) on the surface of the systems during tests in a nutrient medium, under real
conditions, will not be able to attach to the surface.

It should be noted that at the moment, “PET TM + TiO2” systems do not demonstrate
outstanding results in terms of self-cleaning and antibacterial properties. The main problem
of “PET TM + TiO2” systems is that the main part of absorption spectra is λ <400 nm, which
complicates the use of such systems by exposing them to natural sunlight. Further work on
optimizing the “PET TM + TiO2” systems will be aimed at the shift of TiO2 absorption into
the red zone via the changes in coating modes or post-processing of the resulting systems,
for example, as shown in our previous work [29], for expansion of the prospects of practical
use. However, the potential of using breathable films with self-cleaning and antibacterial
surfaces based on PET membranes coated with titanium dioxide for various purposes, for
example, for packaging food products or sterile medical plasters is already obvious.

4. Conclusions

The potential for developing breathable films with self-cleaning and antibacterial
surfaces based on TiO2-functionalized PET membranes via the sol–gel method is evident.
The application of this technique yielded a uniform TiO2 coating composed of particles
with characteristic sizes less than 100 nm, and an anatase content of 26% was successfully
achieved.

To illustrate the photocatalytic activity of the “PET TM + TiO2” systems, the degra-
dation of Rhodamine B was used as a demonstrative example. The results displayed a
photocatalytic effect, as evidenced by a relative 31% decrease in Rhodamine B concentration
in 4 h, corresponding to the reduction in absorption at 455 nm.
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Moreover, the “PET TM + TiO2” systems exhibited notable antibacterial properties,
as they displayed substantial logarithmic reduction factors of 3.34 against E. coli and
4.24 against St. aureus, respectively. This indicates their potential as effective agents for
combatting bacterial growth, making them highly desirable for various applications.

With their inherent antibacterial and self-cleaning capabilities, these systems hold
significant promise in the creation of active functional materials. They are particularly well-
suited for producing breathable films with self-cleaning and antibacterial surfaces, making
them ideal candidates for applications such as food packaging or sterile medical plasters.
Notably, one of the major advantages of the developed “PET TM + TiO2” systems is their
capacity for multiple reuses, enhancing their overall sustainability and cost-effectiveness.
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