Next Issue
Volume 13, August
Previous Issue
Volume 13, June
 
 

Membranes, Volume 13, Issue 7 (July 2023) – 77 articles

Cover Story (view full-size image): Nanofiltration membranes are used in many industrial processes, as they retain many types of small molecules. The performance of these membranes fundamentally depends on the membrane pore radius and on the physical characteristics of the polymer on the active layer. Typically, the membrane pore radius is calculated mathematically based on the rejection of glucose, as it is an uncharged and fairly spherical molecule. However, closed membranes show very high glucose rejection values, resulting in an inconsistent membrane pore radius. Other smaller alcohol-based molecules can also be used, although they can act as solvents and interact with the membrane matrix. This study proposes to determine the pore radius of nanofiltration membranes based on the rejection of small amino acids, such as glycine, which show zero net charge at pH between 4.5 and 6.5. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 18600 KiB  
Article
Design and Optimization of a Novel Hybrid Membrane–Electrochemical Hydrogen Pump Process for Recovering Helium from NRU off Gas
Membranes 2023, 13(7), 689; https://doi.org/10.3390/membranes13070689 - 24 Jul 2023
Viewed by 855
Abstract
Due to the low boiling point of helium, the nitrogen-rich off gas of the nitrogen rejection unit (NRU) in the liquefied natural gas (LNG) plant usually contains a small amount of CH4, approximately 1–4% He, and associated gases, such as H [...] Read more.
Due to the low boiling point of helium, the nitrogen-rich off gas of the nitrogen rejection unit (NRU) in the liquefied natural gas (LNG) plant usually contains a small amount of CH4, approximately 1–4% He, and associated gases, such as H2. However, it is difficult to separate hydrogen and helium. Here, we propose two different integrated processes coupled with membrane separation, pressure swing adsorption (PSA), and the electrochemical hydrogen pump (EHP) based on different sequences of hydrogen gas removal. Both processes use membrane separation and PSA in order to recover and purify helium, and the EHP is used to remove hydrogen. The processes were strictly simulated using UniSim Design, and an economic assessment was conducted. The results of the economic assessment show that flowsheet #2 was more cost-effective due to the significant reduction in the capacity of the compressor and PSA because of the pre-removal of hydrogen. Additionally, using the response surface methodology (RSM), a Box–Behnken design experiment was conducted, and an accurate and reliable quadratic response surface regression model was fitted through variance analysis. The optimized operating parameters for the integrated process were determined as follows: the membrane area of M101 was 966.6 m2, the permeate pressure of M101 was 100 kPa, and the membrane area of M102 was 41.2 m2. The maximum recovery fraction was 90.66%, and the minimum cost of helium production was 2.21 $/kg. Thus, proposed flowsheet #2 has prospects and value for industrial application. Full article
(This article belongs to the Special Issue Development and Application of Membrane Separation Processes)
Show Figures

Figure 1

13 pages, 3060 KiB  
Article
Preparation of Thin Film Composite (TFC) Membrane with DESPs Interlayer and Its Forward Osmosis (FO) Performance for Organic Solvent Recovery
Membranes 2023, 13(7), 688; https://doi.org/10.3390/membranes13070688 - 24 Jul 2023
Viewed by 858
Abstract
To explore the application of forward osmosis (FO) technology in the organic solvent recovery field, we prepared a new solvent-resistant triple layer thin film composite (TFC) membrane on the PI (polyimide) substrate. The deep eutectic supramolecular polymers (DESPs) interlayer was constructed on the [...] Read more.
To explore the application of forward osmosis (FO) technology in the organic solvent recovery field, we prepared a new solvent-resistant triple layer thin film composite (TFC) membrane on the PI (polyimide) substrate. The deep eutectic supramolecular polymers (DESPs) interlayer was constructed on the substrate to improve the separation performance and solvent resistance. DESPs interlayer was formed by mixing and heating with cyclodextrin as the hydrogen bond acceptor and L-malic acid as the hydrogen bond donor. The chemical changes, surface property and morphology of the composite membrane with DESPs interlayer were characterized. The separation performance and stability of the triple layer composite membrane in organic solvent FO were studied. For the monascorubrin-ethanol system, the permeation flux of TFC/DESPs5-PI membrane could reach 9.51 LMH while the rejection rate of monascorubrin was 98.4% (1.0 M LiCl/ethanol as draw solution), which was better than the pristine membrane. Therefore, this solvent-resistant triple layer composite FO membrane has good potential for the recovery of organic solvents. Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes 2.0)
Show Figures

Figure 1

4 pages, 180 KiB  
Editorial
Introduction to the Topic of the Special Issue “Progresses and Challenges of Block Copolymer Membranes” from the Guest Editor
Membranes 2023, 13(7), 687; https://doi.org/10.3390/membranes13070687 - 24 Jul 2023
Viewed by 567
Abstract
It is well-known that various mixtures that require separation have to be dealt with in many branches of industry, especially the chemical and petrochemical industries [...] Full article
(This article belongs to the Special Issue Progresses and Challenges of Block Copolymer Membranes)
11 pages, 1237 KiB  
Article
Safety and Effectiveness of Carbon Dioxide Removal CO2RESET Device in Critically Ill Patients
Membranes 2023, 13(7), 686; https://doi.org/10.3390/membranes13070686 - 24 Jul 2023
Viewed by 868
Abstract
Background: In this retrospective study, we report the effectiveness and safety of a dedicated extracorporeal carbon dioxide removal (ECCO2R) device in critically ill patients. Methods: Adult patients on mechanical ventilation due to acute respiratory distress syndrome (ARDS) or decompensated chronic obstructive [...] Read more.
Background: In this retrospective study, we report the effectiveness and safety of a dedicated extracorporeal carbon dioxide removal (ECCO2R) device in critically ill patients. Methods: Adult patients on mechanical ventilation due to acute respiratory distress syndrome (ARDS) or decompensated chronic obstructive pulmonary disease (dCOPD), who were treated with a dedicated ECCO2R device (CO2RESET, Eurosets, Medolla, Italy) in case of hypercapnic acidemia, were included. Repeated measurements of CO2 removal (VCO2) at baseline and 1, 12, and 24 h after the initiation of therapy were recorded. Results: Over a three-year period, 11 patients received ECCO2R (median age 60 [43–72] years) 3 (2–39) days after ICU admission; nine patients had ARDS and two had dCOPD. Median baseline pH and PaCO2 levels were 7.27 (7.12–7.33) and 65 (50–84) mmHg, respectively. With a median ECCO2R blood flow of 800 (500–800) mL/min and maximum gas flow of 6 (2–14) L/min, the VCO2 at 12 h after ECCO2R initiation was 157 (58–183) mL/min. Tidal volume, respiratory rate, and driving pressure were significantly reduced over time. Few side effects were reported. Conclusions: In this study, a dedicated ECCO2R device provided a high VCO2 with a favorable risk profile. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

29 pages, 2156 KiB  
Review
A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs)
Membranes 2023, 13(7), 685; https://doi.org/10.3390/membranes13070685 - 24 Jul 2023
Cited by 4 | Viewed by 2165
Abstract
Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane’s external and internal [...] Read more.
Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane’s external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction. Full article
Show Figures

Figure 1

15 pages, 2515 KiB  
Article
NMR Investigation of Water Molecular Dynamics in Sulfonated Polysulfone/Layered Double Hydroxide Composite Membranes for Proton Exchange Membrane Fuel Cells
Membranes 2023, 13(7), 684; https://doi.org/10.3390/membranes13070684 - 22 Jul 2023
Viewed by 770
Abstract
The development of nanocomposite membranes based on hydrocarbon polymers is emerging as one of the most promising strategies for overcoming the performance, cost, and safety limitations of Nafion, which is the current benchmark in proton exchange membranes for fuel cell applications. Among the [...] Read more.
The development of nanocomposite membranes based on hydrocarbon polymers is emerging as one of the most promising strategies for overcoming the performance, cost, and safety limitations of Nafion, which is the current benchmark in proton exchange membranes for fuel cell applications. Among the various nanocomposite membranes, those based on sulfonated polysulfone (sPSU) and Layered Double Hydroxides (LDHs) hold promise regarding their successful utilization in practical applications due to their interesting electrochemical performance. This study aims to elucidate the effect of LDH introduction on the internal arrangement of water molecules in the hydrophilic clusters of sPSU and on its proton transport properties. Swelling tests, NMR characterization, and Electrochemical Impedance Spectroscopy (EIS) investigation allowed us to demonstrate that LDH platelets act as physical crosslinkers between -SO3H groups of adjacent polymer chains. This increases dimensional stability while simultaneously creating continuous paths for proton conduction. This feature, combined with its impressive water retention capability, allows sPSU to yield a proton conductivity of ca. 4 mS cm−1 at 90 °C and 20% RH. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes - 2nd Edition)
Show Figures

Figure 1

14 pages, 4761 KiB  
Article
Experimental Evaluation of the Process Performance of MF and UF Membranes for the Removal of Nanoplastics
Membranes 2023, 13(7), 683; https://doi.org/10.3390/membranes13070683 - 21 Jul 2023
Viewed by 924
Abstract
Despite the high removal ability of the wastewater treatment technologies, research efforts have been limited to the relatively large-sized microplastics, leaving nanoplastics outside the studied size spectrum. This study aims to evaluate the process performance of MF and UF membranes for the removal [...] Read more.
Despite the high removal ability of the wastewater treatment technologies, research efforts have been limited to the relatively large-sized microplastics, leaving nanoplastics outside the studied size spectrum. This study aims to evaluate the process performance of MF and UF membranes for the removal of single and mixed solutions of polystyrene nanospheres (120 and 500 nm) and BSA. The process performance was evaluated in terms of the rejection coefficient, the normalized flux, and the permeability recovery. The fouling mechanism of these pollutants was studied, evaluating the effect of different membrane materials, membrane pore sizes, and nanoplastic sizes, as well as the synergetic effect of the mixture of foulants. This study was complemented by surface membrane characterization. Polystyrene nanospheres were successfully removed with all the membranes studied, except for the MF membrane that obtained PS 120 nm rejection coefficients of 26%. Single nanoplastic particles were deposited in UF membranes creating a pore blocking and cake layer formation, whilst the nanoplastics of 120 nm were accumulated inside the MF membrane creating an internal pore blocking. In mixed solutions, the BSA acted in two different ways: (i) as a stabilizer, hindering the deposition of nanoplastics and (ii) as a main foulant that caused a substantial flux reduction. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

14 pages, 2862 KiB  
Article
Electrochemical Sensor Based on the Hierarchical Carbon Nanocomposite for Highly Sensitive Ciprofloxacin Determination
Membranes 2023, 13(7), 682; https://doi.org/10.3390/membranes13070682 - 21 Jul 2023
Cited by 3 | Viewed by 825
Abstract
A new voltammetry method for the highly sensitive antibacterial drug ciprofloxacin (CIP) is presented using glassy carbon electrodes modified with hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The use of a modified glassy carbon electrode in the form of hierarchical electrospun carbon [...] Read more.
A new voltammetry method for the highly sensitive antibacterial drug ciprofloxacin (CIP) is presented using glassy carbon electrodes modified with hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The use of a modified glassy carbon electrode in the form of hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo) led to an LOD value as low as 6.0 µmol L−1 with a measurement sensitivity of 3.33 µA µmol L−1. The described procedure was successfully applied for CIP determination in samples with complex matrices, such as urine or plasma, and also in pharmaceutical products and antibiotic discs with satisfactory recovery values ranging between 94–104%. The proposed electrode was characterised by great stability, with the possibility of use for about 4 weeks without any significant change in the CIP peak current. The repeatability of the CIP response on the eCNF/CNT/NiCo/GC is also very good; its value measured and expressed as RSD is equal to 2.4% for a CIP concentration of 0.025 µmol L−1 (for 7 consecutive CIP voltammogram registrations). The procedure for electrode preparation is quick and simple and does not involve the use of expensive apparatus. Full article
(This article belongs to the Section Membrane Surfaces and Interfaces)
Show Figures

Figure 1

23 pages, 2985 KiB  
Article
Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells
Membranes 2023, 13(7), 681; https://doi.org/10.3390/membranes13070681 - 20 Jul 2023
Viewed by 1014
Abstract
Despite the undisputable role of the protein corona in the biointeractions of liposome drug carriers, the field suffers from a lack of knowledge regarding the patterns of protein deposition on lipid surfaces with different compositions. Here, we investigated the protein coronas formed on [...] Read more.
Despite the undisputable role of the protein corona in the biointeractions of liposome drug carriers, the field suffers from a lack of knowledge regarding the patterns of protein deposition on lipid surfaces with different compositions. Here, we investigated the protein coronas formed on liposomes of basic compositions containing combinations of egg phosphatidylcholine (PC), palmitoyloleoyl phosphatidylglycerol (POPG), and cholesterol. Liposome−protein complexes isolated by size-exclusion chromatography were delipidated and analyzed using label-free LC-MS/MS. The addition of the anionic lipid and cholesterol both affected the relative protein abundances (and not the total bound proteins) in the coronas. Highly anionic liposomes, namely those containing 40% POPG, carried corona enriched with cationic proteins (apolipoprotein C1, beta-2-glycoprotein 1, and cathelicidins) and were the least stable in the calcein release assay. Cholesterol improved the liposome stability in the plasma. However, the differences in the corona compositions had little effect on the liposome uptake by endothelial (EA.hy926) and phagocytic cells in the culture (U937) or ex vivo (blood-derived monocytes and neutrophils). The findings emphasize that the effect of protein corona on the performance of the liposomes as drug carriers occurs through compromising particle stability rather than interfering with cellular uptake. Full article
(This article belongs to the Special Issue Regulation and Interactions of Lipid Membranes)
Show Figures

Figure 1

16 pages, 8410 KiB  
Article
Electrodeposited Ionomer Protection Layer for Negative Electrodes in Zinc–Air Batteries
Membranes 2023, 13(7), 680; https://doi.org/10.3390/membranes13070680 - 20 Jul 2023
Cited by 1 | Viewed by 1020
Abstract
The protection of zinc anodes in zinc–air batteries (ZABs) is an efficient way to reduce corrosion and Zn dendrite formation and improve cyclability and battery efficiency. Anion-conducting poly(N-vinylbenzyl N,N,N-trimethylammonium)chloride (PVBTMA) thin films were electrodeposited directly on zinc metal using cyclic voltammetry. This deposition [...] Read more.
The protection of zinc anodes in zinc–air batteries (ZABs) is an efficient way to reduce corrosion and Zn dendrite formation and improve cyclability and battery efficiency. Anion-conducting poly(N-vinylbenzyl N,N,N-trimethylammonium)chloride (PVBTMA) thin films were electrodeposited directly on zinc metal using cyclic voltammetry. This deposition process presents a combination of advantages, including selective anion transport in PVBTMA reducing zinc crossover, high interface quality by electrodeposition improving the corrosion protection of zinc and high ionomer stiffness opposing zinc dendrite perforation. The PVBTMA layer was observed by optical and electron microscopy, and the wettability of the ionomer-coated surface was investigated by contact angle measurements. ZABs with PVBTMA-coated Zn showed an appreciable and stable open-circuit voltage both in alkaline electrolyte (1.55 V with a Pt cathode) and in miniaturized batteries (1.31 V with a carbon paper cathode). Cycling tests at 0.5 mA/cm2 within voltage limits of 2.1 and 0.8 V gave a stable discharge capacity for nearly 100 cycles with a liquid electrolyte and more than 20 cycles in miniaturized batteries. The faster degradation of the latter ZAB was attributed to the clogging of the carbon air cathode and drying or carbonation of the electrolyte sorbed in a Whatman paper. Full article
(This article belongs to the Collection Feature Papers in Membrane Chemistry)
Show Figures

Figure 1

20 pages, 2585 KiB  
Review
Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review
Membranes 2023, 13(7), 679; https://doi.org/10.3390/membranes13070679 - 20 Jul 2023
Cited by 1 | Viewed by 1441
Abstract
Fruit juice is an essential food product that has received significant acceptance among consumers. Harmonized concentration, preservation of nutritional constituents, and heat-responsive sensorial of fruit juices are demanding topics in food processing. Membrane separation is a promising technology to concentrate juice at minimal [...] Read more.
Fruit juice is an essential food product that has received significant acceptance among consumers. Harmonized concentration, preservation of nutritional constituents, and heat-responsive sensorial of fruit juices are demanding topics in food processing. Membrane separation is a promising technology to concentrate juice at minimal pressure and temperatures with excellent potential application in food industries from an economical, stable, and standard operation view. Microfiltration (MF) and ultrafiltration (UF) have also interested fruit industries owing to the increasing demand for reduced pressure-driven membranes. UF and MF membranes are widely applied in concentrating, clarifying, and purifying various edible products. However, the rising challenge in membrane technology is the fouling propensity which undermines the membrane’s performance and lifespan. This review succinctly provides a clear and innovative view of the various controlling factors that could undermine the membrane performance during fruit juice clarification and concentration regarding its selectivity and permeance. In this article, various strategies for mitigating fouling anomalies during fruit juice processing using membranes, along with research opportunities, have been discussed. This concise review is anticipated to inspire a new research platform for developing an integrated approach for the next-generation membrane processes for efficient fruit juice clarification. Full article
(This article belongs to the Special Issue Membrane Technologies in Food Industry and Bioprocessing)
Show Figures

Figure 1

16 pages, 4616 KiB  
Article
Enhancing Polysulfone Mixed-Matrix Membranes with Amine-Functionalized Graphene Oxide for Air Dehumidification and Water Treatment
Membranes 2023, 13(7), 678; https://doi.org/10.3390/membranes13070678 - 19 Jul 2023
Cited by 4 | Viewed by 1231
Abstract
Porous low-pressure membranes have been used as active membranes in water treatment and as support for thin-film composite membranes used in water desalination and gas separation applications. In this article, microfiltration polysulfone (PSf)mixed-matrix membranes (MMM) containing amine-functionalized graphene oxide (GO-NH2) were [...] Read more.
Porous low-pressure membranes have been used as active membranes in water treatment and as support for thin-film composite membranes used in water desalination and gas separation applications. In this article, microfiltration polysulfone (PSf)mixed-matrix membranes (MMM) containing amine-functionalized graphene oxide (GO-NH2) were fabricated via a phase inversion process and characterized using XPS, SEM, AFM, DMA, XRD, and contact angle measurements. The effect of GO-NH2 concentration on membrane morphology, hydrophilicity, mechanical properties, and oil–water separation performance was analyzed. Significant enhancements in membrane hydrophilicity, porosity, mechanical properties, permeability, and selectivity were achieved at very low GO-NH2 concentrations (0.05–0.2 wt.%). In particular, the water permeability of the membrane containing 0.2 wt.% GO-NH2 was 92% higher than the pure PSf membrane, and the oil rejection reached 95.6% compared to 91.7% for the pure PSf membrane. The membrane stiffness was also increased by 98% compared to the pure PSf membrane. Importantly, the antifouling characteristics of the PSf-GO-NH2 MMMs were significantly improved. When filtering 100 ppm bovine serum albumin (BSA) solution, the PSf-GO-NH2 MMMs demonstrated a slower flux decline and an impressive flux recovery after washing. Notably, the control membrane showed a flux recovery of only 69%, while the membrane with 0.2 wt.% GO-NH2 demonstrated an exceptional flux recovery of 88%. Furthermore, the membranes exhibited enhanced humidity removal performance, with a permeance increase from 13,710 to 16,408. These results indicate that the PSf-GO-NH2 MMM is an excellent candidate for reliable oil–water separation and humidity control applications, with notable improvements in antifouling performance. Full article
(This article belongs to the Special Issue Nanocomposite Membranes for Water Treatment and Desalination)
Show Figures

Figure 1

24 pages, 3159 KiB  
Review
Recent Developments in Two-Dimensional Materials-Based Membranes for Oil–Water Separation
Membranes 2023, 13(7), 677; https://doi.org/10.3390/membranes13070677 - 18 Jul 2023
Cited by 2 | Viewed by 1344
Abstract
The industrialization witnessed in the last century has resulted in an unprecedented increase in water pollution. In particular, the water pollution induced by oil contaminants from oil spill accidents, as well as discharges from pharmaceutical, oil/gas, and metal processing industries, have raised concerns [...] Read more.
The industrialization witnessed in the last century has resulted in an unprecedented increase in water pollution. In particular, the water pollution induced by oil contaminants from oil spill accidents, as well as discharges from pharmaceutical, oil/gas, and metal processing industries, have raised concerns due to their potential to pose irreversible threats to the ecosystems. Therefore, the effective treating of these large volumes of oily wastewater is an inevitable challenge to address. Separating oil–water mixtures by membranes has been an attractive technology due to the high oil removal efficiency and low energy consumption. However, conventional oil–water separation membranes may not meet the complex requirements for the sustainable treatment of wastewater due to their relatively shorter life cycle, lower chemical and thermal stability, and permeability/selectivity trade-off. Recent advancements in two-dimensional (2D) materials have provided opportunities to address these challenges. In this article, we provide a brief review of the most recent advancements in oil–water separation membranes modified with 2D materials, with a focus on MXenes, graphenes, metal–organic frameworks, and covalent organic frameworks. The review briefly covers the backgrounds, concepts, fabrication methods, and the most recent representative studies. Finally, the review concludes by describing the challenges and future research directions. Full article
Show Figures

Figure 1

16 pages, 489 KiB  
Article
Impact of SWMM Fouling and Position on the Performance of SWRO Systems in Operating Conditions of Minimum SEC
Membranes 2023, 13(7), 676; https://doi.org/10.3390/membranes13070676 - 18 Jul 2023
Cited by 1 | Viewed by 699
Abstract
Due to water stress in the world in general desalination technologies are becoming increasingly important. Among the available technologies, reverse osmosis (RO) is the most widespread due to its reliability and efficiency compared to other technologies. The main weakness of RO is the [...] Read more.
Due to water stress in the world in general desalination technologies are becoming increasingly important. Among the available technologies, reverse osmosis (RO) is the most widespread due to its reliability and efficiency compared to other technologies. The main weakness of RO is the loss of performance due to membrane fouling, which usually affects the water permeability coefficient (A), causing it to decrease. In RO desalination plants, fouling does not affect all spiral wound membrane modules (SWMMs) in the pressure vessels (PVs) in the same way. This will depend on the type of fouling and the position of the SWMM inside the PV. In this study, the impact of A and the position of the SWMM on the performance of the RO system is analyzed. For this purpose, decrements of up to 50% have been assumed for the seven SWMMs in series considering nine commercial SWMM models. The operating point analyzed is that which minimizes the specific energy consumption (SEC), a point obtained in a previous work carried out by the authors. The results show how the impact of A on the SWMM in the first position is more significant than the impact on modules that are in another position for the nine SWRO models studied. A drop of 50% in the coefficient A of the first element produces a permeate loss in the pressure pipe between 0.67 and 1.35 m3 d1. Furthermore, it was observed that the models with the lowest coefficient A exhibited the highest performance losses in terms of permeate production when A was decreased. Full article
Show Figures

Figure 1

24 pages, 6624 KiB  
Article
Effects of the Applied Potential on the Performance of Polysulfone Membranes Functionalized with Sulfonated Polyether Ether Ketone Polymers
Membranes 2023, 13(7), 675; https://doi.org/10.3390/membranes13070675 - 18 Jul 2023
Cited by 1 | Viewed by 901
Abstract
The global water crisis growth has led to a tremendous increase in membrane technology research. Membranes are favored over many other technologies for water treatment because, in principle, they require no chemical additives and can be used isothermally at low temperatures. Membranes that [...] Read more.
The global water crisis growth has led to a tremendous increase in membrane technology research. Membranes are favored over many other technologies for water treatment because, in principle, they require no chemical additives and can be used isothermally at low temperatures. Membranes that can reject contaminants and salts, produce adequate permeate flux values, and require minimal cleaning are highly demanded. However, most synthesized membranes on the market have associated problems, such as membrane fouling; inverse relationships between flux and solute rejection; and the high cost of synthesis, operation, and maintenance. Therefore, there is a continuied need to produce membranes with properties that make them able to sustain flux and selectivity over time. This research study focused on increasing the surface charge and hydrophilicity of polysulfone (PSf) membranes by incorporating sulfonate-functionalized poly-ether-ether-ketone (SPEEK) into PSf/N-Methyl-2-pyrrolidone (PSf/NMP) membranes. The sulfonation of the PEEK provided a net increase in negative charge on the surface of the membranes that enabled charge repulsion to take place, thus increasing the rejection of ions. In this project, the effect of the applied potential on the performance of SPEEK: PSf/NMP membranes was evaluated. The characterization of the as-synthesized membranes was carried out using the surface’s structure and morphology, contact angle, and zeta potential. Furthermore, a voltage of 1.5 V was applied to the membranes in the presence of various salts (sodium chloride, calcium chloride, and potassium chloride salts) to evaluate the effects of the applied potential on solute rejection. It was found that both the permeability and the selectivity of the membranes increased when the voltage was applied. The obtained results indicate that incorporating SPEEK into PSf/NMP membranes increased the hydrophilicity of the membranes, and under the applied voltage, the incorporation allowed it to function as an electrodialysis process that is capable of removing ions from water bodies by utilizing the charge repulsion of ions. Full article
(This article belongs to the Special Issue Surface Modification and Performance Enhancement for Membranes)
Show Figures

Graphical abstract

28 pages, 4981 KiB  
Article
Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics
Membranes 2023, 13(7), 674; https://doi.org/10.3390/membranes13070674 - 17 Jul 2023
Cited by 1 | Viewed by 1130
Abstract
This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were [...] Read more.
This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were prepared by encapsulation of 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) multilayered vesicles (MLVs) loaded with ferulic acid (FA), i.e., DPPC:FA liposomes, into gelatin hydrogel membranes containing dispersed iron oxide nanoparticles (MNPs), i.e., magnetic-responsive gelatin. The FA release mechanisms and kinetics from magnetic-responsive liposomal gelatin were studied and compared with those obtained with conventional drug delivery systems, e.g., free liposomal suspensions and hydrogel matrices, to access the effect of liposome entrapment and magnetic field on FA delivery. FA release from liposomal gelatin membranes was well described by the Korsmeyer–Peppas model, indicating that FA release occurred under a controlled diffusional regime, with or without magnetic stimulation. DPPC:FA liposomal gelatin systems provided smoother controlled FA release, relative to that obtained with the liposome suspensions and with the hydrogel platforms, suggesting the promising application of liposomal hydrogel systems in longer-term therapeutics. The magnetic field, with low intensity (0.08 T), was found to stimulate the FA release from magnetic-responsive liposomal gelatin systems, increasing the release rates while shifting the FA release to a quasi-Fickian mechanism. The magnetic-responsive liposomal hydrogels developed in this work offer the possibility to magnetically activate drug release from these liposomal platforms based on a non-thermal related delivery strategy, paving the way for the development of novel and more efficient applications of MLVs and liposomal delivery systems in biomedicine. Full article
(This article belongs to the Special Issue Preparation and Application of Advanced Functional Membranes)
Show Figures

Graphical abstract

23 pages, 4028 KiB  
Review
Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products
Membranes 2023, 13(7), 673; https://doi.org/10.3390/membranes13070673 - 16 Jul 2023
Viewed by 1357
Abstract
The demand for bioactive molecules with nutritional benefits and pharmaceutically important properties is increasing, leading researchers to develop modified production strategies with low-cost purification processes. Recent developments in bioreactor technology can aid in the production of valuable products. Enzyme membrane bioreactors (EMRs) are [...] Read more.
The demand for bioactive molecules with nutritional benefits and pharmaceutically important properties is increasing, leading researchers to develop modified production strategies with low-cost purification processes. Recent developments in bioreactor technology can aid in the production of valuable products. Enzyme membrane bioreactors (EMRs) are emerging as sustainable synthesis processes in various agro-food industries, biofuel applications, and waste management processes. EMRs are modified reactors used for chemical reactions and product separation, particularly large-molecule hydrolysis and the conversion of macromolecules. EMRs generally produce low-molecular-weight carbohydrates, such as oligosaccharides, fructooligosaccharides, and gentiooligosaccharides. In this review, we provide a comprehensive overview of the use of EMRs for the production of valuable products, such as oligosaccharides and oligodextrans, and we discuss their application in the bioconversion of inulin, lignin, and sugars. Furthermore, we critically summarize the application and limitations of EMRs. This review provides important insights that can aid in the production of valuable products by food and pharmaceutical industries, and it is intended to assist scientists in developing improved quality and environmentally friendly prebiotics using EMRs. Full article
(This article belongs to the Special Issue Development and Application of Membrane Separation Processes)
Show Figures

Figure 1

16 pages, 3722 KiB  
Article
Mesoporous SiC-Based Photocatalytic Membranes and Coatings for Water Treatment
Membranes 2023, 13(7), 672; https://doi.org/10.3390/membranes13070672 - 16 Jul 2023
Viewed by 766
Abstract
Photocatalytically active silicon carbide (SiC)-based mesoporous layers (pore sizes between 5 and 30 nm) were synthesized from preceramic polymers (polymer-derived ceramic route) on the surface and inside the pores of conventional macroporous α-alumina supports. The hybrid membrane system obtained, coupling the separation and [...] Read more.
Photocatalytically active silicon carbide (SiC)-based mesoporous layers (pore sizes between 5 and 30 nm) were synthesized from preceramic polymers (polymer-derived ceramic route) on the surface and inside the pores of conventional macroporous α-alumina supports. The hybrid membrane system obtained, coupling the separation and photocatalytical properties of SiC thin films, was characterized by different static and dynamic techniques, including gas and liquid permeation measurements. The photocatalytic activity was evaluated by considering the degradation efficiency of a model organic pollutant (methylene blue, MB) under UV light irradiation in both diffusion and permeation modes using SiC-coated macroporous supports. Specific degradation rates of 1.58 × 10−8 mol s−1 m−2 and 7.5 × 10−9 mol s−1 m−2 were obtained in diffusion and permeation modes, respectively. The performance of the new SiC/α-Al2O3 materials compares favorably to conventional TiO2-based photocatalytic membranes, taking advantage of the attractive physicochemical properties of SiC. The developed synthesis strategy yielded original photocatalytic SiC/α-Al2O3 composites with the possibility to couple the ultrafiltration SiC membrane top-layer with the SiC-functionalized (photocatalytic) macroporous support. Such SiC-based materials and their rational associations on porous supports offer promising potential for the development of efficient photocatalytic membrane reactors and contactors for the continuous treatment of polluted waters. Full article
(This article belongs to the Special Issue Honorary Issue for Prof João G. Crespo)
Show Figures

Graphical abstract

16 pages, 2100 KiB  
Article
ΔM4: Membrane-Active Peptide with Antitumoral Potential against Human Skin Cancer Cells
Membranes 2023, 13(7), 671; https://doi.org/10.3390/membranes13070671 - 14 Jul 2023
Cited by 1 | Viewed by 1031
Abstract
Peptides have become attractive potential agents due to their affinity to cancer cells. In this work, the biological activity of the peptide ΔM4 against melanoma cancer cell line A375, epidermoid carcinoma cell line A431, and non-tumoral HaCaT cells was evaluated. The cytotoxic MTT [...] Read more.
Peptides have become attractive potential agents due to their affinity to cancer cells. In this work, the biological activity of the peptide ΔM4 against melanoma cancer cell line A375, epidermoid carcinoma cell line A431, and non-tumoral HaCaT cells was evaluated. The cytotoxic MTT assay demonstrates that ΔM4 show five times more activity against cancer than non-cancer cells. The potential membrane effect of ΔM4 was evaluated through lactate dehydrogenase release and Sytox uptake experiments. The results show a higher membrane activity of ΔM4 against A431 in comparison with the A375 cell line at a level of 12.5 µM. The Sytox experiments show that ΔM4 has a direct effect on the permeability of cancer cells in comparison with control cells. Infrared spectroscopy was used to study the affinity of the peptide to membranes resembling the composition of tumoral and non-tumoral cells. The results show that ΔM4 induces a fluidization effect on the tumoral lipid system over 5% molar concentration. Finally, to determine the appearance of phosphatidylserine on the surface of the cell, flow cytometry analyses were performed employing an annexin V–PE conjugate. The results suggest that 12.5 µM of ΔM4 induces phosphatidylserine translocation in A375 and A431 cancer cells. The findings of this study support the potential of ΔM4 as a selective agent for targeting cancer cells. Its mechanism of action demonstrated selectivity, membrane-disrupting effects, and induction of phosphatidylserine translocation. Full article
(This article belongs to the Special Issue Biological Membrane and Bioactive Compounds Interactions)
Show Figures

Figure 1

13 pages, 2650 KiB  
Article
Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals
Membranes 2023, 13(7), 670; https://doi.org/10.3390/membranes13070670 - 14 Jul 2023
Cited by 1 | Viewed by 955
Abstract
The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to treat systemic mycoses due to its wide antifungal activity and low probability of developing resistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially resolved by lowering [...] Read more.
The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to treat systemic mycoses due to its wide antifungal activity and low probability of developing resistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially resolved by lowering therapeutic AmB concentration while maintaining efficacy. This work discusses the possibility of using plant polyphenols and alkaloids to enhance the pore-forming and consequently antifungal activity of AmB. We demonstrated that phloretin, phlorizin, naringenin, taxifolin, quercetin, biochanin A, genistein, resveratrol, and quinine led to an increase in the integral AmB-induced transmembrane current in the bilayers composed of palmitoyloleoylphosphocholine and ergosterol, while catechin, colchicine, and dihydrocapsaicin did not practically change the AmB activity. Cardamonin, 4′-hydroxychalcone, licochalcone A, butein, curcumin, and piperine inhibited AmB-induced transmembrane current. Absorbance spectroscopy revealed no changes in AmB membrane concentration with phloretin addition. A possible explanation of the potentiation is related to the phytochemical-produced changes in the elastic membrane properties and the decrease in the energy of formation of the lipid mouth of AmB pores, which is partially confirmed by differential scanning microcalorimetry. The possibility of AmB interaction with cholesterol in the mammalian cell membranes instead of ergosterol in fungal membranes, determines its high toxicity. The replacement of ergosterol with cholesterol in the membrane lipid composition led to a complete loss or a significant decrease in the potentiating effects of tested phytochemicals, indicating low potential toxicity of these compounds and high therapeutic potential of their combinations with the antibiotic. The discovered combinations of AmB with plant molecules that enhance its pore-forming ability in ergosterol-enriched membranes, seem to be promising for further drug development in terms of the toxicity decrease and efficacy improvement. Full article
Show Figures

Figure 1

17 pages, 4976 KiB  
Article
Development of Hydrogen–Oxygen Fuel Cells Based on Anion-Exchange Electrolytes and Catalysts with Reduced Platinum Content
Membranes 2023, 13(7), 669; https://doi.org/10.3390/membranes13070669 - 14 Jul 2023
Viewed by 852
Abstract
Studies have been carried out to optimize the composition, formation technique and test conditions of membrane electrode assemblies (MEA) of hydrogen–oxygen anion-exchange membranes fuel cells (AEMFC), based on Fumatech anion-exchange membranes. A non-platinum catalytic system based on nitrogen-doped CNT (CNTN) was [...] Read more.
Studies have been carried out to optimize the composition, formation technique and test conditions of membrane electrode assemblies (MEA) of hydrogen–oxygen anion-exchange membranes fuel cells (AEMFC), based on Fumatech anion-exchange membranes. A non-platinum catalytic system based on nitrogen-doped CNT (CNTN) was used in the cathode. PtMo/CNTN catalysts with a reduced content of platinum (10–12 wt.% Pt) were compared with 10 and 60 wt.% Pt/CNTN at the anode. According to the results of studies under model conditions, it was found that the PtMo/CNTN catalyst is significantly superior to the 10 and 60 wt.% Pt/CNTN catalyst in terms of activity in the hydrogen oxidation reaction based on the mass of platinum. The addition of the Fumion ionomer results in minor changes in the electrochemically active surface area and activity in the hydrogen oxidation reaction for each of the catalysts. In this case, the introduction of ionomer–Fumion leads to a partial blocking of the outer surface and the micropore surface, which is most pronounced in the case of the 60Pt/CNTN catalyst. This effect can cause a decrease in the characteristics of MEA AEMFC upon passing from 10PtMo/CNTN to 60Pt/CNTN in the anode active layer. The maximum power density of the optimized MEA based on 10PtMo/CNTN was 62 mW cm−2, which exceeds the literature data obtained under similar test conditions for MEA based on platinum cathode and anode catalysts and Fumatech membranes (41 mW cm−2). A new result of this work is the study of the effect of the ionomer (Fumion) on the characteristics of catalysts. It is shown that the synthesized 10PtMo/CNTN catalyst retains high activity in the presence of an ionomer under model conditions and in the MEA based on it. Full article
(This article belongs to the Special Issue Preparation and Application of Novel Polymer Membranes)
Show Figures

Figure 1

19 pages, 4717 KiB  
Article
Comparison of Pilot-Scale Capacitive Deionization (MCDI) and Low-Pressure Reverse Osmosis (LPRO) for PV-Powered Brackish Water Desalination in Morocco for Irrigation of Argan Trees
Membranes 2023, 13(7), 668; https://doi.org/10.3390/membranes13070668 - 14 Jul 2023
Cited by 1 | Viewed by 1036
Abstract
The use of saline water resources in agriculture is becoming a common practice in semi-arid and arid regions such as the Mediterranean. In the SmaCuMed project, the desalination of brackish groundwater (TDS = 2.8 g/L) for the irrigation of Argan trees in Essaouira, [...] Read more.
The use of saline water resources in agriculture is becoming a common practice in semi-arid and arid regions such as the Mediterranean. In the SmaCuMed project, the desalination of brackish groundwater (TDS = 2.8 g/L) for the irrigation of Argan trees in Essaouira, Morocco, to 2 g/L and 1 g/L (33% and 66% salt removal, respectively) using low-pressure reverse osmosis (LPRO) (p < 6 bar) and membrane capacitive deionization (MCDI) was tested at pilot scale. MCDI showed 40–70% lower specific energy consumption (SEC) and 10–20% higher water recovery; however, the throughput of LPRO (2.9 m3/h) was up to 1.5 times higher than that of MCDI. In addition, both technologies were successfully powered by PV solar energy with total water costs ranging from EUR 0.82 to EUR 1.34 per m3. In addition, the water quality in terms of sodium adsorption ratio was slightly higher with LPRO resulting in higher concentrations of Ca2+ and Mg2+, due to blending with feed water. In order to evaluate both technologies, additional criteria such as investment and specific water costs, operability and brine disposal have to be considered. Full article
(This article belongs to the Special Issue Membranes Desalination of Sea/Brackish Water)
Show Figures

Figure 1

13 pages, 2813 KiB  
Article
Membranes Based on Cellulose and Copolymers of Acrylonitrile Prepared from Joint Solutions
Membranes 2023, 13(7), 667; https://doi.org/10.3390/membranes13070667 - 14 Jul 2023
Viewed by 904
Abstract
Cellulose and copolymers of acrylonitrile (PAN) are characterized by their chemical resistance to several conventional solvents. Therefore, these polymers are often used to obtain membranes for the recovery of such solvents. In this work, for the first time, composite membranes formed from highly [...] Read more.
Cellulose and copolymers of acrylonitrile (PAN) are characterized by their chemical resistance to several conventional solvents. Therefore, these polymers are often used to obtain membranes for the recovery of such solvents. In this work, for the first time, composite membranes formed from highly concentrated mixed solutions based on cellulose and PAN are considered (the total content of polymers is 18 wt.%). For mixed solutions, the morphology and rheological behavior were evaluated. It is shown that the resulting solutions are two-phase, and their morphology depends on the components’ ratio and the system’s history. The non-monotonous change in the viscosity with the PAN content indicates a specific interaction of cellulose and PAN in N-methylmorpholine-N-oxide solutions. The rheological behavior of mixed solutions allows for their processing in conditions identical to those of cellulose solutions. The introduction of PAN into the cellulose matrix promotes a decrease in the structural order in the system, affecting the membranes’ transport properties. For composite membranes, it was found that with an increase in the content of the PAN phase, the retention of Remazol and Orange decreases, while the observed values are several times higher than those for cellulose membranes. The permeability of ethanol increases with increasing terpolymer content. Full article
Show Figures

Figure 1

16 pages, 5381 KiB  
Article
Anoxic Treatment of Agricultural Drainage Water in a Venturi-Integrated Membrane Bioreactor
Membranes 2023, 13(7), 666; https://doi.org/10.3390/membranes13070666 - 14 Jul 2023
Viewed by 587
Abstract
Due to low sludge production and being a clean source without residuals, hydrogen-based autotrophic denitrification appears to be a promising choice for nitrate removal from agricultural drainage waters or water/wastewater with a similar composition. Although the incorporation of hydrogen-based autotrophic denitrification with membrane [...] Read more.
Due to low sludge production and being a clean source without residuals, hydrogen-based autotrophic denitrification appears to be a promising choice for nitrate removal from agricultural drainage waters or water/wastewater with a similar composition. Although the incorporation of hydrogen-based autotrophic denitrification with membrane bioreactors (MBRs) enabled almost 100% utilization of hydrogen, the technology still needs to be improved to better utilize its advantages. This study investigated the anoxic treatment of both synthetic and real drainage waters using hydrogen gas in a recently developed membrane bioreactor configuration, a venturi-integrated submerged membrane bioreactor, for the first time. The study examined the effects of the inflow nitrate concentration, and the use of a venturi device on the removal efficiency, as well as the effects of the presence of headspace gas circulation and circulation rate on membrane fouling. The study found that using the headspace gas circulation through a venturi device did not significantly affect the treatment efficiency, and in both cases, a removal efficiency of over 90% was achieved. When the inlet NO3N concentration was increased from 50 mg/L to 100 mg/L, the maximum removal efficiency decreased from 98% to 92%. It was observed that the most significant effect of the headspace gas circulation was on the membrane fouling. When the headspace gas was not circulated, the average membrane chemical washing period was 5 days. However, with headspace gas circulation, the membrane washing period increased to an average of 12 days. The study found that the headspace gas circulation method significantly affected membrane fouling. When the upper phase was circulated with a peristaltic pump instead of a venturi device, the membrane washing period decreased to one day. The study calculated the maximum hydrogen utilization efficiency to be approximately 96%. Full article
(This article belongs to the Special Issue Current Advancements in Membrane Bioreactors)
Show Figures

Graphical abstract

21 pages, 8807 KiB  
Article
Preparation of Hyflon AD/Polypropylene Blend Membrane for Artificial Lung
Membranes 2023, 13(7), 665; https://doi.org/10.3390/membranes13070665 - 14 Jul 2023
Cited by 1 | Viewed by 808
Abstract
A high-performance polypropylene hollow fiber membrane (PP-HFM) was prepared by using a binary environmentally friendly solvent of polypropylene as the raw material, adopting the thermally induced phase separation (TIPS) method, and adjusting the raw material ratio. The binary diluents were soybean oil (SO) [...] Read more.
A high-performance polypropylene hollow fiber membrane (PP-HFM) was prepared by using a binary environmentally friendly solvent of polypropylene as the raw material, adopting the thermally induced phase separation (TIPS) method, and adjusting the raw material ratio. The binary diluents were soybean oil (SO) and acetyl tributyl citrate (ATBC). The suitable SO/ATBC ratio of 7/3 was based on the size change of the L-L phase separation region in PP-SO/ATBC thermodynamic phase diagram. Through the characterization and comparison of the basic performance of PP-HFMs, it was found that with the increase of the diluent content in the raw materials, the micropores of outer surface of the PP-HFM became larger, and the cross section showed a sponge-like pore structure. The fluoropolymer, Hyflon ADx, was deposited on the outer surface of the hollow fiber membrane using a physical modification method of solution dipping. After modification, the surface pore size of the Hyflon AD40L modified membranes decreased; the contact angle increased to around 107°; the surface energy decreased to 17 mN·m−1; and the surface roughness decreased to 17 nm. Hyflon AD40L/PP-HFMs also had more water resistance properties from the variation of wetting curve. For biocompatibility of the membrane, the adsorption capacity of the modified PP membrane for albumin decreased from approximately 1.2 mg·cm−2 to 1.0 mg·cm−2, and the adsorption of platelets decreased under fluorescence microscopy. The decrease in blood cells and protein adsorption in the blood prolonged the clotting time. In addition, the hemolysis rate of modified PP membrane was reduced to within the standard of 5%, and the cell survival rate of its precipitate was above 100%, which also indicated the excellent biocompatibility of fluoropolymer modified membrane. The improvement of hydrophobicity and blood compatibility makes Hyflon AD/PP-HFMs have the potential for application in membrane oxygenators. Full article
Show Figures

Figure 1

17 pages, 7173 KiB  
Article
Monitoring of Particulate Fouling Potential of Feed Water with Spectroscopic Measurements
Membranes 2023, 13(7), 664; https://doi.org/10.3390/membranes13070664 - 12 Jul 2023
Cited by 1 | Viewed by 800
Abstract
The modified fouling index (MFI) is a crucial characteristic for assessing the fouling potential of reverse osmosis (RO) feed water. Although the MFI is widely used, the estimation time required for filtration and data evaluation is still relatively long. In this study, the [...] Read more.
The modified fouling index (MFI) is a crucial characteristic for assessing the fouling potential of reverse osmosis (RO) feed water. Although the MFI is widely used, the estimation time required for filtration and data evaluation is still relatively long. In this study, the relationship between the MFI and instantaneous spectroscopic extinction measurements was investigated. Since both measurements show a linear correlation with particle concentration, it was assumed that a change in the MFI can be detected by monitoring the optical density of the feed water. To prove this assumption, a test bench for a simultaneous measurement of the MFI and optical extinction was designed. Silica monospheres with sizes of 120 nm and 400 nm and mixtures of both fractions were added to purified tap water as model foulants. MFI filtration tests were performed with a standard 0.45 µm PES membrane, and a 0.1 µm PP membrane. Extinction measurements were carried out with a newly designed flow cell inside a UV–VIS spectrometer to get online information on the particle properties of the feed water, such as the particle concentration and mean particle size. The measurement results show that the extinction ratio of different light wavelengths, which should remain constant for a particulate system, independent of the number of particles, only persisted at higher particle concentrations. Nevertheless, a good correlation between extinction and MFI for different particle concentrations with restrictions towards the ratio of particle and pore size of the test membrane was found. These findings can be used for new sensory process monitoring systems, if the deficiencies can be overcome. Full article
Show Figures

Figure 1

12 pages, 3973 KiB  
Article
Effect of Lu-Doping on Electrical Properties of Strontium Zirconate
Membranes 2023, 13(7), 663; https://doi.org/10.3390/membranes13070663 - 12 Jul 2023
Cited by 1 | Viewed by 763
Abstract
SrZrO3-based perovskites are promising proton-conducting membranes for use in fuel and electrolysis cells, sensors, hydrogen separators, etc., because they combine good proton conductivity with excellent chemical stability. In the present research, the effect of Lu-doping on microstructure, phase composition, and electrical [...] Read more.
SrZrO3-based perovskites are promising proton-conducting membranes for use in fuel and electrolysis cells, sensors, hydrogen separators, etc., because they combine good proton conductivity with excellent chemical stability. In the present research, the effect of Lu-doping on microstructure, phase composition, and electrical conductivity of SrZr1−xLuxO3−δ (x = 0–0.10) was investigated via X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and impedance spectroscopy. Dense ceramic samples were obtained by the solution combustion synthesis and possessed an orthorhombic perovskite-type structure. The solubility limit of Lu was revealed to lie between x = 0.03 and 0.05. The conductivity of SrZr1−xLuxO3−δ increases strongly with the addition of Lu at x < 0.05 and just slightly changes at x > 0.05. The rise of the water vapor partial pressure results in an increase in the conductivity of SrZr1−xLuxO3−δ ceramics, which confirms their hydration ability and significant contribution of protonic defects to the charge transfer. The highest conductivity was achieved at x = 0.10 (10 mS cm–1 at 700 °C, wet air, pH2O = 0.61 kPa). The conductivity behavior was discussed in terms of the defect formation model, taking into account the improvement in ceramic sintering at high lutetium concentrations. Full article
(This article belongs to the Special Issue Membrane Technology for Solid Oxide Fuel Cells)
Show Figures

Figure 1

22 pages, 4344 KiB  
Article
Development of a Green Polymeric Membrane for Sodium Diclofenac Removal from Aqueous Solutions
Membranes 2023, 13(7), 662; https://doi.org/10.3390/membranes13070662 - 12 Jul 2023
Viewed by 907
Abstract
Water-soluble polymers provide an alternative to organic solvent requirements in membrane manufacture, aiming at accomplishing the Green Chemistry principles. Poly(vinyl alcohol) (PVA) is a biodegradable and non-toxic polymer renowned for its solubility in water. However, PVA is little explored in membrane processes due [...] Read more.
Water-soluble polymers provide an alternative to organic solvent requirements in membrane manufacture, aiming at accomplishing the Green Chemistry principles. Poly(vinyl alcohol) (PVA) is a biodegradable and non-toxic polymer renowned for its solubility in water. However, PVA is little explored in membrane processes due to its hydrophilicity, which reduces its stability and performance. Crosslinking procedures through an esterification reaction with carboxylic acids can address this concern. For this, experimental design methodology and statistical analysis were employed to achieve the optimal crosslinking conditions of PVA with citric acid as a crosslinker, aiming at the best permeate production and sodium diclofenac (DCF) removal from water. The membranes were produced following an experimental design and characterized using multiple techniques to understand the effect of crosslinking on the membrane performance. Characterization and filtration results demonstrated that crosslinking regulates the membranes’ properties, and the optimized conditions (crosslinking at 110 °C for 110 min) produced a membrane able to remove 44% DCF from water with a permeate production of 2.2 L m−2 h−1 at 3 bar, comparable to commercial loose nanofiltration membranes. This study contributes to a more profound knowledge of green membranes to make water treatment a sustainable practice in the near future. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

29 pages, 2150 KiB  
Review
Perovskite Membranes: Advancements and Challenges in Gas Separation, Production, and Capture
Membranes 2023, 13(7), 661; https://doi.org/10.3390/membranes13070661 - 12 Jul 2023
Cited by 3 | Viewed by 1400
Abstract
Perovskite membranes have gained considerable attention in gas separation and production due to their unique properties such as high selectivity and permeability towards various gases. These membranes are composed of perovskite oxides, which have a crystalline structure that can be tailored to enhance [...] Read more.
Perovskite membranes have gained considerable attention in gas separation and production due to their unique properties such as high selectivity and permeability towards various gases. These membranes are composed of perovskite oxides, which have a crystalline structure that can be tailored to enhance gas separation performance. In oxygen enrichment, perovskite membranes are employed to separate oxygen from air, which is then utilized in a variety of applications such as combustion and medical devices. Moreover, perovskite membranes are investigated for carbon capture applications to reduce greenhouse gas emissions. Further, perovskite membranes are employed in hydrogen production, where they aid in the separation of hydrogen from other gases such as methane and carbon dioxide. This process is essential in the production of clean hydrogen fuel for various applications such as fuel cells and transportation. This paper provides a review on the utilization and role of perovskite membranes in various gas applications, including oxygen enrichment, carbon capture, and hydrogen production. Full article
Show Figures

Figure 1

19 pages, 5124 KiB  
Article
Automated Liquid–Liquid Displacement Porometry (LLDP) for the Non-Destructive Characterization of Ultrapure Water Purification Filtration Devices
Membranes 2023, 13(7), 660; https://doi.org/10.3390/membranes13070660 - 11 Jul 2023
Cited by 1 | Viewed by 1047
Abstract
This scientific publication presents a novel modification of the liquid–liquid displacement porosimetry (LLDP) method, aiming for the non-destructive automated analysis of water purification membrane filtration devices in the microfiltration (MF) and ultrafiltration (UF) range. The technical adaptation of LLDP enables the direct in-line [...] Read more.
This scientific publication presents a novel modification of the liquid–liquid displacement porosimetry (LLDP) method, aiming for the non-destructive automated analysis of water purification membrane filtration devices in the microfiltration (MF) and ultrafiltration (UF) range. The technical adaptation of LLDP enables the direct in-line porosimetric analysis of commercial filtration devices, avoiding the filtration devices’ destruction. Six commercially available filtration devices with polyethersulfone (PES) and polysulfone (PS) membranes were studied using an improved device developed by the IFTS, which was based on a commercial LLDP instrument. The filtration devices were evaluated in three different configurations: flat disks, hollow fibers, and pleated membranes. The results obtained using the proposed method were compared with other characterization techniques, including submicronic efficiency retention, image analysis of scanning electron microscopy (SEM), and gas–liquid displacement porosimetry (GLDP). The comparison of the results demonstrated that the proposed method accurately determined the porosimetric characteristics of the filters. It proved to be a precise technique for the non-destructive in-line evaluation of filter performance, as well as for periodic quality control and the fouling degree assessment of commercial filtration devices. This modified LLDP approach offers significant potential for the advanced characterization and quality assessment of water purification membrane filtration devices, contributing to improved understanding and optimization of their performance. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop