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Abstract: Presently, water pollution poses a serious threat to the environment; the removal of
organic pollutants from resources, especially dyes, is very important. Nanofiltration (NF) is a
promising membrane method to carry out this task. In the present work, advanced supported poly(2,6-
dimethyl-1,4-phenylene oxide) (PPO) membranes were developed for NF of anionic dyes using bulk
(the introduction of graphene oxide (GO) into the polymer matrix) and surface (the deposition of
polyelectrolyte (PEL) layers by layer-by-layer (LbL) technique) modifications. The effect of PEL
combinations (polydiallyldimethylammonium chloride/polyacrylic acid (PAA), polyethyleneimine
(PEI)/PAA, and polyallylamine hydrochloride/PAA) and the number of PEL bilayers deposited by
LbL method on properties of PPO-based membranes were studied by scanning electron microscopy
(SEM), atomic force microscopy (AFM), and contact angle measurements. Membranes were evaluated
in NF of food dye solutions in ethanol (Sunset yellow (SY), Congo red (CR), and Alphazurine (AZ)).
The supported PPO membrane, modified with 0.7 wt.% GO and three PEI/PAA bilayers, exhibited
optimal transport characteristics: ethanol, SY, CR, and AZ solutions permeability of 0.58, 0.57, 0.50,
and 0.44 kg/(m2h atm), respectively, with a high level of rejection coefficients—58% for SY, 63%
for CR, and 58% for AZ. It was shown that the combined use of bulk and surface modifications
significantly improved the characteristics of the PPO membrane in NF of dyes.

Keywords: polyphenylene oxide; mixed matrix membrane; graphene oxide; layer-by-layer technique;
polyelectrolytes; nanofiltration; dye

1. Introduction

Currently, water pollution poses a serious threat to the environment, and the removal
of organic and toxic pollutants from resources attracts a great amount of attention from
scientists [1]. The textile and food industries are the main sources of pollution, of which
significantly affects the quality of available water resources due to the discharge of dyes.
Dyes (more than 100,000 commercially available) are complex organic molecules widely
used in industries of printing, plastics, paper, textile, food, etc. [2–5]. Most dyes are not
amenable to traditional methods of purification, thereby accumulating in the environ-
ment due to their high degree of resistance to temperature, light, biodegradation, and
detergents [6]. Pressure-driven membrane process nanofiltration (NF) is one of the most
promising alternatives for resource purification from dyes, as it relates to sustainable pro-
cesses [7]. NF is a pressure-driven membrane process between reverse osmosis (RO) and
ultrafiltration (UF), and is used for removing solutes with a molecular weight in the range
of 200–1000 g/mol [8,9]. A current area of intense research is the extension of NF to the
separation of molecules in organic solvents, which is called organic solvent NF (OSN) [8,10]
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and has a great potential in industries (from refining to chemical and pharmaceutical
synthesis) [11]. Both porous and non-porous (composite or supported) membranes are
used for OSN [12] of the most common solvents and solutes [11], and various modification
approaches are used for the development of NF membranes to increase filtration efficiency.
Scientists are also actively developing mathematical models of NF to better understand
transport mechanisms as well as to predict separation characteristics. For example, models
based on the one-dimensional Nernst–Planck equation coupled with electroneutrality, zero
current, and Donnan equilibrium conditions as well as two-dimensional Nernst–Planck,
Poisson, and Navier–Stokes equations, a novel equation for salt flux obtained from the full
solution-friction (SF) theory, were applied to investigate theoretically the pressure-driven
transport of electrolytes through membranes [13,14].

In this work, it was decided to investigate supported membranes based on an aromatic
glassy polymer poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) with a high thermal and
mechanical stability as well as a resistance to chemical agents [15] for NF of food dye
solutions in ethanol. This polymer is actively applied as a membrane material for diffusion
membrane processes (gas separation [16,17] and pervaporation [18–21]). Based on a litera-
ture review, it was found that supported membranes based on pristine (unfunctionalized)
PPO have not been yet studied for NF. Its derivatives (for example, brominated and sul-
fonated PPO) were mainly used for NF of different electrolytes [22–26]. Only membranes
from brominated PPO (BPPO) were developed for OSN (namely, for the rejection of dyes
such as Bengal rose, Safranine T, Alizarin yellow GG, Eriochome black T, Crystal violet,
Bromophenol blue, and Coomassie brilliant blue R250) [27]. Thus, the aim of this work was
to investigate the developed supported PPO membrane in NF of dyes and to enhance its
performance using various modification approaches: bulk (the introduction of graphene
oxide (GO) into the polymer matrix) and surface (the deposition of polyelectrolytes (PEL)
with layer-by-layer (LbL) technique) modifications.

The creation of a mixed matrix membrane is a promising modification method, con-
sisting in the introduction of an organic/inorganic component into the polymer matrix. It
allows a direct and flexible changing of the membrane characteristics, combining advan-
tages of both components. In the present work, the improvement of NF PPO membrane
properties was achieved by the modification with GO due to its unique structure, good
dispersion in the PPO matrix, and functional (oxygen-containing) groups. The modifica-
tion with GO also provides a perspective on the improvement of NF membranes for the
rejection of negatively charged molecules [28]. Our previous work [21] demonstrated the
use of GO as a modifier for the pervaporation PPO membrane, which led to an increased
membrane permeation flux, maintaining a high level of selectivity in the dehydration of
ethylene glycol.

The deposition of nano-sized PEL layers by LbL assembly is a surface modification
method, which can effectively adjust the membrane performance to obtain the tailored
permeability and/or selectivity [29]. The coating of PEL layers on the membrane surface
leads to definite surface charge and high hydrophilicity, resulting in a strong affinity for
polar molecules, which are attractive for their use in surface membrane modification. To
achieve the tailored membrane performance, the characteristics of a surface-modified
membrane may be varied by the choice of PEL pair, number of deposited layer, PEL charge
density, pH, etc. [30,31].

Thus, the aim of this study was to develop PPO membranes with improved character-
istics by the use of bulk (the introduction of GO into the polymer matrix) and surface (the
deposition of PEL by LbL technique) modifications for enhanced NF of food anionic dyes.
Four PEL (three cationic–polydiallyldimethylammonium chloride, polyethyleneimine,
polyallylamine hydrochloride and one anionic–polyacrylic acid) with different charge
densities of a PEL pair were used to carry out the surface modification of PPO mem-
branes. The obtained membranes were investigated by various analysis methods such as
scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle
measurements. The transport properties of membranes were evaluated in NF of ethanol
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and solutions of anionic food dyes (Sunset yellow (SY, E110), Congo red (CR, E129), and
Alphazurine (AZ, E133)) with various molecular weights. The stability of the PEL layer
on the membrane surface was confirmed after NF by data of FTIR, SEM, AFM and contact
angle measurements.

2. Materials and Methods
2.1. Materials

Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO, CAS Number: 25134-01-4, 1.06 g/mL,
Sigma-Aldrich, St. Petersburg, Russia) was applied as a membrane matrix. Graphene
oxide (GO, Fullerene Technologies, St. Petersburg, Russia) was applied as a modifier
for the volume (bulk) modification of the PPO membrane. For the preparation of the
supported PPO membranes, commercial membrane MFFC (Vladipor, Vladimir, Russia)
from fluoroplast F42L was applied as a porous support. For surface modification with
polyelectrolytes (PEL) of the PPO membranes by layer-by-layer (LbL) technique, poly-
acrylic acid (PAA, CAS Number: 9003-01-4, Mw~100,000, 35 wt.% in H2O, Sigma-Aldrich,
St. Petersburg, Russia), polyallylamine hydrochloride (PAH, CAS Number: 71550-12-4,
Mw~150,000, 40 wt.% in H2O, Polysciences Europe GmbH, Hirschberg an der Bergstrasse,
Germany), polyethyleneimine (PEI, CAS Number: 9002-98-6, Mw~25,000, 50 wt.% in H2O,
Acros Organics, Moscow, Russia), and polydiallyldimethylammonium chloride (PDAD-
MAC, CAS Number: 26062-79-3, Mw~200,000-350,000, 20 wt.% in H2O, Sigma-Aldrich, St.
Petersburg, Russia) were used. Characteristics of PEL are presented in Table 1. Chloroform
(CHCl3, CAS Number: 67-66-3, 99.1 wt.%, Vekton, St. Petersburg, Russia) was used without
additional treatment.

Table 1. Main characteristics of PEL.

PAA PDADMAC PAH PEI

Monomer unit (C3H4O2)n (C8H16ClN)n (CH2CH(CH2NH2 · HCl))n (C22N11H55)n
Mw unit, g/mol 72 161.5 93.5 473

PEL structure
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4.3

PAH/PAA
6.0
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2.2. Membrane Preparation
2.2.1. Supported Membranes

The PPO/GO composites were prepared by solid-phase method: the determined
amount of PPO was ground with the GO (0.5, 0.7, 1, and 1.5 wt.% with the respect to the
PPO weight), followed by dissolution in chloroform to obtain a 5 wt.% solution. Supported
membranes were prepared by physical adsorption method: the 5 wt.% PPO solution in
chloroform and PPO/GO composite were deposited onto a porous commercial MFFC
membrane for the formation of a thin dense selective layer, followed by solvent evaporation
at ambient temperature for 24 h [21].

2.2.2. Surface Modification with PEL by Layer-by-Layer Technique

Surface modification of the supported membranes with PEL by LbL assembly was
carried out using a Xdip-MV1 robotic coating immersion system (PROMENERGOLAB
Ltd., Moscow, Russia) with the application of the PAA polyanion, and PAH, PEI, and
PDADMAC polycations (10−2 mol/L in water). To prevent the exposure of the porous



Membranes 2023, 13, 534 4 of 19

substrate to PEL, the supported membrane was fixed with silica gel on a Teflon plate
(selective PPO layer oriented outward) and immersed alternately in PEL solutions for
10 min with water washing between the immersions [32]. The pH of the PAA and PAH
solutions was adjusted to 6.5 due to maximum ionization of these weak polyelectrolytes
being at this pH [31]. The polycations (PAH, PEI, and PDADMAC) were deposited initially.
The membrane was washed with water several times after the deposition of the polycations.
Polyanion PAA was deposited next, also followed by water rinsing. This completed the
formation of one PEL bilayer on the membrane surface. The LbL modification procedure
for the deposition of 1 PEL bilayer is schematically presented in Figure 1.
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2.3. Nanofiltration (NF)

The developed supported membranes were evaluated in NF of food dye (Sunset
yellow (SY, E110), Congo red (CR, E129), and Alphazurine (AZ, E133)) solutions in ethanol
(10 mg/L), using a dead-end cell with 0.2·10−2 m2 effective area under constant stirring at
ambient temperature [33]. The scheme of the NF is presented in Figure 2 [33]. NF experi-
ments were carried out for at least a week for each membrane; every day, the membrane
was tested in NF of ethanol and dye (SY, CR, and AZ) solutions, alternating them each time
(namely, ethanol, SY solution, ethanol, CR solution, ethanol, AZ solution, and ethanol).
Ethanol was passed between the dye solutions to confirm the stability of membrane prop-
erties. In an attempt to avoid the effects of concentration polarization, feeds were actively
stirred, and ethanol was passed after each dye solution. Concentration polarization signifi-
cantly decreases for dilute solutions (0.01 g/L) [34]. Within a week, the data obtained were
averaged, and the membranes demonstrated the stability of the transport characteristics
(the obtained average accuracies were as follows: ±5% for permeability, and ±2% for
rejection coefficient).

The content of dyes in the feed and permeate was studied using a spectrophotometer
PE-5400UV (EKROSKHIM, St. Petersburg, Russia), at 483 nm for Sunset yellow (E110),
505 nm for Congo red (E129), and 628 nm for Alphazurine (E133), corresponding to the
absorbance maximum. The structure of dyes is presented in Table 2.
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Permeability was calculated according to the following equation [35]:

L =
J

∆P
=

m
A·t·∆P

, (1)

where m is the weight of permeate (kg), t is permeate collection time (h), A is effective
surface area of membrane (m2), and ∆P is transmembrane pressure (atm).

The rejection coefficient of dyes was calculated according to the following equation:

R =

(
1 −

Cperm

Cfeed

)
· 100%, (2)

where Cperm and Cfeed are the concentration of dyes in the permeate and the feed, respectively.

2.4. Fourier-Transform Infrared Spectroscopy (FTIR)

The structure of the upper selective layer of supported membranes was investigated
using an IRAffinity-1S spectrometer (Shimadzu, St. Petersburg, Russia) with an attenuated
total reflectance (ATR) accessory (PIKE Technologies, St. Petersburg, Russia) at ambient
temperature in the range of 500–4000 cm−1.

2.5. Scanning Electron Microscopy (SEM)

The cross-sectional and surface morphology of supported membranes was studied
using a Zeiss Merlin SEM (Carl Zeiss SMT, Oberhochen, Germany). The membrane cross-
section was obtained by cleaving in liquid nitrogen.

2.6. Atomic Force Microscopy (AFM)

The surface topography of the developed membranes was investigated using an NT-
MDT NTegra Maximus atomic force microscope (NT-MDT Spectrum Instruments, Moscow,
Russia) in the tapping mode using standard silicon cantilevers with 15 N·m−1 rigidity.

2.7. Contact Angle Measurements

To evaluate the hydrophilic–hydrophobic surface properties, water contact angles were
measured using a Goniometer LK-1 device (NPK Open Science Ltd., Krasnogorsk, Russia)
by the sessile drop method. The “DropShape” software (the Laboratory of Mathematical
Methods of Image Processing, Lomonosov Moscow State University, Moscow, Russia) was
used to analyze results. At least three different locations were measured for each membrane,
and the average contact angles were presented.

3. Results

This section is divided into three main parts. Section 3.1 is dedicated to the investiga-
tion of NF performance of the PPO-based membranes, including subsections devoted to
the investigation of PPO membranes with bulk modification by GO (Section 3.1.1), with
surface modification by various PEL composition and bilayer numbers (Section 3.1.2), and
PPO membranes modified with GO and PEL (Section 3.1.3). The characterization of the de-
veloped supported membranes by various analysis methods is presented in Section 3.2. In
Section 3.3, the comparison of NF performance of PPO-based membranes with membranes
described in the literature is presented.

3.1. Nanofiltration Performance
3.1.1. Study of GO Effect

To study the effect of volume modification with GO, the supported PPO and PPO/GO
(0.5–1.5 wt.%) membranes were tested in the NF of ethanol and solutions of anionic dyes
(SY, CR, and AZ) with different molecular weights (Figure 3).
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For all membranes, ethanol permeability was higher compared to the permeability
of dye solutions due to the membrane contamination by dyes, causing membrane block-
ing [36]. The permeability of ethanol, SY, and CR solutions for the pristine PPO membrane
was 0.237, 0.235, and 0.233 kg/(m2h atm), respectively, while the permeability of AZ de-
creased down to 0.182 kg/(m2h atm). It may be explained by another interaction type
between the AZ and membrane selective layer: hydrophobic or hydrogen bonding, re-
sulting in membrane blocking [36]. The introduction of GO into the PPO matrix led to a
decrease in the permeability of the ethanol and dye solutions, compared to the pristine PPO
membrane (Figure 3a), which intensified with the increase in GO content. This behavior
can be explained by the cross-linking effect of GO on the polymer matrix [37], and the
formation of GO agglomerates in the membrane matrix [38], which hindered the mass
transfer of permeate components [39]. The interaction between PPO and GO was confirmed
in the previous work [21].

The rejection coefficient of the membrane in NF may be explained by several mecha-
nisms (molecular sieves, differences in diffusion and solubility, and the Donnan effect) [40].
The separation of dye molecules is mainly conditioned to their molecular weight (sieving)
and electrostatic (charge) effects [41]. The increase of the molecular weight of dyes (Table 2)
resulted in an increase of membrane selectivity (rejection coefficient) (Figure 3b) [10,36],
except for CR dye. The highest rejection coefficient of CR for all PPO and PPO/GO mem-
branes may be due to larger aggregates of this dye at the pH of ethanol (~6.8), as the pH
solution influences the charge and structure of the CR dye molecules [42]. The modification
of the PPO membrane with GO particles led to the increase of dye rejection coefficients,
which increased with the increase of GO content in the PPO membrane (Figure 3b). The
introduction of GO increased the rejection ability of the anionic dyes for the modified
PPO/GO membranes because it led to the formation of a more negatively charged mem-
brane surface, causing electrostatic repulsion between the dye molecules and membrane
surface [40,41]. The same effect was demonstrated for NF composite membranes from
polyethersulfone with graphene oxide and sulfonated graphene oxide [43]. The optimal NF
performance was observed for the PPO membrane modified with 0.7 wt.% GO: the optimal
ratio of permeability (0.148 kg/(m2h atm) for ethanol, and 0.157, 0.147, 0.132 kg/(m2h atm)
for SY, CR, and AZ solutions, respectively) and increased dye rejection coefficients (46,
54, and 45%, for SY, CR, and AZ, respectively). Thus, this membrane was chosen for
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further surface modification with polyelectrolytes (PEI/PAA) to increase permeability
(Section 3.1.3).

3.1.2. Study of the Effect of PEL Composition and Bilayer Number

Currently, there is no guideline for selecting commercial PEL according to the separa-
tion type being studied. In this work, only four PEL (three cationic (PDADMAC, PEI, and
PAH) and one anionic (PAA)) with different charge densities of a PEL pair (Table 1) were
used to carry out surface modification of the PPO membrane by LbL technique. In organic
media, the charge density of a PEL pair plays the role of a physical cross-linking agent,
affecting mass transfer through the surface modified membrane [31]. A total of five bilayers
of PDADMAC/PAA, PAH/PAA, and PEI/PAA were deposited onto the PPO membrane
and tested in the NF of ethanol and dye (SY, CR, and AZ) solutions (Figure 4).
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membranes with the five deposited PEL bilayers.

It was demonstrated that the permeability of membranes surface-modified with five
bilayers of PAH/PAA and PDADMAC/PAA decreased compared to the PPO membrane
(Figure 4a), due to the high charge density of these PEL pairs (4.3 × 10−3 and 6.0 × 10−3

for PDADMAC/PAA and PAH/PAA, Table 1). The highest permeability was observed
for the PPO/five bilayers of PEI/PAA membrane compared to all membranes. This may
be due to the low charge density of this PEL pair (Table 1), the highest surface roughness
and hydrophilicity for this membrane among surface-modified membranes (confirmed by
AFM and contact angle data, presented below). Ethanol can pass through the membrane
with a more effective surface area (due to high surface roughness) under pressure, forming
special pathways for the transport of molecules through the relatively soft PEI/PAA layer
(due to the low charge density of the PEL pair), resulting in the improved permeability [43].
The deposition of five PEL bilayers onto the PPO membrane led to the increased dye
rejection coefficients (Figure 4b), attributed to the upper negatively charged PAA layer
and its functional carboxylic acid groups [44]. Electrostatic repulsion between like charges
(anionic PAA and dyes) is assumed [45]. However, surface modification with PEL resulted
in a slight increase in dye rejection (no more than 42%). Thus, the PEI/PAA pair was chosen
for surface modification of the PPO membrane in order to increase permeability in NF.

In the second step, the influence of the number of deposited bilayers of PEI/PAA
(3-10 bilayers) on the performance of the surface-modified PPO membrane in the NF of
ethanol and dye (SY, CR, and AZ) solutions was investigated (Figure 5).
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It was shown that an increase from three to ten of the deposited number of PEI/PAA
bilayers on the PPO membrane led the decrease of permeability and slight increase of
dye rejection coefficients (Figure 5a,b), due to formation of a thicker upper PEL layer [43].
The PPO/3 bilayers of PEI/PAA membrane had the highest permeability (0.824, 0.737,
0.647, and 0.562 kg/(m2h atm) for ethanol, SY, CR, and AZ, respectively). The further
improvement of membrane performance was carried out by a combination of bulk (the
introduction of GO into the PPO matrix) and surface (coating with the optimal three
PEI/PAA bilayers on the membrane surface) modifications [46].

3.1.3. Study of Membranes Modified with GO and PEL

To increase permeability, the PPO + 0.7% GO membrane was surface-modified with
a deposition of three bilayers of PEI/PAA and also tested in the NF of ethanol and dye
(SY, CR, and AZ) solutions (Figure 6). The data of the PPO, PPO + 0.7% GO, and PPO/3
bilayers of PEI/PAA membranes were also presented in Figure 6 for comparison.

It was demonstrated that the use of bulk (the introduction of 0.7 wt.% GO into the
PPO matrix) and surface modification (the deposition of three bilayers of PEI/PAA by
LbL assembly) mutually was shown to result in optimal membrane performance. Specifi-
cally, the PPO + 0.7% GO/3 bilayers of PEI/PAA membrane had increased permeability
2.4 times (with an ethanol, SY, CR, and AZ solution permeability of 0.58, 0.57, 0.50, and
0.44 kg/(m2h atm), respectively) and increased dye rejection coefficients by 41, 28, and 27%
(58% for SY, 63% for CR, and 58% for AZ) compared to the pristine PPO membrane. Based
on previous NF data (Figures 3–5), the introduction of GO into the PPO matrix and the
top PAA layer (forming three PEI/PAA bilayers) results in an improved rejection ability
due to the GO oxygen-containing groups and negative charge of PAA. The application of
three soft PEI/PAA bilayers with a low charge density (Table 1) on the membrane surface
by LBL method promotes the formation of transport channels for the transfer of ethanol
in the upper PEL layer, as well as improved surface roughness and hydrophilicity of the
membrane (confirmed by AFM and contact angle data, presented below), resulting in an
increase in permeability. Thus, the PPO membrane modified with 0.7 wt.% GO and with
the deposition of three PEI/PAA bilayers (PPO + 0.7% GO/3 bilayers of PEI/PAA) had the
optimal transport properties in NF of anionic food dye solutions.
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3.2. Membrane Characterization

To confirm the formation of the PEL layer and to evaluate surface parameters, sup-
ported membranes were studied by SEM, AFM, and contact angle measurements. The
SEM micrographs and AFM images of the supported PPO and PPO/GO (0.7%) membranes
without/with PEL modification are presented in Figures 7 and 8.
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Figure 7. SEM cross-sectional micrographs with magnification 10 kX and 25 kX of (a) PPO, (b) PPO +
0.7% GO, (c) PPO/5 bilayers of PDADMAC/PAA, (d) PPO/5 bilayers of PAH/PAA, (e) PPO/5 bilayers
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of PEI/PAA, and (f) PPO + 0.7% GO/3 bilayers of PEI/PAA membranes. 1—region of porous MFFC
support, 2—region of the dense selective layer, 3—region of the PEL layer.
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For the supported PPO and PPO + 0.7% GO membranes, the cross-sectional SEM
micrographs clearly demonstrate only two regions (Figure 7a,b): (1) the porous MFFC
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substrate, and (2) a thin dense selective layer based on the PPO and PPO/GO (0.7%)
composite with a thickness of 3 ± 0.2 µm, as was also obtained in the previous work [21].
These membranes also have rounded non-perforating cavities on the surface of the thin
selective layer (confirmed by SEM surface (Figure 8) and cross-sectional micrographs),
which have previously been confirmed in [21,47,48]. For surface-modified membranes,
there are three regions: (1) the porous MFFC substrate, (2) a thin dense selective PPO-based
layer, and (3) the thinnest PEL layer with a thickness of 60 ± 10 nm (Figure 7c–f). A
continuous and uniform adhesion of the thin dense PPO-based layer to the surface of the
porous MFFC substrate, as well as of PEL layers to the surface of the thin dense PPO-based
layer, was also observed.

The surface SEM micrographs of PPO and PPO + 0.7% GO membranes (Figure 8a,b)
were also in agreement with the previously obtained data [21]; when GO is introduced, the
number of cavities on the membrane surface increased, while their size decreased. The
deposition of the PEL layer on the surface of PPO and PPO + 0.7% GO membranes led to
their partial filling (Figure 8c–f). The surface of the supported membranes had a nodule
structure, confirmed by AFM data (Figure 8). Based on AFM images, the surface parameters
in terms of average (Ra) and root-mean-square roughness (Rq) were evaluated and are
presented in Table 3. To assess the hydrophilic—hydrophobic balance of the membrane
surface, the water contact angle of water was also measured (Table 3).

Table 3. Surface roughness parameters and water contact angle of membranes.

Membrane Ra, nm Rq, nm Contact Angle of
Water, ◦

PPO 24.4 49.1 88 ± 2
PPO + 0.7% GO 44.2 73.0 86 ± 2

PPO/5 bilayers of PDADMAC/PAA 25.1 50.1 75 ± 2
PPO/5 bilayers of PAH/PAA 26.8 50.9 74 ± 2
PPO/5 bilayers of PEI/PAA 28.8 53.4 71 ± 2

PPO + 0.7% GO/3 bilayers of PEI/PAA 26.4 53.1 71 ± 2

It was found that the introduction of 0.7 wt.% GO into the PPO membrane led to
the increase of surface roughness parameters due to the formation of a larger number of
cavities on the membrane surface, and surface hydrophilization due to the migration of
hydrophilic (oxygen-containing) GO groups to the top of the membrane surface [21]. The
LbL deposition of PEL bilayers (PDADMAC/PAA, PAH/PAA, PEI/PAA) onto the PPO
membrane led to the slight increase of surface roughness parameters (not more than 5 nm).
The PPO + 0.7% GO membrane with three deposited bilayers of PEI/PAA had a lower
surface roughness compared to the pristine PPO + 0.7% GO membrane. This may be ex-
plained by the formation of a 60 nm thick PEL layer covering all irregularities of membrane
surface [46]. The deposition of PEL layers onto the PPO membrane led to a decrease of the
water contact angle (surface hydrophilization), because of the hydrophilic PEL nature. The
PEL charge density affects the contact angle of surface-modified membranes, regardless of
the sign of the surface charge [49]. The water contact angle values decreased for surface-
modified PPO membranes when five bilayers were applied: PDADMAC/PAA > PAH/PAA
> PEI/PAA. Despite the fact that PAA was applied last on top of all membranes, the slight
difference in values was partly due to the anionic or cationic nature of the PEL charge,
but mainly due to differences in the intrinsic hydrophobicity of PEL molecules [49]. The
contact angles of PPO/5 bilayers of PEI/PAA and PPO + 0.7% GO/3 bilayers of PEI/PAA
membranes were equal to 71◦ because of a 60 nm thick PEL layer on the membrane surface
with the upper PAA layer. It is consistent with the properties of pristine PAA [45].

To confirm the stability of the PEL layer, the PPO + 0.7% GO/3 bilayers of PEI/PAA
membrane with optimal properties was studied by FTIR, SEM, AFM, and contact angle
measurements after NF.
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It was demonstrated that FTIR spectra of the PPO + 0.7% GO/3 bilayers of PEI/PAA
membrane before and after NF experiment were comparatively the same (Figure 9a). The
SEM cross-sectional micrograph (Figure 9b) confirmed the maintenance of the PEI/PAA
layer on the surface of the membrane that was uniform and did not wash off during
the experiment. There was no significant changes on the PPO + 0.7% GO/3 bilayers of
PEI/PAA membrane surface after NF; the surface SEM micrograph after NF (Figure 9c) was
comparatively the same when compared to the one before the experiment (Figure 8f). Based
on AFM image (Figure 9d), the calculated average (Ra) and root-mean-square roughness
(Rq) after NF were equal to 24.8 and 50.2 nm, respectively. The PPO + 0.7% GO/3 bilayers
of PEI/PAA membrane after NF had a water contact angle of 70◦. Thus, the stability and
preservation of the PEL layer of PPO + 0.7% GO/3 bilayers of PEI/PAA membrane after
the experiment was shown.

3.3. Membrane Performance Comparison in Nanofiltration

The performance of membranes described in the literature for NF of anionic dye
solutions in ethanol was compared with the developed PPO + 0.7% GO/3 bilayers of
PEI/PAA membrane under close experiment conditions, including NF of dyes with similar
molecular weights, in terms of permeability and rejection coefficient (Table 4).

Table 4. Comparison of transport properties for membranes in NF of anionic dye solutions in ethanol.

Membrane
Ethanol

Permeability,
kg/(m2h atm)

Dye Solution,
Concentration

Solution
Permeability,
kg/(m2h atm)

Rejection
Coefficient, % Ref.

PPO + 0.7% GO/3 bilayers of
PEI/PAA 0.58

Sunset yellow
10 mg/L 0.57 58

This study
Congo red
10 mg/L 0.50 63

Alphazurine FG
10 mg/L 0.44 58

PIM-1/MIL-125
- Alphazurine FG

10 mg/L 0.19 99

[33]
- Sunset yellow

10 mg/L 0.19 99

PIM-1/MIL-140A
- Alphazurine FG

10 mg/L 0.25 89

- Sunset yellow
10 mg/L 0.23 91

Cellulose acetate/gold nanoparticles 0.06 Bromothymol
Blue - 82 [50]

Cellophane 0.05
Remazol

Brilliant Blue R - 79
[51]

Orange II - 55

Polyimide (PI)/gold
nanoparticles

-
Methyl Orange 0.16 82 [52]
Bromothymol

Blue 2.3 58 [53]

Thin-
film nanocomposite
membrane (TFCM)

polyamide (PA)/polydopamine-
HKUST-10.6/polyetherimide

3.6

Congo red
100 mg/L 2.5 93

[54]Rose Bengal
100 mg/L - 91

Methyl Orange
100 mg/L - 80

TFCM
PA-polyether-

sulfone/polyvinyl formal
1.6 Orange GII

100 mg/L - 68 [55]

TFCM
PI/hydrolyzed

polyacrylonitrile (PAN)
- Coomassie brilliant blue

100 mg/L 0.55 99 [56]
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Table 4. Cont.

Membrane
Ethanol

Permeability,
kg/(m2h atm)

Dye Solution,
Concentration

Solution
Permeability,
kg/(m2h atm)

Rejection
Coefficient, % Ref.

TFCM
PA/octadecylamine

(ODA)-functionalized
reduced graphene

oxide (rGO)/PI

-

Sunset Yellow
20 mg/L

3.6 99

[57]
Rose Bengal

20 mg/L 3.9 98
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NF, (b) SEM cross-sectional micrograph with magnification 20 kX and 50 kX (1—region of the porous
MFFC support, 2—region of the dense selective PPO/GO layer, 3—region of the PEI/PAA layer),
(c) SEM surface micrograph, and (d) AFM surface image of the PPO + 0.7% GO/3 bilayers of PEI/PAA
membrane after NF.

It was demonstrated that the developed PPO + 0.7% GO/3 bilayers of PEI/PAA
membrane had good performance in NF of anionic dye solutions in ethanol; it had the
optimal ratio of permeability and rejection of dyes. However, it is largely inferior to
TFCM in performance due to a thicker dense PPO-based layer on a porous substrate. This
demonstrated the promising application of the developed PPO-based membranes in the
NF of anionic dye solutions.

4. Conclusions

In the present work, the advanced supported poly(2,6-dimethyl-1,4-phenylene oxide)
(PPO) membranes were developed for NF of anionic dyes using bulk (introduction of
graphene oxide (GO) into the polymer matrix) and surface (deposition of polyelectrolyte
(PEL) layers by layer-by-layer (LbL) technique) modifications.

Bulk modification of the PPO membrane with GO (0.5–1.5 wt.%) led to the decrease of
ethanol and dye solutions permeability and to the increase of rejection coefficients due to a
more negatively charged membrane surface caused by functional GO groups. The optimal
NF performance was possessed by the PPO membrane modified with 0.7 wt.% GO; it had
the optimal level of permeability and dye rejection coefficients.

Surface modification by the deposition of five PEL bilayers onto the PPO membrane
surface led to the increased dye rejection coefficients, due to the upper negatively charged
PAA layer. The permeability of membranes with five bilayers of PAH/PAA and PDAD-
MAC/PAA decreased compared to the PPO membrane, due to the high charge density of
these PEL pairs. While the PPO membrane with five deposited bilayers of PEI/PAA had
the highest permeability due to forming facilitated pathways for the transport of molecules
through the PEI/PAA layer, which exhibited a relatively soft structure due to its low charge
density, the highest surface roughness and hydrophilicity observed among the other stud-
ied surface-modified membranes (confirmed by AFM and contact angle data). The effect of
the number of PEI/PAA bilayers (3–10 bilayers) on properties of PPO membranes was also
studied. The increase from three to ten of the deposited number of PEI/PAA bilayers on
the PPO membrane surface led to the decrease of permeability and the slight increase of
dye rejection coefficients, due to the formation of a thicker upper PEL layer. The surface
modification with three bilayers of PEI/PAA was chosen as optimal, as this membrane had
the highest permeability.

The further improvement of membrane performance was carried out by a combination
of bulk (the introduction of 0.7 wt.% GO into the PPO matrix) and surface (coating with the
optimal three PEI/PAA bilayers on the membrane surface) modifications. This membrane
had increased permeability of ethanol and dye solutions 2.4 times, and increased dye
rejection coefficients by 41, 28, and 27% (for SY, CR, and AZ, respectively), compared to the
pristine PPO membrane in NF. Thus, it was demonstrated that the combined use of bulk
and surface modifications significantly improved the characteristics of the PPO membrane
in NF of anionic dye solutions.
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