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Abstract: Permselectivity of a membrane is central for the development of electrochemical energy
storage devices with two redox couples, such as redox flow batteries (RFBs). In RFBs, Br3

−/Br−

couple is often used as a catholyte which can cross over to the anolyte, limiting the battery’s lifetime.
Naturally, the development of permselective membranes is essential to the success of RFBs since state-
of-the-art perfluorosulfonic acid (PFSA) is too costly. This study investigates membranes of graphene
oxide (GO), polyvinylpyrrolidone (PVP), and imidazole (Im) as binder and linker, respectively. The
GO membranes are compared to a standard PFSA membrane in terms of ionic conductivity (Na+) and
permselectivity (exclusion of Br−). The ionic conduction is evaluated from electrochemical impedance
spectroscopy and the permselectivity from two-compartment diffusion cells in a four-electrode system.
Our findings suggest that the GO membranes reach conductivity and permselectivity comparable
with standard PFSA membranes.

Keywords: redox flow batteries; graphene oxide; permselectivity; proton exchange membrane;
functionalization; nanostructured materials

1. Introduction

The redox flow battery (RFB) is an electrochemical energy storage device that uses
two different redox couples in separate tanks. RFBs present an interesting energy storage
system for long-duration energy storage (6–12 h and more) due to their decoupled power
and capacity, owing to the fact that the electrolyte is stored in external tanks and is flowed
through a central cell for energy conversion. This is unlike most battery systems where
the electrolyte is contained within a sealed cell, intrinsically linking power and capacity.
This makes RFBs highly adaptable to be combined with renewable energy, solar, and wind,
which are intermittent by nature. There are several RFB chemistries based on the Br3

−/Br−

redox couple as catholyte due to the fast kinetics of the couple and the abundance of the
element [1]. Compared to other RFB chemistries, the fast kinetics result in high energy
round-trip efficiency and power density while the abundance of the element brings down
the levelized cost of storage (LCOS). For instance, commercial vanadium RFBs display a
high LCOS, partly due to the cost of the vanadium electrolyte. Among the alternatives,
the high-power H2/Br2 RFB has been extensively studied and has shown the crossover
as the main Achilles heel of the technology [2–6]. Other chemistries, like Zn/Br2 and
polysulfide/bromine, also suffer from the crossover of bromide species [7]. Ion exchange
membranes (IEMs) play an essential role in facilitating the transport of specific ions while
preventing unwanted crossing (catholyte species and water) [8–10]. The permselectivity
of membranes is a measure of their ability to selectively allow the passage of counter-ions
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while rejecting co-ions. The permselectivity is the most important characteristic of IEMs,
it ranges from 0 to 1, where 1 indicates perfect selectivity for counterions. In the case of
RFB, the ratio between cationic and anionic conductivity should be maximized to enable a
high coulombic and voltage efficiency while minimizing the self-discharge and capacity
decrease [11–13].

Cation exchange membranes (CEMs) are of interest due to their ability to differenti-
ate between cations and anions conduction through the material. Among them, proton
exchange membranes (PEM) are the most popular for their use in fuel cells and are often
used in RFBs as a readily available on-the-shelf pick. In renewable energy applications,
energy efficiency plays a critical role in assessing the overall performance of the whole cell,
which depends on the materials used [14–16]. An appropriate membrane should have high
conductivity and high permselectivity. It can be exposed by the impedance measurement
as the ionic resistance in Ohm.cm2, which is later normalized by the thickness of the mem-
brane to obtain the ionic conductivity in S/cm [17]. If the high proton conductivity of PEM
is usually an excellent indicator of the high cationic conductivity for other small cations
(Li+ or Na+), permselectivity needs to be reassessed for each system.

Perfluorosulfonic acid (PFSA) membranes (commonly called Nafion) are usually used
as PEM and have also been used for sodium transport, despite their high cost [18–20]. The
spontaneous formation of hydrophilic and hydrophobic nanochannels in the PFSA has
been shown to be instrumental for high cationic conductivity [21–23]. This discovery has
fostered research on artificial nanostructures made of composite materials. To be sure, 2D
material membranes have gained popularity in recent years due to the failure to progress
with ionomer-type membranes [24–27]; 2D material membranes typically form by stacking
2D flakes, resulting in nanopores formed between the stacked sheets. These membranes
have a high conductivity potential due to the density of pores. The selectivity of these
membranes is typically imparted by the steric hindrance of the small interlayer spacing that
forms the pores, although functional groups can be added to increase selectivity [28–30].

Carbon-based compounds with varied forms and physicochemical properties, includ-
ing graphene oxide (GO), have been produced for over a century. GO membranes are made
of dispersed GO flakes that are rearranged in parallel to form a stacked membrane. This
creates a network of channels that act as precise molecular sieves [31,32]. These channels
can be modified to allow precise control over the species that pass through and to transport
small ions through them in a quick manner. The channel size and, hence, selectivity can be
altered by physical compression, partial reduction of the fabricated GO membrane, and
crosslinking the GO flakes [33,34]. These techniques offer the potential for the development
of higher-quality membranes for redox flow batteries and other applications. According to
A. Pedico et al. (2023), the improvement of the GO membranes can also be investigated by
the process of fabrication [35].

In addition to electrochemical parameters, mechanical properties are also important
for the performance of membranes used in electrochemical devices [15]. Properties such as
power density, tensile strength, impact strength, flexural strength, hardness, and fracture
toughness are essential for fabricating high-quality membranes that can withstand the
operating conditions of a redox flow battery (RFB). Tensile strength is particularly important,
and studies have been conducted to improve it by adding crosslinking to the membrane
matrix [36]. Overall, the mechanical properties of membranes play a decisive role in
ensuring the robustness and durability of the RFB system.

Remarkably, understanding sodium and bromide ions’ behavior and evolution through
PFSA and modified (or unmodified) 2D materials, specifically with NaBr as the electrolyte,
remains lacking in existing studies. This knowledge gap highlights the need to investigate
and compare materials in terms of their ionic conductivity and permselectivity.

Therefore, our research aims to bridge this gap by conducting a comprehensive anal-
ysis. Initially, we will evaluate the permselectivity and ion conductivity of PFSA to gain
insights into its strengths and weaknesses within this specific system. Subsequently, we
will explore the transport of sodium and bromide ions in graphene oxide membranes
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modified with binders and linkers, such as polyvinylpyrrolidone (PVP) and imidazole (Im),
respectively. Previous studies have indicated that PVP as a binder can enhance mechanical
properties [35,37], while Im as a linker can intercalate into the interlayer spaces of the GO
matrix, modifying the selectivity of the membrane pores [38,39].

By undertaking these investigations, we aim to better understand the ion transport
characteristics through PFSA membranes and potential improvements in GO membranes.
Additionally, we seek to establish a foundation for the comparative study of various
materials in terms of their ionic conductivity and permselectivity.

2. Materials and Methods
2.1. Nafion 117 Membrane Activation Treatment

The commercial PFSA Nafion 117 sheet was cut into 4 cm × 4 cm squares and peeled
off from the thin backing layer. The pre-cut squares were then soaked in water with 3%
H2O2 (purchased from Carlo Erba Reagents, Evreux, France) for 1 h in lightly boiling
(~80 ◦C). The membranes were rinsed in DI water and boiled again for 2 h in lightly boiling
H2O. The activation was then done with 1 h of lightly boiling into 0.5 M H2SO4 (purchased
from Carlo Erba Reagents, Evreux, France). The process was finished by finally doing
2–3× rinse in lightly boiling (80–90 ◦C) DI water before storing it in DI water.

2.2. GO Membrane Fabrication

GO gel (20 mg/mL) was purchased from Graphenea company and used for the
fabrication of the membrane. Then, 5 g of GO gel was weighed to obtain 100 mg of GO
in the final membrane, and the PVP (from Alfa Aesar, Thermo Fisher Scientific, Heysham,
Lancashire, UK) and imidazole (from Alfa Aesar, Thermo Fisher Scientific, Heysham,
Lancashire, UK) were weighed to be 10% in mass of the initial GO quantity and diluted
into 1 mL miliQ water, respectively. To produce GO, GO-PVP, GO-imidazole, and GO-PVP-
imidazole membranes, it was mixed accordingly with the wanted solutions and placed
under stirring overnight. The next day, the solutions were cast on top of glass support
(Figure 1A) and spread with a doctor’s blade at a support-to-blade distance of 1 mm
(Figure 1B). The membrane was dried at room temperature for 12 to 48 h, and mechanically
detached from the glass support, as seen in Figure 1C.
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Figure 1. GO membrane slurry (A,B) and after being cast on the glass support (C).

2.3. Characterization

High-resolution scanning electron microscopy (HRSEM) images were taken with a
field emission Magellan 400 L HRSEM (FEI, Hillsboro, OR, USA), and the cross-section is
determined by breaking the sample in liquid nitrogen and tilting the sample. The evolution
of the crystallographic structure was determined by XRD measurements, made on a Bruker
AXS D8 advance, Cu Kα = 1.5418 Ǻ radiation (Mannheim, Germany). Bragg’s law was
used to obtain the d-spacing value from the membranes. Raman scattering measurements
were taken using a micro-Raman LabRam HR-800 (Horiba Jobin Yvon apparatus, Palaiseau,
France), consisting of a single spectrograph equipped with a He-Ne laser (633 nm emission
line) and with an optical microscope (Olympus, BX41). A long working distance (LWD)
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80× objective, having a numerical aperture (NA) = 0.75 and yielding a spatial resolution
of about 1 µm was used to focus the laser beam onto the sample surface in air at room
temperature. Infrared spectra were taken neat on a Fourier-Transform Infra-Red (FTIR)
spectroscope Nicolet iS10 (Thermo Scientific, Tewksbury, MA, USA). Only the significant
peaks (medium intensity and greater) are listed.

2.4. Permselectivity and Ionic Conductivity Measurement

Two analyses were pursued in the same cell: (1) permselectivity and (2) ionic con-
ductivity. Both experiments shared the cell, reference electrodes (RE, SE), and working
and counter electrodes (WE, CE). Ag/AgCl reference electrodes were used as SE and
RE. Carbon-based electrodes clamped with a titanium mesh were used as WE and CE.
Nevertheless, the concentration of the electrolyte used was different, as seen in Figure 2:
(a) permselectivity measurements require a concentration gradient (i.e., NaCl 0.1 M and
0.5 M), and (b) ionic conductivity measurement was pursued at the same concentration at
each side of the membrane (i.e., NaCl 0.5 M).
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Figure 2. Scheme of the electrochemical measurements that will be pursued: (a) permselectivity;
(b) ionic conductivity.

In this research, NaBr electrolyte will mainly be used to obtain an understanding of
the Na and Br ions’ behavior (conductivity and permselectivity) through the membrane’s
materials.

3. Results

The chemical stability and mechanical endurance of the membranes have been pre-
viously reported [40]. In summary, the membranes are chemically stable in concentrated
NaBr solutions and mechanically robust.

3.1. Electrochemical Characterization (Ionic Conductivity–Permselectivity)

The results are reported in two different forms. The main manuscript reports the ionic
conductivity and the permselectivity for PFSA and GO membranes, in Figures 3 and 4,
respectively. The Supporting Information reports the ionic resistance and the membrane
potential for all the membranes in the NaBr electrolyte (Figure S1). The membrane potential
is one variable in the permselectivity calculation. For the measurement of PFSA (Figure 3),
similar permselectivity can be observed between NaCl and NaBr electrolytes while the
ionic conductivity is much improved by the presence of bromide ions compared to chloride
ions. This highlights a partial crossover of the bromide, which globally increases the final
conductivity observed. When the cation is replaced (from NaCl to KCl electrolyte), the ionic
conductivity is conserved around 13 mS/cm, whereas the permselectivity is much impacted
(0.99 for NaCl to 0.87 for KCl). Knowing the cation migration through the PFSA material is
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by the hopping mechanism, we can consider both cations without their hydration layer.
Consequently, it appears the cation size affects the conductivity.
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Figure 4. Co ionic conductivity (blue) and permselectivity (green) measurement on PFSA and
different GO-based membranes in NaBr electrolyte.

The initial results comparing graphene oxide to PFSA (Figure 4) reveal a lower initial
ionic conductivity of 2.83 mS/cm for GO compared to 20.50 mS/cm for Nafion. Upon
treatment with polyvinylpyrrolidone, the GO-PVP membrane exhibits an improved perms-
electivity, increasing from 0.78 to 0.99, which makes it comparable and even slightly higher
than PFSA. Remarkably, the ionic conductivity of GO-PVP remains low compared to the
initial GO. This highlights the efficacy of PVP in providing comprehensive stability and
rigidity to GO membranes, thereby impeding the passage of anions.

After the introduction of imidazole to the GO-PVP membrane (forming GO-PVP-
imidazole), the ionic conductivity increases to 10.61 mS/cm, albeit at the cost of a reduced
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permselectivity of 0.91. The incorporation of imidazole enhances the conductivity while
compromising the permselectivity.

Considering that PVP initially supports the formation of a more stable matrix, and
imidazole enhances the conductivity between the flakes of GO, these findings collec-
tively demonstrate the simultaneous modulation and improvement of two key parameters,
namely, ionic conductivity and permselectivity, in the 2D material. Although the results
are not yet as favorable as those achieved with PFSA, they underscore the potential for
enhancing both properties in tandem, while certainly reducing the cost of the membrane.

In another case, electrochemical impedance spectroscopy (EIS) and open-circuit volt-
age (OCV) were conducted in order to obtain the ionic resistance in Ohm.cm2 and the
voltage in mV.

3.2. IR Spectroscopy

Fourier transform infrared (FTIR) spectra of the different GO-based membranes with
the different treatments (PVP and/or imidazole) are shown in Figure 5. From the initial pure
GO membrane, the addition of PVP can be seen by the decrease of the band at 1050 cm−1,
corresponding to the epoxy groups for the appearance of a C-N band at 1425 cm−1 as, in
fact, PVP contains tertiary amine. For the treatment with imidazole, three bands appear
between 600 and 900 cm−1, characteristic of N-H vibrations, and a shoulder at 1586 cm−1

appears (vibration N-H also). The band at 1620 cm−1 does not change so much as the
C-N vibration band is getting at the same place as the C-O band, yet seeing this band
not increasing suggests a replacement of the C-O by C-N and not the addition of the two
vibrations.
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Figure 5. Absorbance IR spectrum of all the GO membranes (untreated and treated by PVP and/or
imidazole).

3.3. Raman

Raman was performed as another way to obtain information on the modifications
induced by PVP and imidazole addition (Figure 6). It can be seen first in Figure 6A, there is
no specific modification between GO and GO-PVP, whereas the two membranes containing
imidazole have two shifts. When we look at Figure 6B–D, the two shifts appear to be one
from 1525 to 1500 cm−1 for the D” band and one from 1400 to 1425 cm−1 for the D* band.
Based on the research from Sergi Claramunt et al. (2015) [41], the D′′ band decreases and
D* increases following the diminution of oxygens in the GO. This would mean a reduction
of the graphene oxide induced by the imidazole that may react covalently as expected
between the sheets of GO, which brings an increase in the crystal ordering of the material.
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comparison between pure GO and GO PVP Imidazole in (B), and the deconvolution of these two
graphs in (C,D).

Moreover, due to an initial fluorescence for GO [42,43] and PVP [44] and a stronger one
when treated with imidazole, a quenching was done for 10 min before every measurement.
Imidazole does not generate fluorescence in the wavelength window of analysis [45]. It can
be noticed that the increase in the fluorescence when GO is treated with imidazole can show
the creation of a covalent bond between the two components inducing a hyperchromic
and bathochromic effect by the emission shifting to the red and increasing in intensity.
To summarize, the PVP does not seem covalently attached as a binder is supposed to do
when the imidazole is covalently attached at the location of the carboxylic and carbonyl
functional group as expected for a linker.

3.4. XRD

XRD was used for a better understanding of the structure and order of the GO matrix
(Figure 7). All GO-based membranes exhibit a specific pic around 10 degrees, characteristic
of the interlayer distance between GO flakes [46]. This indicates that the treatments with
PVP and Im do not affect the ordered structure of the stack.

Yet, interestingly, some differences can still be noticed through the modifications. The
reflection corresponding to the interlayer spacing of GO is located at 10.49 degrees and
for GO PVP Im at 10.83 degrees, meaning 8.43 to 8.16 A, respectively. The treatment of
GO has led to a diminution of the interlayer space in the GO structures. On top of it, a
wider reflection can be noticed after treatment, characteristic of less ordered material. To
summarize, it seems a more structured membrane with a reduced interlayer space (made
by the linker Im) displays an increased amorphous phase (induced by the binder PVP).

3.5. SEM

A cross-sectional analysis of the GO-based membrane using SEM was carried out to
characterize the membrane thickness and its structure. It was observed (in Supplementary
Materials Figure S2) that the membrane had an approximate thickness of 18.84 µm for GO,
15.15 µm for GO PVP, 13.38 µm for GO Imi, and 27.88 µm for GO PVP Imi. However, the
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morphology appeared to be influenced by the razor blade cut (even though it was carefully
sectioned), making it challenging to clearly discern the lamellar structure. The impact of
the cutting method is evident in the SEM images, where the lamellar arrangement is not
readily distinguishable.

Membranes 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

3.4. XRD 

XRD was used for a better understanding of the structure and order of the GO matrix 

(Figure 7). All GO-based membranes exhibit a specific pic around 10 degrees, characteris-

tic of the interlayer distance between GO flakes [46]. This indicates that the treatments 

with PVP and Im do not affect the ordered structure of the stack. 

Yet, interestingly, some differences can still be noticed through the modifications. The 

reflection corresponding to the interlayer spacing of GO is located at 10.49 degrees and 

for GO PVP Im at 10.83 degrees, meaning 8.43 to 8.16 A, respectively. The treatment of 

GO has led to a diminution of the interlayer space in the GO structures. On top of it, a 

wider reflection can be noticed after treatment, characteristic of less ordered material. To 

summarize, it seems a more structured membrane with a reduced interlayer space (made 

by the linker Im) displays an increased amorphous phase (induced by the binder PVP). 

10.0 10.5 11.0 11.5 12.0

0

1
N

o
rm

a
li
z
e
d

 i
n

te
n

s
it

y

2q()

 GO

 GO PVP Imidazole

 

Figure 7. XRD of GO membranes (untreated and treated by PVP and/or imidazole). 

3.5. SEM 

A cross-sectional analysis of the GO-based membrane using SEM was carried out to 

characterize the membrane thickness and its structure. It was observed (in Supplementary 

Materials S2) that the membrane had an approximate thickness of 18.84 µm for GO, 15.15 

µm for GO PVP, 13.38 µm for GO Imi, and 27.88 µm for GO PVP Imi. However, the mor-

phology appeared to be influenced by the razor blade cut (even though it was carefully 

sectioned), making it challenging to clearly discern the lamellar structure. The impact of 

the cutting method is evident in the SEM images, where the lamellar arrangement is not 

readily distinguishable. 

Additional analyses were conducted on the cross-section again after a freeze cut to 

preserve the morphology of the membranes. Here, the lamellar structure of the mem-

branes induced by the flakes of GO appeared clearer (Figure 8) for all of the membranes. 

It can even be seen as a crack between the layers on the GO picture due to the liquid ni-

trogen treatment. 

Figure 7. XRD of GO membranes (untreated and treated by PVP and/or imidazole).

Additional analyses were conducted on the cross-section again after a freeze cut to
preserve the morphology of the membranes. Here, the lamellar structure of the membranes
induced by the flakes of GO appeared clearer (Figure 8) for all of the membranes. It can
even be seen as a crack between the layers on the GO picture due to the liquid nitrogen
treatment.

Membranes 2023, 13, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 8. SEM images of the cross-section of GO-based membrane following freeze cutting: GO (A), 

GO PVP (B), GO imidazole (C), GO imidazole PVP (D). 

4. Discussion 

The results obtained from our study shed light on the important aspects of ionic con-

ductivity and permselectivity in RFB membranes. The evaluation of PFSA revealed com-

parable permselectivity between NaCl and NaBr electrolytes, while the presence of bro-

mide ions significantly improved the ionic conductivity compared to chloride ions. This 

observation indicates a partial crossover of bromide ions, leading to an overall increase in 

conductivity and yet, also highlighting the issue of self-discharge, voltage, and capacity 

decrease. However, when the cation was changed from sodium to potassium, the perm-

selectivity was significantly reduced while the ionic conductivity remained relatively con-

stant. This suggests that cation size influences conductivity in Nafion, where cation mi-

gration occurs through the hopping mechanism without considering the hydration layer. 

In the initial comparison between GO and PFSA membranes, it was found that PFSA 

exhibited higher initial ionic conductivity compared to GO. However, after treating the 

GO membrane with polyvinylpyrrolidone (PVP), an improvement in permselectivity was 

observed, reaching a value comparable to that of PFSA (0.99). Notably, the ionic conduc-

tivity of GO-PVP remained unchanged compared to the initial GO membrane, highlight-

ing the effectiveness of PVP in providing comprehensive stability, and rigidity to the GO 

membranes, thereby impeding the passage of anions. The introduction of imidazole to the 

GO-PVP membrane (GO-PVP-imidazole) resulted in an increase in ionic conductivity, al-

beit with a slight reduction in permselectivity. This incorporation of imidazole enhanced 

the conductivity between the GO flakes while compromising some of the permselectivity. 

The combined use of PVP and imidazole demonstrated the simultaneous modulation and 

improvement of ionic conductivity and permselectivity in the 2D material. 

Although the results obtained with GO membranes modified with PVP and imidaz-

ole are not yet as favorable as those achieved with PFSA, they highlight the potential for 

enhancing both properties in tandem. This suggests that further optimization and 

Figure 8. SEM images of the cross-section of GO-based membrane following freeze cutting: GO (A),
GO PVP (B), GO imidazole (C), GO imidazole PVP (D).



Membranes 2023, 13, 695 9 of 11

4. Discussion

The results obtained from our study shed light on the important aspects of ionic
conductivity and permselectivity in RFB membranes. The evaluation of PFSA revealed
comparable permselectivity between NaCl and NaBr electrolytes, while the presence of
bromide ions significantly improved the ionic conductivity compared to chloride ions.
This observation indicates a partial crossover of bromide ions, leading to an overall in-
crease in conductivity and yet, also highlighting the issue of self-discharge, voltage, and
capacity decrease. However, when the cation was changed from sodium to potassium, the
permselectivity was significantly reduced while the ionic conductivity remained relatively
constant. This suggests that cation size influences conductivity in Nafion, where cation
migration occurs through the hopping mechanism without considering the hydration layer.

In the initial comparison between GO and PFSA membranes, it was found that PFSA
exhibited higher initial ionic conductivity compared to GO. However, after treating the
GO membrane with polyvinylpyrrolidone (PVP), an improvement in permselectivity was
observed, reaching a value comparable to that of PFSA (0.99). Notably, the ionic conductiv-
ity of GO-PVP remained unchanged compared to the initial GO membrane, highlighting
the effectiveness of PVP in providing comprehensive stability, and rigidity to the GO
membranes, thereby impeding the passage of anions. The introduction of imidazole to
the GO-PVP membrane (GO-PVP-imidazole) resulted in an increase in ionic conductivity,
albeit with a slight reduction in permselectivity. This incorporation of imidazole enhanced
the conductivity between the GO flakes while compromising some of the permselectivity.
The combined use of PVP and imidazole demonstrated the simultaneous modulation and
improvement of ionic conductivity and permselectivity in the 2D material.

Although the results obtained with GO membranes modified with PVP and imida-
zole are not yet as favorable as those achieved with PFSA, they highlight the potential
for enhancing both properties in tandem. This suggests that further optimization and
refinement of the GO membrane structure and modification techniques may lead to even
better performance. It is important to note that while PFSA has been extensively studied
and widely used, our research addresses the need for exploring alternative materials like
GO, which offer the potential for improved performance and lower cost.

5. Conclusions

RFBs require specific CEM to reach high ionic conductivity and high permselectivity
with low-cost materials. The standard and pricy CEM, namely PFSA, shows high conduc-
tivity (20.5 mS/cm) and permselectivity (0.98) in NaBr electrolyte, one of the most used
catholyte in RFB. In this report, we show that GO membrane approaches PFSA values
with an additional linker and binder, respectively, imidazole (10.61 mS/cm) and PVP
(permselectivity 0.99), while keeping the cost of raw materials very low. Overall, our
findings contribute to the understanding of ion transport characteristics and the potential
for enhancing the conductivity and permselectivity of GO membranes. These insights
provide a basis for further research and the development of higher-quality membranes
for redox flow batteries and other electrochemical devices. Future studies can explore
additional modification techniques and investigate the trade-off between conductivity
and permselectivity in different 2D materials to advance the field of RFB membranes and
contribute to the development of more efficient and reliable energy storage systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13080695/s1, Figure S1: EIS (in Ohm.cm2) and OCV
measurement on Nafion and GO-based membranes in NaBr electrolyte; Figure S2: SEM image of the
cross-section for the pure GO membrane. Reference [47] is cited here.
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