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In the face of the ever-growing severe problem of water scarcity, wastewater reuse,
recycling and resource recovery are increasingly recognized as crucial part of the solution.
Compared to other wastewater treatment processes, membrane technology stands out with
its distinctive advantages, including simple operation, easy scalability, and chemical-free
operations, and has, therefore, been extensively employed in wastewater treatment and
recycling. Despite the significant progress in implementing membrane technologies for
wastewater treatment and recycling, the application of membranes in wastewater treatment
still confronts various unresolved challenges, such as membrane fouling.

This current Special Issue on Membranes aims to comprehensively cover state-of-
the-art advancements and future developments in the field of membrane technologies
applied to wastewater treatment and recycling. Following the proposal for this Special
Issue, seventeen research articles and one communication were published, all of which
contributed significantly to the scientific understanding of this field. This article presents a
concise summary of the research articles included in this Special Issue.

Half of the published papers in this Special Issue focused on membrane fabrication and
modification, with new strategies developed to improve membrane separation [1–4], per-
meability [5–7], and anti-fouling properties [8,9] by fabricating the membrane structure or
surface properties. For example, Fang et al. [1] fabricated a loose nanofiltration membrane
by integrating blending and interfacial coordination strategies; this resulted in a membrane
with good pure water flux, dye rejection, and salt penetration. Liu et al. [5] synthesized
a covalent–organic framework (COF) composite membrane by assembling COF layers
and the imidazole-quartet water channel, which exhibited excellent performance above
271.7 L m−2 h−1 bar−1 water permeance and above a 99.5% congo red rejection rate.
Wang et al. [9] improved the antifouling performance of this membrane by modifying
the membrane surface hydrophilicity and porosity by mixing polycationic liquid into the
polyvinylidene fluoride (PVDF) membrane.

Of the remaining eight articles, half were related to the application of membrane
bioreactors in wastewater treatment. Dong et al. [10] optimized the membrane biofilm
reactor and hydrogen-based membrane biofilm reactor (MBR-MBfR) to treat low C/N
wastewater and found that proper system functioning was achieved by coupling the partial
nitrification-denitrification (PN-D) process in an MBR with further treatment in an MBfR.
Aguilar-Moreno et al. [11] demonstrated the economic feasibility of ammonia recovery
from anaerobic digestion concentrate using a combination of C/F, aeration, and membrane
contactor. Zou et al. [12] reported that the MPBR system could not maintain long-term
operations under high SRT for municipal wastewater treatment. Such operating conditions
may lead to the decay and deterioration of MPBR’s biological performance while improving
the antifouling performance of microalgae flocs. Alharthi et al. [13] successfully integrated
the moving bed biofilm reactor (MBBR), membrane bioreactor (MBR), and direct contact
membrane distillation (DCMD) treatment steps for industrial wastewater treatment, and
the results showed that high-quality effluents were obtained by the three-step process.
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Cunha et al. [14] characterized water dynamics in cellulose acetate-silica asymmetric
membranes by combining multiple methods, including 1H NMR spectroscopy, diffusom-
etry and relaxometry. In the research conducted by Lu, Bai, and Liao [15], mathematical
modeling was utilized to examine the impact of temperature (mesophilic versus ther-
mophilic) and oxygen partial pressure on the performance of the membrane-aerated biofilm
reactor (MABR), and the results indicated that ThMABR had significant advantages over
conventional mesophilic MABR. Zou et al. [16] investigated the role of Ca2+ addition in
humic acid (HA) fouling and the potential of adding Ca2+ for fouling mitigation in the
coagulation-ultrafiltration process. The results demonstrated the feasibility of fouling miti-
gation by adding Ca2+ into the ultrafiltration process to treat HA pollutants. Li et al. [17]
investigated the water purification effect and membrane fouling mechanism of two types
of powdered activated carbon (PAC) that enhanced PVDF ultrafiltration membranes for
surface water treatment. The results showed that PAC could effectively enhance membrane
filtration performance.

Pereira et al. [18] reported on a study that evaluated the applicability of a previously
developed mathematical model to predict the fractionation of aromas from different chemi-
cal families in real effluents (sardine cooking wastewaters) and remove off-flavors. Their
findings demonstrated that the model simulations were not substantially impacted by the
food matrix, which served to validate and expand the applicability of the model.

The field of advanced membrane technologies for wastewater treatment and recycling
encompassed a broad range of research topics. This Special Issue presents significant
contributions to membrane research, covering membrane fabrication and modification,
membrane bioreactor applications in wastewater treatment, and membrane fouling con-
trol and mechanisms. In conclusion, the editors appreciate the authors’ and reviewers’
valuable contributions to this Special Issue. We are also grateful to the editorial staff of
“Advanced Membrane Technologies for Wastewater Treatment and Recycling” for their
invaluable support.
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