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Abstract: Synthesis and study of materials based on bismuth cerates and titanates were carried out.
Complex oxides Bi1.6Y0.4Ti2O7 were synthesized by the citrate route; Bi2Ce2O7 and Bi1.6Y0.4Ce2O7—
by the Pechini method. The structural characteristics of materials after conventional sintering
at 500–1300 ◦C were studied. It is demonstrated that the formation of a pure pyrochlore phase,
Bi1.6Y0.4Ti2O7, occurs after high-temperature calcination. Complex oxides Bi2Ce2O7 and Bi1.6Y0.4Ce2O7

have a pyrochlore structure formed at low temperatures. Yttrium doping of bismuth cerate lowers
the formation temperature of the pyrochlore phase. As a result of calcination at high temperatures,
the pyrochlore phase transforms into the CeO2-like fluorite phase enriched by bismuth oxide. The
influence of radiation-thermal sintering (RTS) conditions using e-beams was studied as well. In
this case, dense ceramics are formed even at sufficiently low temperatures and short processing
times. The transport characteristics of the obtained materials were studied. It has been shown that
bismuth cerates have high oxygen conductivity. Conclusions are drawn about the oxygen diffusion
mechanism for these systems. The materials studied are promising for use as oxygen-conducting
layers in composite membranes.

Keywords: oxygen separation membranes; pyrochlores; bismuth cerate; bismuth titanate; oxygen mobility

1. Introduction

Oxides and solid solutions with the pyrochlore structure A2B2O7 (or A2B2O6O’, where
A and B are rare earth or transition elements) attracted a lot of attention as materials
for many applications such as oxygen [1–4] and hydrogen [5,6] separation membranes,
solid oxide fuel cell/electrolyzer electrolytes [1,7–9] and electrodes [8,10,11], catalysts for
various transformation processes [12,13], pigments [14,15], etc. [16–18]. The prospects
of using pyrochlores in various electrochemical devices are provided by their high ionic
or mixed ionic-electronic conductivity, depending on their composition and synthesis
conditions [1,8–11,19,20].

The transport characteristics of pyrochlores are affected by their structural and defect
features. In the real pyrochlore structure, various defects are present, including antistruc-
tural cation disordering:

A×A + B×B � A′B + B•A, (1)

Frenkel anion disordering:
O×O � V••O (48 f ) + O′′i (8a), (2)
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partial ordering of the structure via association of defects, etc. [21–25]. In the A2B2O6O’
structure, O (48f Wyckoff positions) and O’ (8a Wyckoff positions) are non-equivalent and
belong to two different sublattices (B2O6 and A2O’, respectively); however, while studying
oxide ionic transport, these forms are sometimes undistinguishable, thus suggesting some
kind of cooperative migration involving both O and O’ anions [20,26,27]. For some py-
rochlores, the oxygen forms differing by their mobility are distinguishable; however, their
fractions’ ratio differs from 6:1, hence probably supporting the abovementioned assump-
tion or making evidence of other effects on the oxygen mobility such as different bonding
energies of oxide anions in A–O–A, A–O–B and B–O–B chains [27,28]. The features of grain
boundaries enhancing [28,29] or blocking [30] oxygen transport are reported as well.

As is known, the thermal instability of Bi2Ti2O7 at temperatures above 612 ◦C [31] is
due to an unfavorable size factor (the ratio of bismuth and titanium cations), thus limiting
the possibility of obtaining it in the form of dense ceramics for practical use. The stability
of bismuth titanate pyrochlore can be achieved by replacing part of the bismuth atoms
with atoms of other elements with a smaller ionic radius [32,33]. Doped bismuth titanates
were previously studied and showed good transport properties with doping both A and B
sites with various cations such as Co, Zn, etc., enhancing both ionic and total conductivity,
which was probably associated with disordering of dopant cation distribution between A-
and B-sublattices (Equation (1)) [20,26]. Hence, doped bismuth titanates can be assumed to
be promising in electrochemical applications, such as components of permselective layers
of oxygen separation membranes.

Bismuth cerates were previously studied as photocatalysts [13] and inorganic pig-
ments [14,15]. Unfortunately, there is a lack of information on their transport properties;
however, they probably possess good transport characteristics, especially oxygen mobility,
due to the redox activity of Ce4+/Ce3+ cations and a high oxygen vacancy content [34–36].
Hence, they are of potential interest in electrochemical applications as well.

Obtaining functional ceramics (for solid oxide fuel cells and permselective mem-
branes) with the required morphological and transport properties is a separate problem
in materials science, where sintering is the most important procedure. With traditional
thermal sintering in a furnace, long-term processing, and high temperatures are required
to obtain ceramics with desired properties, such as gas tightness, homogeneous phase
composition, etc. To solve this problem, radiation-thermal sintering (e-beam processing) is
proposed [37–41]. Using the main advantages of radiation-thermal reactions—lowering the
treatment temperature and a high reaction rate—will reduce the processing time while also
significantly reducing internal thermal stresses. This technique was successfully applied for
sintering functional layers of solid oxide fuel cells (thin layers of electrolytes such as Y or
Sc + Ce -doped zirconia, Gd-doped ceria, etc. on anode substrates, nanocomposite cathode
layers such as LSM–ScCeSZ, PrNiCoO-GDC, etc.) and asymmetrically supported oxygen
separation membranes (thin and dense permselective layers of mixed ionic-electronic con-
ductors comprised of complex oxides with perovskite, fluorite, spinel, etc. structures or
their nanocomposites, such as LFN-GDC, LFC-GDC, La0.3Bi0.7MnOx–Bi1.5Y0.3Sm0.2O3, etc.)
using unique equipment of the Budker Institute of Nuclear Physics [37–41]. Disordering
of nanodomains by electron beams leads to their easy sintering at moderate temperatures
without increasing their sizes. This results in a developed network of domain boundaries,
which, for nanocomposites [37–41] or even some complex oxides (such as molybdates of
lanthanoids [42], etc.), provide fast oxygen diffusion channels described by the so-called
2D model of oxygen diffusion. For solid oxide fuel cells and asymmetric oxygen separation
membranes on metallic substrates, due to the decreased temperature and duration of
sintering as compared with conventional sintering methods, such negative phenomena
as a variation of functional layer phase composition, cracking, and damage to metallic
substrates were prevented. This also allowed for maximum power densities of thin-film
solid oxide fuel cells with nanocomposite perovskite-fluorite cathode layers operating on
wet H2 as fuel and air as oxidant up to 500 mV/cm2 at 700 ◦C, which is promising for
practical application. For an asymmetric membrane comprised of LaBiMnO-YSmBiO layers
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supported on a binary Ni-Al foam substrate, the oxygen flux under the air/He gradient
was up to 5 mL O2 at 950 ◦C, which is really high [41]. However, at such high temperatures,
Bi can be evaporated from these oxides; hence, to deal with this problem, doped Bi cerates
and titanates known to be more chemically stable were studied in this work.

This work aimed at studying the structural and oxide ionic transport properties of
bismuth titanates and cerates, including Y-doped ones, and the effects of such processing
as radiation-thermal sintering for pyrochlores. Its realization will provide the basis for
manufacturing materials for solid oxide fuel cells or oxygen-conducting membranes. The
effect of doping with Y on the structural stability and phase composition of these materials
was studied. The sinterability of samples was investigated in order to check the adaptability
of these materials to obtain gas-tight ceramics for electrochemical applications, including
radiation-thermal sintering by e-beams. The oxygen transport properties were studied by
the temperature-programmed isotope exchange of oxygen with C18O2 in the flow reactor
to acquire data on the oxygen diffusivity required for these applications.

2. Materials and Methods

Bi2Ce2O7 and Bi1.6Y0.4Ce2O7 were synthesized via the modified Pechini technique, as
described elsewhere [43]. For the Bi1.6Y0.4Ti2O7 sample synthesized by the citrate method,
corresponding salts in the required ratios were added to a solution of citric acid in water
(1;5 mole ratio), while the Me:citric acid ratio was equal to 1:2. Bi(NO3)3·5H2O (>99%),
Ce(NO3)3·6H2O (>99%), Ti (OCH(CH3)2)4 (>99%), and Y(NO3)3·6H2O (>99%) were used
as initial reagents. The xerogels obtained were dried in a drying oven at 110 ◦C for 12 h,
then calcined at 500 ◦C for 3 h. As-prepared powders were pressed into pellets and sintered
at 700 ◦C for 3 h, at 900 ◦C for 3 h, at 1100 ◦C for 10 h, and at 1300 ◦C for 8 h using
conventional sintering.

Radiation-thermal sintering was carried out using an accelerator, ILU-6 (BINP SB RAS,
Russia). Electron pulses with 2.4 MeV energy, 328 mA pulse beam current, a pulse duration
~600 s, a narrow scan, and up to 25 Hz pulse frequency were used. The temperature
of the samples was controlled using a Pt-Pt-Rh thermocouple and FildPoint (National
Instruments, USA) controlling module. Power adjustment was carried out by changing
the frequency of pulses. The heating rate was 50 C min−1, and after achieving 1100 ◦C,
samples were sintered for 30 min.

X-ray diffraction (XRD) studies were performed using a Bruker D8 Advance diffrac-
tometer with the Lynx-Eye detector using CuKα radiation. XRD patterns were recorded in
the 2θ range of 15–95◦ with a step of 0.05◦. Rietveld refinement for quantitative analysis and
calculation of lattice parameters was carried out using the software package Topas V.4.2.

Infrared (IR) spectra (4000–250 cm−1, 32 scans, resolution 4 cm−1) were acquired using
a Cary 660 (Agilent Technologies, Santa Clara, CA, USA) spectrometer with the GladiATR
PIKE Technologies console.

Scanning electron microscopy studies were carried out using a dual-beam scanning
electron microscope, the Tescan Solaris FE/SEM (Tescan, Brno, Czech Republic). The
experiments were performed in the secondary electron mode at an accelerating voltage of
20 kV.

Oxygen mobility and surface reactivity were studied by the temperature-programmed
isotope exchange (TPIE) of oxygen with C18O2 in the flow reactor. Samples (0.25–0.5 mm
fraction) were loaded into quartz tube reactors (with an inner diameter of 3 mm). Pre-
treatment was carried out in He + 1% O2 flow (25 mL min−1) at 700 ◦C for 30 min. The
isotope exchange was carried out in He + 1% C18O2 + 1% Ar flow (25 mL min−1) while
heating from 50 to 800 ◦C with a constant ramp of 5 ◦C min−1. 18O atomic fraction (α)
and C16O18O atomic fraction (f 16–18) responses were analyzed in order to estimate isotope
exchange kinetic parameters.
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3. Results and Discussion
3.1. Structural Features

Compositions and lattice parameters of all prepared samples are presented in Table 1.

Table 1. Structural properties of prepared pyrochlores.

№ Composition Tcalcin., ◦C Phase Lattice Parameter, Å Crystallite Size, Å

1 Bi2Ce2O7

500
CeO2 5.463 (1) 100
Bi2O3 - 200

900
CeO2 5.435 (1) 260
Bi2O3 - 340

1300 CeO2 5.413 (1) >1500

2 Bi1.6Y0.4Ce2O7

500 Bi1.2Y0.8O3 (CeO2)
Bi2O3

5.441 (1) 85

700 CeO2 5.437 (1) 130
1300 CeO2 5.407 (1) >1500

3 Bi1.6Y0.4Ti2O7

500
30% Bi4Ti3O12 a = 5.5 (1), c = 5.4 (1), c = 32.94 (5) >1500
40% Bi7.5Y0.5O12 a = b = 7.725 (1), c = 5.632 (1) 150
30% Bi2O3 - 1000

700
60% Bi4Ti3O12
40% Bi1.74Ti2O6.624
(pyrochlore)

a = 5.385 (1), c = 5.409 (1), c = 32.820 (6)
a = 10.277 (2)

640
600

900
70% Bi1.74Ti2O6.624 a = 10.289 (1) >1500
30% Bi4Ti3O12 a = 5.430 (1), c = 5.402 (1), c = 32.895 (4) >1500

1100 Bi1.74Ti2O6.624 a = 10.310 (1) >1500
1100
After
RTS

92% Bi1.74Ti2O6.624 a = 10.273 (2) >1500

8% Bi4Ti3O12
a = 5.422 (3), c = 5.392 (3),
c = 32.80 (2) 900

According to the XRD data, for all cerate samples after calcination at 500–700 ◦C, there
is an admixture of bismuth oxide (Figure 1). For bismuth cerates’ samples, the cubic fluorite
phase forms after sintering at low temperatures. Metastable bismuth cerate is proposed
to form the solid solution in the ceria-yttria complex oxide (Figure 1b). Similar behavior
was observed for the undoped Bi cerate: metastable Bi cerate forms after synthesis, and
at further sintering, it decomposes into the oxide mixture, followed by forming the solid
solution (Figure 1a). The introduction of Y3+ into Bi2Ce2O7 decreases the lattice constant
from 5.413 Å to 5.407 Å, thus evidencing substitution of ions in the lattice with contraction
as expected, since the ionic radius of Y3+ (r = 1.01 Å, CN = 8) is smaller than that of Bi3+

(r = 1.18 Å, CN = 8) (Table 1). With increasing the temperature of sintering, there is a
decrease in the lattice constants for the yttrium-doped bismuth cerates, suggesting a higher
disordering of their structure. After sintering at 1300 ◦C, the XRD pattern for Bi1.6Y0.4Ce2O7
contains peaks attributed to the disordered CeO2 fluorite phase, which is visible according
to the peaks’ shift.

According to IR spectroscopy data for both Bi cerate samples, the bands at 1631 cm−1

and 3401 cm−1 observed in IR spectra correspond to –OH symmetric vibrations appearing
due to water adsorption (Figure 2). The increasing temperature of sintering leads to the
removal of chemisorbed water from the surface. The most intense band at 1383 cm−1

corresponds to Bi–O bond vibrations [12,44,45]. The peak corresponding to the C–O
functional group at 2367 cm−1 is shown in Figure 2 [33]. The absorption band that appears
at wavelengths below 500 cm−1 presents the stretching vibration in the structure of the
cerium oxide (Ce-O-Bi) mode [46].
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The Bi1.6Y0.4Ti2O7 samples after sintering at 500 and 900 ◦C are not single-phased
(Figure 3a). According to the XRD data, for titanate sample as in the case of cerates after
calcination at 500–700 ◦C, there is an admixture of bismuth oxide (Figure 3a). Bismuth
titanates, along with the pyrochlore phase corresponding to the cubic Bi1.74Ti2O6.624 [PDF
089-4732] phase, contain admixtures of the tetragonal Bi4Ti3O12 [047-0398] and tetragonal
Bi2O3 [PDF 071-0465] phases.

The Y-doped Bi titanate sintered at 1100–1300 ◦C contains no admixtures. From the
point of view of the phase composition, the RTS conditions used in this work did not
allow us to obtain a single-phase sample (Figure 3b). The content of the impurity phase,
Bi4Ti3O12, was 8%.

As in the case of bismuth cerates’ samples, the bands observed at 1631 cm−1 and
3401 cm−1 are explained by –OH symmetric vibrations appearing due to water adsorption
(Figure 4a). The characteristic feature of the IR spectra of pyrochlores is the presence of an
intense band in the range of 400–600 cm−1 [12].
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Figure 3. XRD patterns of Bi1.6Y0.4Ti2O7 sintered at various temperatures using conventional sintering 

(a) and radiation-thermal sintering at 1100 °C (b). 

The Y-doped Bi titanate sintered at 1100–1300 °C contains no admixtures. From the 

point of view of the phase composition, the RTS conditions used in this work did not allow 

us to obtain a single-phase sample (Figure 3b). The content of the impurity phase, 

Bi4Ti3O12, was 8%. 

As in the case of bismuth cerates’ samples, the bands observed at 1631 cm−1 and 3401 

cm−1 are explained by –OH symmetric vibrations appearing due to water adsorption (Fig-

ure 4a). The characteristic feature of the IR spectra of pyrochlores is the presence of an 

intense band in the range of 400–600 cm−1 [12]. 
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modes present in the spectra demonstrate the formation of the pyrochlore phase only after 

high-temperature calcination, in good agreement with the XRD data [12,47]. According to 

the XRD data, the Bi4Ti3O12 phase is present for doped bismuth titanate after calcination at 

700−900 °C. In the low-frequency region of the spectrum, the lines at 50−150 cm−1 corre-

spond to Bi oscillations relative to oxygen octahedra. Modes in the frequency range of 

200−400 cm−1 correspond to deformation vibrations of O–Ti–O bonds, and high-frequency 

bands in the range of 500−850 cm−1 correspond to valence vibrations. There is also a band 
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ing (a) and radiation-thermal sintering at 1100 ◦C (b).
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Figure 4. IR (a) and RAMAN (b) spectra of Bi1.6Y0.4Ti2O7 samples sintered at various temperatures
using conventional sintering.

RAMAN spectra for Bi1.6Y0.4Ti2O7 samples are given in Figure 4b. Typical vibration
modes present in the spectra demonstrate the formation of the pyrochlore phase only after
high-temperature calcination, in good agreement with the XRD data [12,47]. According to
the XRD data, the Bi4Ti3O12 phase is present for doped bismuth titanate after calcination
at 700–900 ◦C. In the low-frequency region of the spectrum, the lines at 50–150 cm−1

correspond to Bi oscillations relative to oxygen octahedra. Modes in the frequency range of
200–400 cm−1 correspond to deformation vibrations of O–Ti–O bonds, and high-frequency
bands in the range of 500–850 cm−1 correspond to valence vibrations. There is also a band
corresponding to the full-symmetric valence oscillation of O–Ti-O bonds of octahedra with
a frequency of 843 cm−1.

Figure 5 demonstrates SEM micrographs of Bi2Ce2O7 and Bi1.6Y0.4Ce2O7 after con-
ventional sintering at 1100 ◦C. For both samples, pores have an irregular shape, with their
size varying from a micrometer to a few micrometers. Conventionally sintered bismuth
titanates’ samples have larger particles compared to the samples after RTS at 1100 ◦C
(Figure 6). A similar tendency was demonstrated in [37] for lanthanide tungstates and
molybdates. Using the traditional sintering of bismuth titanate at 1100 ◦C, the average grain
size ranges from 1 to 10 microns. The different morphology of the particles visible here is
due to the admixture of the Bi4Ti3O12 phase. Sintering at this temperature for 10 h was not
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sufficient since the presence of pores is visible (Figure 6c,d). The porosity and average pore
size values are given in Table 2. Figure 6e,f, showing SEM images of RTS Bi1.6Y0.4Ti2O7, do
not contain microcracks and pores, which demonstrates the optimal sintering conditions.
The difference in particle size is apparently caused by the effects of the sintering technique
(conventional or radiation-thermal), sintering temperature, and duration, which affect the
particles’ aggregation and growth. Hence, it was demonstrated that RTS allows for carrying
out sintering processes for shorter times and at lower temperatures compared to those for
conventional sintering. Such a difference in sintering temperature and duration required to
obtain the desired gas-tightness for radiation–thermal sintering and conventional sintering
is apparently related to the dissipation of radiation energy in heterogeneous structures,
thermal-diffusional stimulation of mass transfer, and other features of the RTS process [37].
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Figure 5. SEM micrographs of Bi2Ce2O7 (a) and Bi1.6Y0.4Ce2O7 (b) obtained by conventional sintering
at 1100 ◦C.

Table 2. The pore parameters for Bi2−xYxM2O7 (M = Ce, Ti) samples.

Sample Sintering Temperature
(◦C) Sintering Technique Porosity

(%)
Mean Pore Size

(µm)

Bi2Ce2O7 1100 Conventional 7 1.2

Bi1.6Y0.4Ce2O7 1100 Conventional 13 1.9

Bi1.6Y0.4Ti2O7
1100

Conventional 3 0.83
Radiation-thermal 1 0.25

1300 Conventional 2 0.76

3.2. Oxygen Transport Features

According to the TPIE with C18O2 data for the bismuth cerate sample, a few peaks in
the TPIE curve are visible, providing evidence of strong nonuniformity of oxygen mobility
(Figure 7). According to the numeric analysis, the first peak (70 ◦C) is related to the
substitution of the surface oxygen and is characterized by a surface exchange effective
activation energy of 150 kJ mol−1. The most clearly expressed peak (150 ◦C) is determined
by fast oxygen diffusion, which involves about 1/3 of the total oxygen content. This
is probably oxygen-bound cerium. The rate of substitution of the rest of the oxygen is
characterized by less-expressed peaks. For the description, the model including a single
diffusion channel across the most mobile oxygen of Ce–O–Ce chains with subsequent
exchange with neighboring more strongly bound oxide anions in the lattice was used [48].
The mean integral exchange coefficient (β) is 0.012 min−1 for bismuth cerate. The calculated
parameters of the isotope exchange are given in Table 3. The Arrhenius plots of the oxygen
tracer diffusion coefficient are given in Figure 8.
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Figure 6. SEM micrographs of Bi1.6Y0.4Ti2O7 obtained by conventional sintering at 1300 ◦C for 10 h
(a,b), at 1100 ◦C for 10 h (c,d), and radiation-thermal sintering at 1100 ◦C for 30 min (e,f).

Table 3. The values of surface heteroexchange rate (R), tracer diffusion coefficient normalized by
mean diffusion pathway (D*/L2), bulk oxygen exchange coefficient (β) at 120 ◦C, and their effective
activation energies (ER, ED, Eβ, respectively) calculated according to TPIE data modeling.

Sample R
(min−1)

ER
(kJ mol−1)

D*/L2

(min−1)
ED

(kJ mol−1)
β

(min−1)
Eβ

(kJ mol−1)

Bi2Ce2O7 1.8 × 102 150 0.07
(32%) 80 0.012 80

Bi1.6Y0.4Ce2O7 1.8 × 102 150 0.11
(34%) 80 0.017 80

Bi1.6Y0.4Ti2O7 1 × 10−5 100 4.7 × 10−7 (100%) 72

Note: * means that this is a tracer diffusion coefficient related to the isotope tracer 18O. It is related to the oxygen
self-diffusion coefficient via a correlation factor f corresponding to the counterflows of isotopes 16O and 18O
within the sample bulk (D* = f × DO, f ≈ 0.5, . . . , 1). A mean diffusion pathway has a meaning of an average
particle size. A surface heteroexchange rate (R) characterizes the rate of exchange of oxygen between CO2 in the
gas phase and the oxide on its surface.
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Figure 8. Arrhenius plots for oxygen tracer diffusion coefficients acquired by TPIE data modeling
for Bi2Ce2O7 (1), Bi1.6Y0.4Ce2O7 (2), and Bi1.6Y0.4Ti2O7 (3) samples sintered at 700 ◦C compared to
other oxide materials: Bi1.6Sc0.2Ti2O7−δ (4) [26], Bi1.6Mg0.2Ti2O7−δ (5) [26], Bi1.6Zn0.2Ti2O7−δ (6) [20],
Zr0.84Y0.16O1.92 (7) [49], La0.8Sr0.2MnO3−δ (8) [50], La0.5Sr0.5Fe0.7Co0.3O3−δ (9) [51].

For the Y-doped Bi cerate sample, a similar behavior of isotope substitution dynamics
is observed. The same model as that for the undoped sample [48] was used. The difference
in the diffusion rate via the Ce–O–Ce channel is insignificant; however, the exchange with
other forms of oxygen is significantly faster. The mean integral exchange coefficient (β) is
0.017 min−1 for Y-doped bismuth cerate (Table 3).

For Y-doped Bi titanate, the oxygen substitution rate is significantly lower than that
for Bi cerates. The isotope propagation rate is described by the uniform diffusion model
with an identical oxygen tracer diffusion coefficient within the entire volume.

Such a difference in the oxygen mobility of doped Bi titanate and Bi cerates is probably
related to the content of oxygen vacancies participating in oxide ions’ migration via M–
O–M channels. The redox activity of Ce4+/Ce3+ cations [34–36] is probably responsible
for the higher oxygen vacancies’ content for Bi cerates compared to that for Bi titanates.
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The possible evidence of this is the frequency and intensity of bands corresponding to the
H–O–H bending in IR spectra for Bi cerates and titanates (Figures 2 and 4), since these
bands appear due to water adsorption with the participation of oxygen vacancies [33]:

H2O + V••O � 2H• + O×O , (3)

H2O + O×O + V••O � 2OH•O . (4)

While compared with other Bi titanate-based pyrochlores, the oxygen tracer diffusion
coefficient values of Y-doped Bi titanate are slightly lower than those for Sc-doped Bi titanate
and significantly lower than those for Mg- and Zn-doped Bi titanates (Figure 8, curves
4–6) previously studied by authors [18,24]. This is probably due to the difference in cation
size and charge as well as A-site stoichiometry (the samples from works [20,26] are A-site
deficient) and, hence, oxygen vacancy content and space in the lattice for oxygen migration.

It is difficult to compare the Bi cerate-based pyrochlores studied in this work with
similar materials since there is a lack of information on the oxygen mobility of Bi cerates in
the literature. However, it is comparable to or higher than that for Mg- and Zn-doped Bi
titanates (Figure 8, curves 4–6) [20,26], exceeding that for commonly used ionic-conducting
and MIEC materials for oxygen separation membrane components such as YSZ, LSM, and
LSFC (Figure 8, curves 7–9) [49–51].

As mentioned in the Introduction, pyrochlore-like oxide materials can be utilized
in catalytic reactors based on oxygen [1,2] and hydrogen [5,6] separation membranes for
hydrogen and syngas production via fuel transformation reactions. For such reactors
based on oxygen separation membranes, a high oxygen mobility (along with a high mixed
ionic-electronic conductivity) allows for high oxygen permeation fluxes across the mem-
brane from the air side onto the fuel side, thereby providing efficient performance in fuel
transformation reactions [1,2,52–54]. For catalytic membrane reactors based on hydrogen
separation membranes, high oxygen mobility is also desirable for the membrane materials.
This is due to some proton transport mechanisms being mediated by oxygen transport,
such as the vehicle mechanism [52,55,56], as well as the vehicular transport of structurally
bound water proposed for some oxides [57,58]. Moreover, the presence of oxide-ionic con-
ductivity in the hydrogen separation membrane allows for additional hydrogen yield due
to the water splitting reaction while humidifying the purge side feed [59,60]. Finally, the
application of triple (protonic—oxide-ionic—electronic) conducting materials in membrane
reactors allows for enhance the reactor performance in various catalytic reactions and to
improve gas separation characteristics due to coupled transport of electrons/holes, oxide
anions/vacancies, and protons, forcing any of these species to be transported due to their
chemical potential gradient [61–63].

Hence, undoped and Y-doped Bi cerates studied in the current work possessing a
high oxygen mobility (Table 3, Figure 8) meet the criteria for use in oxygen separation
membrane-based reactors for hydrogen and syngas production [1,2,52–54]. The Y-doped Bi
titanate involved in this work possesses moderate oxygen mobility (Table 2, Figure 8) and
may be used in oxygen separation membranes as well; however, in order to achieve a high
oxygen permeation flux, additional modification and/or use as a component of composite
membranes can be recommended. It is to be noted that the materials studied can probably
be used in hydrogen separation membrane-based reactors as well due to their oxygen trans-
port properties, which enable them to predict good proton transport properties [5,47,56].
However, since these materials are initially intended for potential application in oxygen
separation membranes, investigating the proton transport properties of these Bi cerates
and titanates is outside the scope of this work and requires a separate study.

4. Conclusions

Complex oxides Bi1.6Ti0.4Ce2O7, Bi2Ce2O7, and Bi1.6Y0.4Ce2O7 were synthesized using
Pechini and citrate methods, and the structural characteristics after calcination using
conventional and e-beam sintering were studied. It was shown that the formation of the
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pure pyrochlore phase Bi1.6Y0.4Ti2O7 occurs after high-temperature calcination at 1100 ◦C.
In addition, the complex oxides Bi2Ce2O7 and Bi1.6Y0.4Ce2O7 have a fluorite structure with
negligible amounts of Bi2O3 formed at low temperatures. As a result of calcination at
high temperatures, the pyrochlore phase turns into a fluorite CeO2 phase enriched with
bismuth oxide. RTS of bismuth titanate made it possible to obtain fine-grained ceramics in
a minimum processing time and at a much lower temperature. The transport characteristics
of pyrochlore samples were studied. It has been shown that bismuth cerates have high
oxygen conductivity. Conclusions are drawn about the mechanism of oxygen diffusion in
these systems. The obtained materials can potentially be used as oxygen-conducting layers
of catalytic membranes.
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