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Abstract: Carbon capture and storage is one of the potential options for reducing CO2 emissions from
coal-fired power plants while preserving their operation. Mathematical modeling was carried out for
a one-stage membrane process of carbon dioxide capture from the flue gases of coal-fired power plants
using commercial gas separation membranes. Our calculations show that highly CO2-permeable
membranes provide similar characteristics with respect to the separation process (e.g., a specific area
of membrane and a specific level of electrical energy consumption) despite the significant variation
in CO2/N2 and H2O/CO2 selectivity. Regarding the development of processes for the recovery of
CO2 from flue gas using membrane technology, ensuring high CO2 permeance of a membrane is
more important than ensuring high CO2/N2 selectivity. The presence of water vapor in flue gas
provides a higher driving force of CO2 transfer through the membrane due to the dilution of CO2

in the permeate. A cross-flow membrane module operation provides better recovery of CO2 in the
presence of water vapor than a counter-current operation.

Keywords: CO2 capture simulation; flue gases; gas separation membranes; commercial membranes;
mass transfer modeling

1. Introduction

Despite ongoing efforts to introduce renewable energy technologies in order to replace
fossil fuels, the growth in energy demand perpetuates the dominance and constancy of the
share of fossil fuels (about 80%) in terms of the primary energy demand; as a result, global
CO2 emissions continue to grow [1]. Coal-fired power plants are the largest point-source
emitters of CO2, with thousands of plants in operation worldwide. There is a growing
need to reduce their emissions as countries pursue options to meet their decarbonization
goals. Carbon capture and storage is the only option allowing for a reduction in CO2
emissions from coal plants while preserving their operation [2,3]. There are two types
of CO2 capture systems: pre-combustion and post-combustion capture systems. The
important factors to consider when choosing a capture system are the concentration of CO2
in the gas stream, the pressure of the gas stream, and the type of fuel (solid or gas). The
methods of gas purification from carbon dioxide can be divided into physical (physical
absorption, adsorption, and membrane methods) and chemical (chemical absorption,
catalytic hydrogenation, and enzymatic extraction) types.

Membrane gas separation has emerged as a compelling capture technology that
offers advantages over absorption (amine-based) capture alternatives, namely, simplicity,
compactness, easy scalability, environmental friendliness with no emissions, and the ability
to be operated solely using electricity. Membranes are also well suited for upgrading and
combination with other separation techniques. The main problem regarding the application
of membrane technology for the recovery of CO2 from flue gas is the low pressure of the
feed stream, which does not allow for the generation of a high driving force for the process.
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The compression of flue gas streams is economically impractical due to the very high flow
rates involved (about hundreds of m3/s); therefore, the only solution is to apply a vacuum,
sweeping, or both in the permeate side.

In [4], two simplified models of a single-stage membrane process for CO2 capture
from power plant flue gases (13% CO2, 87% N2, no O2, and no H2O) were considered
using the same membrane with equal pressure drop values. In this case, the difference lay
in the driving force regime: in the first model, it was proposed that a compressor would
be used to pump the initial gas flow, while in the second model, a vacuum pump on the
permeate side was considered. The vacuum scheme was found to be preferable since the
compressor must pump a large inlet gas stream, mainly N2, which significantly affects the
overall level of energy consumption. The vacuum scheme only needs to pump a permeate
stream, which is much lower than the feed flue gas stream. Regarding the choice of vacuum
scheme, the authors calculations showed that total energy consumption is reduced by 45%,
and the optimum vacuum value is 0.22 bar, while a lower permeate pressure is impractical.

Based on the chosen vacuum scheme, single-stage schemes of CO2 extraction from
the flue gases of a coal-fired power plant were considered. Calculations for cross-flow
and counter-current membrane module operation modes were performed at a permeate
pressure of 0.22 bar (Figure 1). To achieve a criterion of 2.1% CO2 in the retentate, it was
found that the required membrane area needed to be 40% lower, while the required level of
energy consumption need to be 28% lower for counter-current mode. Also, the counter-
current mode makes it possible to achieve 40.6% CO2 in the permeate and 28.9% in the
cross-flow mode. Nevertheless, a comparison of the different modes was only performed
for the N2/CO2 mixture, and this was conducted without accounting for the presence
of water vapor, whose content in flue gas is almost equal the amount of CO2 and can
noticeably affect the characteristics of separation process. Considering the advantages of
the counter-current operation, the process of CO2 capture in the presence of water vapor
and the sweeping of permeate with part of the retentate stream was considered (Figure 2).
Consequently, it was determined that the application of sweeping does not significantly
affect the concentration of CO2 in the permeate (after water condensation), but the required
membrane area drop is equal to 40%.
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Calculations were carried out with regard to a membrane with a CO2 permeance of
1000 GPU. Despite this high permeance, the required membrane area turned out to be large
(millions of m2), which greatly affects the capital costs.

According to an economic evaluation of CO2 capture [5], for membranes with a CO2
permeance of ~1000 GPU and a CO2/N2 selectivity ≤ 25, it is economically justifiable to
use a vacuum scheme or its combination with the compression of the feed stream. For
membranes with a higher CO2 permeance, it is preferable to use a vacuum scheme alone.
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All the considered variations of the one-stage process do not allow one to achieve
the 80% CO2 purity that has been declared to be the necessary value in the specifications
stipulated by the International Energy Agency [6]. In order to comply with the specifications
while using reasonable parameters for the process (in relation to the pressure of the feed and
permeate streams, among other considerations), it is necessary to apply two- or multi-stage
separation procedures. A study addressing this topic was presented in [7], where two-stage
separation was considered using different flow patterns in combination with membrane
modules to achieve 95% CO2 at a recovery value from 50 to 90%. It was found that the
scheme concerning the supply of the first-stage permeate to the second stage was more
energy efficient but required a larger membrane area. Regarding the retentate supply to the
second stage, the total required membrane area is smaller, but energy consumption rose
due to the need to increase pressure in order to provide the necessary CO2 transfer driving
force. In both cases, the application of a vacuum in the permeate is more preferable than
the compression of the feed stream.

There are a number of studies devoted to the analysis of CO2 recovery using mem-
branes based on different materials, including biopolymers (for example, chitosan and its
derivatives) or polymers, which demonstrate specific interactions with CO2 (facilitated
transport membranes [8]). For example, a comparative analysis of the application of dif-
ferent membranes, including facilitated transport membranes, for CO2 recovery from flue
gases of various sources was carried out in [9]. The properties of these materials and
membranes usually have a strong dependence on water vapor activity. This peculiarity
complicates the calculation of separation processes and makes the prediction of process
characteristics less reliable. Therefore, such types of membranes were not considered in this
work. Moreover, due to the need for millions of square meters of membrane surface to treat
typical flow rates of flue gas streams, industrial scale membrane production is necessary.

This paper represents a simulation of CO2 recovery from power plant flue gas through
a single-stage membrane process incorporating the application of a vacuum on perme-
ate side. Calculations were carried out for a wide range of commercially produced gas
separation membranes, and two modes of organizing flows in a membrane module were
considered in order to assess their potential for application in this task.

2. Materials and Methods
2.1. Commercial Gas Separation Membranes: Materials and Manufacturers

In order to simulate the process of CO2 recovery from power plant flue gas, com-
mercially produced polymer gas separation membranes based on polydimethylsiloxane
(PDMS), poly(vinyl-trimethyl-silane) (PVTMS), polyphenylene oxide (PPO), cellulose ac-
etate (CA), polysulfone (PSf), Tetrabromo polycarbonate (TBPC), and polyimide P84 were
selected. The manufacturers and polymer materials used are presented in Table 1.
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Table 1. Available data regarding manufacturing companies and materials used in the production of
commercial gas separation membranes.

Manufacturer Commercial Name Polymer Ref.

STC “Vladipor”, Vladimir, Russia MDK-1 PDMS-based copolymer [10]
NPO PJSC “Cryogenmash”, Balashikha, Russia PVTMS PVTMS [11]

Parker Hannifin, Cleveland, OH, USA Parker PPO [12]
UOP (A Honeywell Company), Charlotte, NC, USA

Schlumberger, Houston, TX, USA Separex, Cynara CA [12]

Air products, Allentown, PA, USA Prizm PSf [12]
MTR, 39630 Eureka Dr, Newark, CA, USA Polaris Gen-2 - [12]

Generon, 16250 Tomball Parkway Houston, TX, USA Generon TBPC [12]
Evonik, Essen, Germany Sepuran P84 [13]

The values of the permeability coefficients and selectivity of gases and water vapor
for the selected polymer materials found in the literature are presented in Table 2.

Table 2. Available data on CO2, N2, and water vapor permeability coefficients for membrane
polymers.

Polymer P (CO2), Barrer P (N2), Barrer P (H2O), Barrer α (CO2/N2) α (H2O/N2) Ref.

PDMS 3250 280 36,000 11.6 129 [14]
PVTMS 190 11.0 1450 17.3 132 [15]

PPO 56.0 2.50 4060 22.4 1620 [16,17]
CA 2.40 0.250 6800 9.60 27,200 [16,18]
PSf 5.60 0.250 2000 22.4 8000 [16,19]

TBPC 4.23 0.182 795 23.2 4370 [20]
P84 1.20 0.0240 1840 50.0 2080 [21]

2.2. Modeling of Membrane Process of CO2 Capture from Flue Gas

Mathematical modeling was carried out for a one-stage membrane process (Figure 3)
of carbon dioxide capture from the flue gases of coal fired power plants. Considering
the compared values regarding the water vapor content in flue gas compared with that
of CO2 along with the high membrane permeance for water vapor, a three-component
mixture N2/CO2/H2O was considered in model. Basic models of gas transfer in the mem-
brane module, which operates in cross-flow and counter-current modes, were considered.
Description of models is represented in Appendix A.
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Modeling of a one-stage membrane capture of carbon dioxide was carried out in
reference to a 50% degree of CO2 recovery; the other parameters used in the calculation are
given in Table 3. Characteristics of membranes used in modeling are given in Table 4.
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Table 3. The basis for the simulation of a membrane process for CO2 recovery from flue gases.

Parameters Values

Flue gas feed flow rate, m3 (STP)/h 1,800,000
Initial flue gas composition, mol%:

N2 69.3
CO2 12.7
H2O 18.0

Feed pressure (absolute), bar 1.1
Permeate pressure (absolute), bar 0.2–0.5

Temperature, ◦C 40

Table 4. Permeances of membranes used in calculations.

Polymer Membrane Selective Layer
Thickness, µm

Q (CO2)·106,
mol/(m2·s·kPa)

Q (N2)·106,
mol/(m2·s·kPa)

Q (H2O)·106,
mol/(m2·s·kPa)

PDMS 3.0 362 31.2 4010
MDK-1 * n/a 203 11.2 2040
PVTMS 0.2 318 18.4 2430

PPO 0.05 375 16.7 27,200
CA 0.10 7.99 0.790 22,700
PSf 0.05 37.5 1.70 13,400

Polaris Gen-2 n/a 737 14.8 1470 **
TBPC 0.10 13.8 0.590 2660
P84 0.10 4.05 0.0790 6270

* Calculated in [22,23]. ** Calculated in [4,24]. n/a—not available.

3. Results and Discussion

The validation of the mathematical model of CO2 capture from flue gas was carried
out via a comparison of the results of the calculations in [4] for the cross-flow and counter-
current modes. The calculated membrane area was found to be 11.1 and 6.5 Mm2 for
the cross-flow and counter-current modes, respectively, to achieve 2.1 mol% CO2 in the
retentate. The relative deviations of the obtained membrane area from the referenced work
are 0.9 and −4.6%, respectively, thus proving the model’s correctness.

Since the permeance of water vapor for the Polaris membrane has not been reported,
it was estimated using a developed mathematical model and data from [4] for the case of a
counter-flow/sweep module with wet feed. Estimation was carried out via the adjustment
of water vapor permeance to achieve 2.1 mol% of CO2 and 0.9 mol% of water vapor
in the retentate and 42.8 mol% of CO2 in the permeate after vapor condensation. The
obtained permeance of water vapor for the Polaris Gen-1 membrane was found to be
around 2000 GPU or 669 mol/(m2·s·kPa), which is two times higher than the permeance
of CO2 (1000 GPU). According to the data in [24] regarding the next-generation Polaris
membrane (Gen-2), the permeance of CO2 has risen to 2200 GPU, with a remaining degree
of CO2/N2 selectivity of 50. Therefore, the permeance of water vapor for the Polaris Gen-2
membrane was estimated to be two times higher than the permeance of CO2 (similar to
Polaris Gen-1), which is 4400 GPU or 1470 mol/(m2·s·kPa).

The dependences of the required membrane area on the permeate pressure in the
range of 0.2–0.5 bar (Figure 4a,b) were calculated with respect to achieving a 50% degree
of CO2 recovery. Increasing the permeating pressure required a larger area of all the
membranes due to the decrease in the driving force of CO2 permeation (the difference
between component partial pressures in the upstream and downstream regions). Among
the membranes considered in Figure 4a, the PDMS-based membrane provides the smallest
area and the MDK-1 membrane provides the largest area at low permeate pressure. The
obtained values are chiefly influenced by the permeance of CO2, which is 1.8 times lower
for the MDK-1 membrane compared to the membranes based on PDMS, PVTMS, and
PPO. Figure 4b shows the calculated dependencies for a group of membranes with much
lower CO2 permeance, namely, the CA-, PSf-, TBPC-, and P84-based membranes (for
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the P84-based membrane (Evonik), only a one-point reduction in permeate pressure was
calculated). The required membrane area for this group is one to two orders of magnitude
higher compared to the first group of membranes.
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Figure 4. The dependence of membrane area ((a) high permeance membranes for CO2, (b) low
permeance membranes for CO2) on permeate pressure for achieving a recovery of 50% of CO2:
lines—CF mode; markers—CnC mode.

Membranes based on PVTMS and PPO have a permeance of CO2 similar to the
PDMS-based membrane; nevertheless, the values of the required membrane area for
these membranes vary significantly. Such behavior can be explained by the influence
of the permeance of other components (N2 and H2O). Due to the low value of the feed-
to-permeate pressure ratio, the higher permeability of nitrogen and water vapor in the
PDMS-based membrane helps to dilute CO2 in the permeate, thereby reducing its partial
pressure and increasing the driving force for its transfer; therefore, the required membrane
area is lower. Such a situation leads to a counter-intuitive conclusion that lower-selectivity
CO2/N2 and CO2/H2O (and a higher permeance of the membrane for N2 and H2O)
provide better recovery of CO2. Figure 5 shows the dependence of membrane area on
CO2/N2 selectivity for membranes with almost similar CO2 permeances (PDMS, PVTMS,
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and PPO). Higher membrane selectivity results in a more rapid increase in membrane area
at a higher permeate pressure. If selectivity changes from 11.6 (for PDMS) to 22.4 (for PPO)
at a permeate pressure of 0.2 bar, the increase in membrane area is insignificant, while at
a permeate pressure of 0.5 bar, the increase in membrane area is around 1.6-fold. Thus,
lower selectivity can provide a benefit in terms of the required membrane area (CAPEX)
depending on the chosen process conditions. At the same time, lower selectivity leads to
the necessity of higher stage cuts to achieve the required degree of CO2 recovery (Figure 6);
for example, a selectivity change from 11.6 to 22.4 (for PPO) requires a decrease in stage
cuts of around 2.5 and 1.8% at permeate pressures of 0.2 and 0.5 bar, respectively. A lower
stage cut results in a demand for lower productivity of the vacuum pump and lower power
consumption (CAPEX and OPEX, respectively).
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The dependencies for the PVTMS- and PPO-based membranes are very close to each
other (Figure 4a) because of the similar permeances of CO2 (322 and 380 mol/(m2·s·kPa),
respectively) and N2 (18.6 and 16.9 mol/(m2·s·kPa), respectively) despite the considerable
difference in H2O permeance (see Table 4).
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In the case of low permeate pressure (0.2 bar), the required membrane area was also
calculated for the CnC mode. The obtained values of area appear to be higher than those
for the CF mode for all the considered membranes (markers in Figure 4). Such behavior
can be explained by the influence of water vapors on the driving force of CO2 transfer.
The corresponding concentration profiles of water vapor and CO2 in the upstream and
downstream for the CF and CnC modes of membrane module operation are presented in
Figure 7. For the CF mode, the water vapor concentration profile upstream is more “flat”
(Figure 7a), leading to high water vapor flux through the membrane over the entire area
and supporting the dilution of CO2 in the permeate by water vapor, which is especially
important near the retentate outlet, where the CO2 content upstream is low (Figure 7b).
Regarding the CnC mode, water vapor recovered more efficiently, and its content in the
upstream decreased much faster compared to the CF mode, which did not aid in the
dilution of CO2 in the permeate near the retentate outlet to provide higher driving force
and better CO2 recovery. Considering such behavior, further calculations were made solely
for the CF mode.
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The obtained dependencies of the CO2 molar fraction in the permeate (after the
condensation of water vapor) and the retentate on permeate pressure are shown in Figure 8.
At low permeate pressure, the selectivity of the membrane has a significant influence on
the CO2 concentration in the permeate. The Polaris membrane provides 73 mol% of CO2,
whereas the PDMS membrane only provides 49 mol% of CO2. The absolute values and
differences become less noticeable at higher permeate pressure; for example, at 0.5 bar,
the concentration of CO2 in the permeate is 33 and 29 mol% for the Polaris and PDMS
membranes, respectively. The behaviors of the dependencies of the CO2 concentration in
the retentate are opposite, but the effect of the selectivity of the membrane is relatively
weak: the entire range of CO2 molar fraction variation in the retentate is 7.9–9.3 mol%.
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Figure 8. The dependence of CO2 molar fraction in permeate (a) and retentate (b) on permeate
pressure for achieving 50% CO2 recovery.

An estimated calculation of specific energy was carried out considering the required
power for a vacuum pump as a main consumer. The calculated values were paired with the
corresponding relative area of membrane for a given pressure of a permeate. The obtained
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dependencies (Figure 9) can be used as the basis for a preliminary economic assessment for
the estimation of the OPEX and CAPEX for the considered process.
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Figure 9. Dependence of specific electrical energy consumption on the specific area of membrane
with varying permeate pressure 0.2–0.5 bar (numbers near markers) to achieve 50% CO2 recovery.

The dependencies are monotonous in all cases and show an increase in the specific
energy consumption as the area of membrane decreases, which is caused by a decrease
in permeate pressure. For a more accurate economic assessment (RUB/tonne (CO2)), it is
necessary to consider the cost of electricity and the cost of a unit of an installed membrane
area for a given membrane (including the cost of membrane modules, pipes, taps, valves,
etc., as well as the installation cost).

This study does not discuss all issues regarding the application of gas separation
membranes for CO2 recovery from flue gases. For example, the considered membranes are
mostly composed of hollow fibers that, in real applications, may lead to the appearance
of problems such as a noticeable pressure drop in the upstream (additional energy con-
sumption) and the downstream (a loss of vacuum) or the capillary condensation of water
vapor inside hollow fibers. The stability of membrane materials under process conditions
in the presence of typical impurities in flue gas also demands further research as it was first
conducted by the MTR company.

4. Conclusions

Our calculations show that highly permeable membranes provide similar indicators of
the separation process despite the significant variation in CO2/N2 and H2O/CO2 selectivity.
Among the highly permeable membranes, it was determined that the lowest required mem-
brane area corresponded to the PDMS-, PVTMS-, and PPO-based membranes and Polaris
Gen-1. Considering the development of more permeable second- and third-generation
Polaris membranes, these membranes will demonstrate almost absolute superiority over
other commercial membranes. Regarding the development of the CO2 recovery process
from flue gas using membrane technology, the high CO2 permeance of a membrane is more
important than high CO2/N2 selectivity. The presence of water vapor in flue gas provides
higher CO2 transfer through the membrane due to the dilution of CO2 in the permeate.
The cross-flow mode shows more effective CO2 recovery than the counter-current mode
because of the flatter concentration profile of the water vapor over the membrane, which
promotes the dilution of CO2 in the permeate.
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Nomenclature

A area of membrane, m2

a coordinate of membrane area, m2

J flow rate, mol/s
P permeability coefficient, barrer
p pressure, bar
Q permeance, mol/(m2·s·kPa)
y molar fraction, mol%
Greek letter
α selectivity of polymer/membrane
θ stage cut, %
θi recovery of component i, %
Superscript
0 initial value
F feed
P permeate
R retentate
Subscript
i component

Appendix A

The mathematical model includes the following assumptions: isothermal conditions;
plug flow in feed membrane module channel; permeate is drained from the membrane
without mixing between surrounding regions for the cross-flow mode or plug flow in the
permeate membrane module channel for the counter-current mode; and gas permeance is
independent of feed gas composition and process conditions (Figures A1 and A2).
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Cross-flow mode: 
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used in the modeling.
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The system of equations was solved numerically using the finite difference method.
Stage cut and CO2 recovery were calculated using the following equations:
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