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Abstract: Electrospun nanofiber mats are nowadays often used for biotechnological and biomedical
applications, such as wound healing or tissue engineering. While most studies concentrate on their
chemical and biochemical properties, the physical properties are often measured without long expla-
nations regarding the chosen methods. Here, we give an overview of typical measurements of topo-
logical features such as porosity, pore size, fiber diameter and orientation, hydrophobic/hydrophilic
properties and water uptake, mechanical and electrical properties as well as water vapor and air
permeability. Besides describing typically used methods with potential modifications, we suggest
some low-cost methods as alternatives in cases where special equipment is not available.

Keywords: ImageJ; apparent density; porometer; scanning electron microscopy (SEM); specific
surface area; fast Fourier transform (FFT); water contact angle; surface roughness; tensile test;
conductivity

1. Introduction

Electrospinning allows for producing nanofiber mats from diverse polymers or poly-
mer blends, including various nanoparticles, and in this way tailoring the nanofiber ma-
terials in a broad range [1–3]. Their large specific surfaces as well as other physical and
chemical properties make such nanofiber mats highly suitable for biotechnological and
biomedical applications, such as wound healing or tissue engineering [4–6].

Naturally, nanofiber mats for biomedical applications need special properties, espe-
cially being not cytotoxic, but depending on the exact application, they can be desired
to be biodegradable or waterproof, have antibacterial of fungicide properties, etc. [7–10].
However, their morphological, mechanical and other physical properties may also be
important for the planned application, although these values are often less intensively
investigated than chemical and biochemical properties and often only briefly described
in the methodic sections. Nevertheless, the mechanical properties are decisive for the
lifetime of a nanofibrous product and the limits of its potential application, while cell
adhesion depends on morphological parameters, hydrophobicity and water uptake are
among the parameters controlling liquid transport, which is important for wound dressing,
and porosity and water vapor/air permeability are physical parameters influencing the
filtration of liquids or gases, respectively. The porosity is often mentioned as an important
parameter for wound exudate transport and cell adhesion [11–17]. While the porosity
describes the amount of porous volume inside the nanofiber mat volume, the pore size
distribution is also often taken into account [14–16,18,19]. Other morphological parameters
are the nanofiber diameters [16,20–24] and their orientation [25–27] as well as the surface
roughness and nanofiber mat thickness [28]. Besides such structural features, the hydropho-
bic/hydrophilic properties of nanofiber mats [11,16] and their water uptake [17,24,29]
are often reported. Other often-mentioned parameters are mechanical [11,15,17–21,23,24]
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and electrical properties [18,30] as well as water vapor and air permeability [31,32]. This
review gives an overview of the different measurement methods for these parameters,
discusses differences in the gained results and suggests some less well-known inexpensive
alternatives to the typically used instruments that are not always available for each study.

2. Porosity

The porosity describes the volume of voids inside a given volume of a nanofiber mat.
Firstly, it must be mentioned that there can be open as well as closed pores, the latter of
which are not accessible for all methods described below [33–35]. However, for typical
nanofiber mats, pores can be expected to be openly accessible to any test fluid, so that
for most nanofibrous membranes, no differences between the measurement principles are
expected, whether they take into account closed pores or not.

One of the methods that would also measure closed pores is the Archimedean princi-
ple [36]. Pati et al. used a specific gravity bottle filled with ethanol in which the nanofibrous
scaffold was dipped and afterwards removed again [37]. The porosity was then calculated
according to

Porosity =
(m2 − m3 − mS)

m1 − m3
× 100% (1)

with the mass m1 of the specific gravity bottle filled with ethanol, the mass m2 of the bottle
with ethanol and the scaffold, the mass m3 of the bottle after taking out the scaffold again,
and mS the mass of the scaffold. Dividing both numerator and denominator by the density
of ethanol, it is observable that the porosity is determined as the volume of the ethanol taken
out of the bottle with the scaffold, i.e., of the ethanol that was sticking in its pores, divided
by the volume of the scaffold with ethanol. Safari et al. used the same principle based
on deionized water in which their nanofiber mats were immersed for 15 min, taken out,
quickly dried at the sample surface and weighed, so that the porosity could be calculated
as the mass of the uptaken water, divided by the sample mass [38].

Without directly using the Archimedean principle, Kahdim et al. calculated the
porosity by soaking their nanofiber mats in phosphate-buffered saline (PBS) solution for
24 h, measuring the sample mass before and after PBS uptake and calculating the porosity
according to this fluid uptake and the PBS density [39]. Here, it is not mentioned whether
the samples were also dried on both surfaces before weighing them. Using immersion of
the dried nanofiber mat in n-butanol for 2 h, Wang et al. as well as Chen et al. calculated
the porosity from the densities of membrane and n-butanol as well as the measured dry
and wet mass of the nanofiber mat [40,41].

Other research groups used a similar technique of wetting a sample in a fluid, but
measured the volumes of the fluid instead of the immersed nanofibrous mat. Salehi et al.
calculated the porosity of poly(ε-caprolactone)(PCL)/gelatin nanofiber mats by immersion
in ethanol and calculated the porosity as

Porosity =
V1 − V3
V2 − V3

× 100% (2)

with the initial volume V1 of ethanol, the volume V2 after immersion of the nanofiber mat
and the volume V3 of the ethanol without the soaked mat, taken out after 10 min [42]. Ghaee
et al. also used ethanol to investigate the porosity of their PCL nanofiber mats by this liquid
displacement technique [43], similarly to Esmaeili et al. for cellulose acetate/polyurethane
nanofiber mats [44], while Chen et al. used the same method for their poly(lactic acid)
(PLA)/regenerative cellulose composite scaffolds with hexane instead of ethanol [45].

Several papers mention a gas pycnometer as a possibility to measure the volume
of a porous sample which enables calculating the theoretical density of a sample and
correspondingly the porosity by the formula

Porosity =

(
1 −

ρexp

ρtheo

)
× 100% (3)
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with the measured density ρexp and the theoretical density ρtheo of the material under
investigation [46]. The easiest form of a gas pycnometer contains two chambers, one of
them with well-known reference volume, while the sample is introduced into the other
one. A measuring gas is introduced into one of the chambers and allowed to expand into
the second chamber through a valve. The sample volume can then be calculated from the
previously known volumes of the empty sample chamber and the reference chamber as
well as the pressure of the firstly filled chamber and the equilibrium pressure after gas
expansion [47]. While this method thus necessitates more sophisticated equipment than
the previously described methods based on fluids filling the pores of the nanofiber mat, the
latter take more time and are more error prone, especially when the experimental procedure
is not perfectly described, e.g., regarding drying the sample surfaces after dipping or not.

Equation (3) can also be used for other ways to determine the apparent density of
a sample, in the easiest way by measuring its mass as well as its thickness and lateral
dimensions, where the error range is mostly influenced by the thickness measurement,
which will be discussed in Section 8. Nevertheless, this relatively simple method can
be used to give an estimate of the porosity, keeping in mind that irregularities of the
sample thickness and its compressibility will potentially cause deviations from the real
value. Porosity calculations by the apparent density, calculated from the sample volume,
were reported by several research groups for different nanofiber mat materials, such as
polyamide-6/polyvinylpyrrolidone [48], polyurethane [49] or collagen-coated poly(l-lactic
acid)-co-poly(ε-caprolactone) [50].

Besides these methods, which are used to determine 3D pore structures, some papers
also mention calculating the surface porosity, typically based on scanning electron micro-
scope (SEM) images and their evaluation by ImageJ (National Institute of Health, Bethesda,
MD, USA) or partly automated by the plugin DiameterJ [49,51–53].

Finally, a direct measurement of the porosity is enabled by laser metrology, measuring
the surface of an electrospun nanofiber mat on the collector, followed by completely
densifying via heat treatment and afterwards measuring the surface profile again, so that
the porosity can be calculated from the vertical shrinkage [54,55].

3. Pore Size Distribution

While the porosity describes the overall volume of the pores in a given sample, the
pore size distribution is sometimes even more important in biomedical scaffolds since it
defines which pores are available for cells or can release a drug. In the easiest way, pore
sizes are measured on the surface or along cross-sections of samples, typically from SEM
images. Agueda et al. describe that they used ImageJ to investigate pore sizes from 3 areas
per sample from SEM images taken with magnification of 2000× and 5000×, measuring
30 pores per sample [56]. Liu et al. similarly examined pore sizes from SEM images of
their nanofiber mats, taken with magnifications of 5000× and 20,000×, averaging over
100 pore areas [57]. Tahami et al. also used ImageJ to measure pore sizes in SEM images,
while not exactly describing the number of measurements [58], while Stella et al. showed
histograms of the pore size distributions, which in principle allow for counting the number
of measurements per sample, again taken with ImageJ from SEM images [59].

Only a few groups describe how they defined the pore size that they measured. Zhang
et al. described measuring a reversible change in pore size by analyzing 30 pores per
sample with ImageJ in their SEM images by measuring the longest diameter, as shown in
Figure 1a [60]. Havlícek et al., on the other hand, used Matlab to determine the pore sizes as
equivalent circle diameters, i.e., they measured the pore areas and calculated the diameter
of a circle with identical area [61]. Krysiak et al. similarly fitted ellipses to the pores in
the SEM images by ImageJ and calculated their areas [62]. Nejad et al. also worked with
ellipses fitted into the pores (Figure 1b), but gave the larger diameter as the pore size [53].
In some papers, the average pore size could be estimated from SEM images, without a
detailed explanation of how this value was determined [63].
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Due to the broad range of possibilities to define the pore size, it is strongly suggested
to always clearly mention the chosen definition as well as the number of investigated pores
in a paper.

Besides these 2D methods, some groups chose 3D pore measurement methods. One of
them is the Barrett–Joyner–Halenda (BJH) technique, allowing analysis of pores between
1.7 nm and 300 nm [64]. This method is based on N2 adsorption–desorption isotherms,
taken at liquid nitrogen temperature [65–68], i.e., similarly to the Brunauer–Emmett–Teller
(BET) surface area measurements described in the next section. Generally, the BJH method
as well as further developments are based on measuring the film formation on the mesopore
walls in dependence of the condensation pressure, taking into account the so-called Kelvin-
type relation describing capillary condensation, meaning that mesopores covered with
an absorbed fill will instantaneously be filled [68]. In particular, the extended BJH-KJS
(Kruk-Jaroniec and Sayari) method was found to allow for accurately calculating mesopore
volumes [69].

A capillary flow porometer can also be used to investigate the pore sizes of nanofiber
mats [41,70]. In this method, the sample pores are filled with a wetting liquid that is
afterwards blown out of the pores by a pressurized gas or liquid [71], where smaller
pores need a higher pressure to be emptied, i.e., the measured flow rate depends on the
proportion of filled pores that block the flow so that there is zero flow at low pressure,
while at a certain high pressure, all pores are emptied, and the flow rate becomes identical
to the value measured for the dry sample at the same pressure [72]. It should be mentioned
that this method may depend on the wetting fluid [73,74] and the used instrument [75],
and thus, the results should be compared with other methods to evaluate their reliability.

Generally, some other methods are available, although less often reported in the recent
literature, to evaluate the pore size distribution of nanofiber mats, such as mercury intrusion
porosimetry [76]. Another method that is less well-known but often more readily available
than a porometer or nitrogen absorption techniques, is thermoporometry, also known as
thermoporosimetry or cryoporometry [77–80]. This calorimetric method is based on the
melting or freezing point depression of the pore liquid, which can be measured with a
laboratory differential scanning calorimetry (DSC) instrument by fast cooling the sample
wetted with deionized water to −30 ◦C or lower and then slowly (e.g., with a heating rate
of 0.1–1 K/min) heating it up to a temperature slightly above 0 ◦C [81,82]. A summary of
the theory behind the technique can be found elsewhere [83]. Although the DSC results
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are less straightforward to interpret than the results of other techniques [84], some authors
report thermoporometry measurements of nanofiber mats.

Abolhasani et al. used thermoporometry to measure the porosity of poly(vinylidene
fluoride-trifluoroethylene) (P(VDF-TrFE)) nanofiber mats [85]. Gustafsson et al. com-
pared dry- and wet-state porometry methods for the analysis of virus removal filter pa-
per [86]. They found that thermoporometry by DSC is particularly useful to characterize
the pore-size distribution in the wet state. Fashandi et al. mentioned that their originally
hydrophobic polystyrene nanofiber mat was hydrophilized by oxygen plasma treatment to
enable thermoporometric measurements, showing a pore size radius distribution around
20–50 nm [87]. As these few examples show, characterization of the pore size distribution
of nanofiber mats is also possible by using a DSC instrument, which is more often available
in laboratories than more-specialized porometers, etc.; however, care should always be
taken when comparing the results gained with different methods, as the simple comparison
of different pore size definitions in 2D optical methods already showed.

4. Specific Surface Area

Among the very special properties of nanofiber mats is their large specific surface area.
While this value is often mentioned as a reason why nanofiber mats are especially useful
for a certain application, its value is scarcely measured. The most common measurement
technique is based on the aforementioned BET adsorption–desorption isotherms of N2
gas on the sample surface [68,88–94]. Generally, a wider hysteresis loop in the adsorption–
desorption curve indicates a more mesoporous structure of the nanofiber mat [68].

To evaluate these curves, it is necessary to differentiate between the different adsorp-
tion isotherms. Many nanofiber mats reported in the literature belong to type IV [95],
while type I or a pressure-dependent change between these types are also found [96,97].
Differentiation between the different types of adsorption isotherms is possible by fitting
a range of possible equations to the measured curves, while a first idea of the type can
already be gained by looking at the slopes of the measured adsorption–desorption curves
(Figure 2) [98]. For a comprehensive overview of mono- and multi-parametric isotherm
models with the corresponding regression equations, the reader is referred to the review
paper of Al-Ghouti and Da’ana [98].
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While the BET method is based on N2 adsorption–desorption curves, it is also possible
to use the water vapor sorption capacity with a gravimetric analyzer [99]. This dynamic
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measurement technique by an automated gravimetric analyzer is based on an ultrasensitive
micro-balance, measuring the mass change of a sample while the humidity in the sample
chamber is increased from less than 1 to 90% in steps of 10%, where the sample is allowed
to reach equilibrium for 10–20 min per step [100]. Similarly, desorption curves were
measured during decreasing relative humidity. The results, depicted in Figure 3, show
hysteresis curves, but are partly not closed, as opposed to the N2 isotherm curves visible in
Figure 2. These curves were interpreted as type IV, and average pore sizes around 1 nm
were calculated from them [100].
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While the specific surface area is one of the parameters that need special equipment to
being measured, the diameters and orientations of nanofibers in an electrospun membrane
are usually measured from SEM images, as discussed in the next sections.

5. Nanofiber Diameter

The diameters of nanofibers in an electrospun membrane are usually obtained from
SEM images and either given as average with standard deviation or as distribution, some-
times as distribution boxplots [101], but mostly as a histogram. In the latter case, typically
100 or more fiber diameters per sample are measured to prepare a histogram [39,41,48,49,90],
as shown in Figure 4 [53]. In most cases, the diameters are measured manually by Im-
ageJ [14,43,56,57,68], while a few groups mention other software [41,44,90] or do not men-
tion the software used [70]. Only a few papers mention the use of the ImageJ plugin
DiameterJ or Super Pixel, which can in principle be used to automatically measure fiber
diameters from SEM images [51,102–104], possibly because of problems with this auto-
matic fiber detection caused by partial fibers or fiber intersections with dark spots [105].
On the other hand, a few groups suggested their own image analysis tools for this pur-
pose [106,107].
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Figure 4. (a) Digital microscope images for pre-assessing the electrospinning conditions (scale bar:
100 µm, 370×), SEM images (scale bar: 5 µm) and nanofiber diameter histograms of (b) polyethylene
terephthalate (PET), (c) PET/polycaprolactone (PCL) (3:1), (d) PET/PCL (1:1), (e) PET/PCL (1:3),
(f) PCL. From [53], copyright (2020), with permission from Elsevier.

6. Nanofiber Orientation

Oriented nanofibers can be produced, e.g., by a fast rotating collector cylinder. Simi-
larly to the nanofiber diameter distribution, the orientation of the nanofibers in an electro-
spun membrane is also usually determined from SEM images. The fiber orientations can
be measured manually in ImageJ [108] or other software [109]. An interesting possibility
to automatically detect fiber orientations is given by the ImageJ plugin OrientationJ, as
depicted in Figure 5 [105]. While the color-coded fiber images (Figure 5B,C) enable checking
the correctness of the detected orientation, the orientation graphs show the quantitative
evaluation of the fiber orientation.
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Another possibility to evaluate fiber orientation automatically in ImageJ is given by
the inbuilt fast Fourier transform (FFT) function as well as the Oval Profile plugin to receive
a radial direction intensity plot [110–112], as depicted in Figure 6 [113]. The latter can also
be given as a polar plot [113], which is often more intuitively understandable.
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These automatic orientation examinations have the advantage of taking into account
all fiber parts, while manual calculations naturally have to be limited to certain parts of
the fibers and are thus susceptible to subjective decisions of the evaluator. On the other
hand, automatic calculations of the fiber orientations are highly error-prone if the fibers are
too thin, i.e., only a few pixels per diameter, which will lead to favoring 0◦, ±45◦ and ±90◦

orientations [110]. Thus, the choice of the images will potentially influence the results and
has to be done with care.

7. Surface Roughness

The surface roughness of electrospun nanofiber mats can influence their hydropho-
bicity to a certain extent. When researchers mention measuring the roughness related to
electrospun nanofiber mats, sometimes the roughness of the whole membrane is meant,
while in other cases the roughness of single nanofibers is addressed. Correspondingly,
different measurement methods are necessary to detect these different orders of magnitude
of roughness.

Havlícek et al., e.g., show roughness measurements based on confocal laser scanning
microscope (CLSM) images [61]. As preparation, they coated the investigated samples
with a thin gold layer to enable better visibility of the relatively transparent nanofibers.
In this way, 3D maps of the nanofibrous surfaces were prepared, as depicted in Figure 7,
from which different roughness parameters could be calculated [61]. As the images show,
the resolution of these images is much lower than in SEM images, so that in the lateral
direction, only thicker fibers with diameters of some hundred nanometers are visible. This
technique is thus only suitable to detect the roughness of a whole nanofiber mat, not of a
single nanofiber surface.
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If the latter is required, usually SEM or atomic force microscopy (AFM) images are
investigated. However, some research groups also investigated the surface roughness of
whole nanofiber mats by SEM or AFM.

Field emission SEM (FE-SEM) images were used by Shahverdi et al., who investigated
nanofiber mat surfaces with Fiji software (National Institute of Health, 9000 Rockville Pike,
Bethesda, MD 20892, USA), leading to relatively noisy 3D images for most samples on
which a qualitative comparison of the fiber roughness was performed [114]. El-Morsy
et al. used Gwyddion (http://gwyddion.net/ (accessed on 25 March 2023)) to evaluate FE-
SEM images, showing average roughness Ra of around 100 nm for different fiber material
compositions, again with high noise [115]. Other studies show similarly noisy 3D maps,
created by Gwyddion or other software from SEM images [116], although the noise could be
reduced by using SEM images with higher magnification [117]. Nevertheless, this problem
generally occurs during the transfer of SEM images into 3D maps according to the SEM
grey scales; more realistic 3D maps need more sophisticated model creation [118].

This is why many groups use AFM measurements instead, which directly measure
the fiber heights and where the color code thus directly gives a 3D map of the nanofiber
surfaces [119]. Beigmoradi et al. measured the roughness along the fiber axis, as in-
dicated in Figure 8, and found an average roughness Ra in the range of 0.5–8 nm for
different fibers [120]. As Figure 8 shows, there is no problematic noise that would make
the evaluation unreliable. Nevertheless, it is necessary to obtain AFM images with suffi-
cient resolution [121]; otherwise, nanofiber surface evaluation is not possible with AFM,
either [122].

Membranes 2023, 13, 488 10 of 24 
 

 

 
Figure 8. AFM mages of free-surfactant (“non”) electrospun nanofiber mats. (a) 3D image and (b) 
2D image. From [120], copyright (2021), originally published under a CC-BY license. 

Besides the aforementioned methods based on surface images, taken by SEM or 
AFM, it is also possible to use a laser surface profilometer. In this way, Kichi et al. re-
ported roughness Ra in the range of 3–6 μm, i.e., apparently taking into account a larger 
area of the nanofiber mat, as could be expected due to the optical measurement and the 
correspondingly limited resolution [123]. Even a mechanical stylus-based profilometer 
was used to measure the roughness of nanofiber mats, finding Ra values around 160–260 
nm, however, for a lateral resolution of approx. 60 μm [124]. 

As this short overview shows, roughness values can be detected with a broad range 
of different techniques, although it is important to mention which resolution can be ex-
pected and whether the measurement was performed over a whole nanofiber mat area or 
along single nanofibers. 

8. Nanofiber Mat Thickness 
While the macroscopic thickness of a nanofiber mat seems to be simply measurable 

at first glance, there are, nevertheless, diverse methods with their advantages and dis-
advantages, sometimes influencing the result by the measurement. One of the problem-
atic methods is using a micrometer caliper since its pressure limitation is usually not 
sufficient to avoid compression of fine nanofiber mats, similarly to microscopic textile 
fabrics. Liu et al. tried to compensate for this effect by folding the membranes twice be-
fore measuring, i.e., by measuring four layers instead of only one [57], while other groups 
did not comment on this problem [125]. A typical textile thickness measurement instru-
ment, which has a larger measurement area and causes less pressure on the investigated 
sample, was applied by Pakolpakcil et al., who used a digital thickness gauge for 
nonwovens and measured at 10 points on the nanofiber mat [126]. 

To fully avoid this influence of the measurement on the measured value, some 
studies used optical methods to investigate the thickness of an electrospun membrane. 
Ryu et al. applied light transmittance measurements to investigate the sample thickness 
[127]. For this, they prepared nanofiber mats with different electrospinning times be-
tween 15 min and 75 min, measured their light transmittance and the thickness, the latter 
by cross-sectional microscopic images, and used the Beer–Lambert law correlating both 
values. This enabled a real-time thickness measurement during electrospinning. 

Similarly to the aforementioned roughness measurements, but on larger length 
scales, Adhikari used a confocal microscope to measure the height of samples from the 
z-stacks along the sample edges [128]. A profilometer was also used to estimate the depth 
of a cross-sectional cut by scanning the surface perpendicular to the cut [129]. Naturally, 
it is also possible to directly investigate the cross-section along a cut through the nano-
fiber mats by SEM [130,131]. 

Figure 8. AFM mages of free-surfactant (“non”) electrospun nanofiber mats. (a) 3D image and (b) 2D
image. From [120], copyright (2021), originally published under a CC-BY license.

Besides the aforementioned methods based on surface images, taken by SEM or AFM,
it is also possible to use a laser surface profilometer. In this way, Kichi et al. reported
roughness Ra in the range of 3–6 µm, i.e., apparently taking into account a larger area of the
nanofiber mat, as could be expected due to the optical measurement and the correspond-
ingly limited resolution [123]. Even a mechanical stylus-based profilometer was used to
measure the roughness of nanofiber mats, finding Ra values around 160–260 nm, however,
for a lateral resolution of approx. 60 µm [124].

As this short overview shows, roughness values can be detected with a broad range of
different techniques, although it is important to mention which resolution can be expected
and whether the measurement was performed over a whole nanofiber mat area or along
single nanofibers.

8. Nanofiber Mat Thickness

While the macroscopic thickness of a nanofiber mat seems to be simply measurable
at first glance, there are, nevertheless, diverse methods with their advantages and disad-

http://gwyddion.net/


Membranes 2023, 13, 488 10 of 23

vantages, sometimes influencing the result by the measurement. One of the problematic
methods is using a micrometer caliper since its pressure limitation is usually not sufficient
to avoid compression of fine nanofiber mats, similarly to microscopic textile fabrics. Liu
et al. tried to compensate for this effect by folding the membranes twice before measuring,
i.e., by measuring four layers instead of only one [57], while other groups did not comment
on this problem [125]. A typical textile thickness measurement instrument, which has a
larger measurement area and causes less pressure on the investigated sample, was applied
by Pakolpakcil et al., who used a digital thickness gauge for nonwovens and measured at
10 points on the nanofiber mat [126].

To fully avoid this influence of the measurement on the measured value, some studies
used optical methods to investigate the thickness of an electrospun membrane. Ryu et al.
applied light transmittance measurements to investigate the sample thickness [127]. For
this, they prepared nanofiber mats with different electrospinning times between 15 min and
75 min, measured their light transmittance and the thickness, the latter by cross-sectional
microscopic images, and used the Beer–Lambert law correlating both values. This enabled
a real-time thickness measurement during electrospinning.

Similarly to the aforementioned roughness measurements, but on larger length scales,
Adhikari used a confocal microscope to measure the height of samples from the z-stacks
along the sample edges [128]. A profilometer was also used to estimate the depth of a
cross-sectional cut by scanning the surface perpendicular to the cut [129]. Naturally, it is
also possible to directly investigate the cross-section along a cut through the nanofiber mats
by SEM [130,131].

9. Hydrophobicity/Hydrophilicity

Hydrophobic or hydrophilic properties of nanofiber mats can be significantly influ-
enced by surface functionalization, e.g., by plasma treatment [132]. The hydrophobic or
hydrophilic properties of nanofiber mats are mostly determined by contact angle mea-
surements, mostly applying the sessile-drop method in which a small droplet (e.g., with
5 µL volume [49,133], sometimes less [43]) is placed on the sample, and a microscope with
camera is used to take photographs from the side, often at defined times, enabling fitting the
contact angles on the photographs. There are also contact measurement instruments that
are commercially available [38,42,44,46,48,108,134]. For custom-made setups, evaluation
of the contact angles is possible with ImageJ, either manually or with a plugin such as
DropSnake [57].

As an example of the time-dependent change in the hydrophobicity of a nanofiber
mat surface, Figure 9 shows measurements taken 5 s and 60 s after the droplet was placed
on the membrane, respectively. While most groups used (deionized) water for their contact
angle measurements [45,53,70,93,133], others chose PBS solution as the right medium for
these examinations [101].
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An interesting alternative to the contact angle measurements is given by the Wilhelmy
plate method, as depicted in Figure 10, for advancing and receding motion [135]. In this
method, a plate is immersed into a fluid or retracted from it, allowing measuring the
dynamic contact angle. This method was used by Kahdim for contact angle measurements
on their nanofibrous scaffolds and showed relatively small standard deviations, i.e., gave
reproducible results [39].
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Interestingly, other typical textile tests regarding the water repellence of macroscopic
textiles, such as the spray test according to AATCC standard test 22 and the water/alcohol
solution resistance test according to AATCC 193 and 118 [136–138], were not found for
electrospun nanofiber mats.

10. Water Uptake

The water uptake of an electrospun nanofiber mat can be defined in different ways—by
the uptake in the pores around the fibers (cf. Section 2), or by the uptake inside the fibers,
causing swelling, which is especially the case for electrospun hydrogels [139]. The water
uptake of the material itself can be tested in the bulk form, e.g., by measuring the water
uptake of a film of the examined material [38]. It is calculated by

Water uptake =
m1 − m0

m0
× 100% (4)

with the masses m0 of the dry sample and m1 of the sample after immersion in water
for a defined time. Often, distilled or deionized water is used, and immersion times are
usually around 1–2 days [38,42,140]. The water uptake may vary upon adding fillers,
such as nanoclays [138]. While typical values of water uptake are around several per-
cent for many materials, it can also be in the range of 200–600% for very hydrophilic,
porous scaffolds [38,43,49,134,141]. For hydrogels, even increasing values of several thou-
sand percent during a few minutes were measured [45,142,143]. Besides water, several
papers used PBS solution for fluid uptake tests since cell cultivation often occurs in this
medium [38,49,101,134].

11. Mechanical Properties

The mechanical properties of electrospun nanofiber mats depend on the fiber material
and orientation, but also on the crystallinity of the fibers. They are mostly investigated
by tensile tests [56,57], often with test speeds of 1–10 mm/min [41,42,90], sometimes
even 20–30 mm/min [46,101], depending on the sample size and elongation at break. A
few papers report measuring stress–strain curves with a constant force ramp rate, e.g.,
0.3 N/min [88].

Safari et al. examined the difference between dry and wet state and found a signif-
icantly higher elongation at break and lower tensile strength in the wet state of Poly(N-
vinylcaprolactam)/poly(vinyl acetate) copolymer nanofiber mats [38]. Zadeh et al. found
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that the percentage of carbon nanotubes in the polyurethane nanofiber mats influenced
Young’s modulus of the investigated samples [49]. Zhang et al. reported high tensile
strength and modulus for PLA, high elongation at break for PCL, and averaged values for
PLA/PCL blends [70]. Bazzi et al. found a significant increase in Young’s modulus and
toughness by adding a small amount of graphene nano-platelets to chitosan/polyvinyl
alcohol electrospun nanofiber mats [68].

A very special tensile test, based on single electrospun fibers, was reported by Mu-
nawar and Schubert [144]. Working with well-aligned fibers, they rolled a fiber bundle for
the tensile testing, clamped it in a single-fiber tensile tester, and afterwards cut the tested
area and weighed the tested part of the fiber bundle to enable calculation of Young’s modu-
lus. In this way, they could measure along the fiber axes instead of taking the mechanical
properties of a whole nanofiber mat, averaging over arbitrary fiber orientation.

Besides these typical textile tests, some authors also report compressive tests of their
samples. This was the case for 3D specimens, e.g., prepared by combining electrospin-
ning and freeze-drying [43,45,133]. Chen et al. investigated cyclic compressive stress–
strain curves on their 3D scaffolds, showing the usual hysteresis loops, as depicted in
Figure 11 [45]. Chen, on the other hand, found super-elastic and shape-recovery properties
and reported enhanced elastic modulus and reduced energy loss during cyclic testing with
a gelatin coating [133].
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Figure 11. Mechanical tests on scaffolds from poly(lactic acid)/regenerated cellulose/citric acid
in a ratio of x:1:1, named PxC1, and un-crosslinked without citric acid. (a) Compressive stress–
strain curves and (b) Young’s modulus of the different scaffolds, * indicating significant differences;
(c) 100 cyclic compressive fatigue tests of P3C1 scaffolds under a compressive strain of 60%; (d) pho-
tographs of the P3C1 scaffolds under a compressing and releasing cycle. From [45], copyright (2020),
with permission from Elsevier.

Besides tensile and compressive tests, some groups also reported bursting tests of
nanofiber mats. Jalalah et al. applied the standard bursting strength test according to ISO
13938-2:1999 and found a linear correlation between nanofiber mat thickness and bursting
strength [89]. Nejad et al. found a significant increase in the bursting strength of their
nanofiber mats by adding PCL to poly(ethylene terephthalate) (PET). It was, however,
calculated from the tensile strength tests [53]. The latter also tested suture retention
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according to ISO 7198:2016 by tensile tests with a well-defined suture thread that was
inserted 2 mm from the top edge of the electrospun strip, so that the tensile test led to
pulling the suture through the graft [53].

As these examples show, tensile tests are not the only tests possible to be performed
on electrospun nanofiber mats; however, the most meaningful tests should be chosen for
the planned application.

12. Electrical Conductivity

The conductivity of nanofibers depends on their material, thickness, crystallinity, etc.
Conductive nanofiber mats can stimulate cell attachment, proliferation and differentia-
tion [145]. This is why the conductivity of electrospun membranes is often measured [9].
On the other hand, soft and compressible textile fabrics generally pose a challenge to
measurements of their conductivity since the contact between the measuring instrument
and conductive parts of the sample may be prohibited by non-conductive fibers, and the
fibrous structure reduces the contact area if contact pins are used, as is usual for multi-
meters [146]. Generally, samples can be measured with the two-electrode methods (as
in common multimeters), the four-electrode method, which is capable of eliminating the
contact resistance, and methods with even more electrodes [147].

The four-wire measurement (also known as four-terminal sensing or four-point probe)
uses two outer current-introducing and two inner voltage-sensing electrodes, in this way
becoming independent from the contact resistances. The van der Pauw method works
similarly: while the four contacts are not aligned but positioned along the sample perimeter,
the van der Pauw method measures the average sample resistivity, whereas the linear
four-point probe method measures the resistivity along the electrode orientation [148].
Due to the expected high contact resistance, textile fabrics should normally be measured
with the linear four-point probe or the van der Pauw method, depending on the desired
information and the sample geometry.

Nevertheless, multimeters are often used to investigate the resistance of electrospun
nanofiber mats, either with constant voltage [133] or by measuring the voltage-dependent
current [68]. Zadeh et al. used a special four-probe cell to measure the sample impedance
in a frequency range from 1 Hz to 100 kHz and calculated the sample resistance from
this curve [49], while Zarei et al. [130] as well as Simsek et al. [149] directly measured the
resistance using a four-probe method.

Munawar et al. decided to use another solution for the potentially high contact
resistance—they coated the ends of the measured nanofiber bundles with silver ink to
increase the conductivity of the contacts, so that they could perform reliable two-point
resistance measurements [144].

Finally, it should be mentioned that in spite of the importance of the conductivity of
electrospun scaffolds, most papers only report on conductivity measurements performed on
the spinning solutions, since this parameter directly influences the electrospinning process.

13. Water Vapor Permeability

The water vapor permeability of an electrospun membrane is correlated with its
porosity and is especially important for wound dressing applications, where too high
water vapor permeability results in fast hydration and thus scars, while too low values let
exudates accumulate and thus increase the risk of infection [150,151]. Quantitatively, the
water vapor transmission should be between 76 and 9360 g/(m2 day) to improve wound
healing [152,153]. Gu et al. reduced this optimum window to 2000–2500 g/(m2 day) [154].

Mostly, the water vapor transmittance is measured by gravimetry, where the sample is
fixed on the opening, with defined diameter (e.g., 1.23 cm), of a round bottle that is filled
with a defined volume of distilled water (e.g., 5 mL) and placed in an oven at typically
37 ◦C for 24 h [155]. The water vapor transmittance (WVTR) is calculated as

WVTR =
−∆W

AT
(5)
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with the mass change −∆W of the water in the container, the exposed area A and the
measurement time T [42]. Usually, the same measurement is performed with an open
container as the reference [155].

Chaiarwut et al. found a WVTR of 9335 g/(m2 day) for the positive control (open
bottle), i.e., the upper border of the desired water vapor transmission to improve wound
healing, and values around 2500 g/(m2 day) for different nanofiber mats from PCL [101].
Samadian et al. reported a similar value for cellulose acetate/gelatin nanofibers [156], as did
Zheng et al. for crosslinked pectin nanofiber mats [157]. Slightly higher values of around
3500 g/(m2 day) were found for polyamide-6/polyvinylpyrrolidone nanofibers [48], while
Esmaeili reported smaller values of around 1300 g/(m2 day) [44]. Salemi et al. used a test
temperature of only 33 ◦C, resulting in lower reference values of around 7440 g/(m2 day)
and around 3600 g/(m2 day) for their poly (caprolactone)/poly (vinyl alcohol)/collagen
nanofiber mats [158].

While this test method, also known as the cup test [159], is most often used to investi-
gate the water vapor permeability of electrospun nanofiber mats, it is nevertheless not free
of potential errors. As Mustapha et al. discussed, the measured water vapor permeability
actually consists of three different resistances: those of the air cavity over the water, then
the actual intrinsic membrane resistance, and finally the boundary air layer resistance,
the latter of which the authors suggested to reduce by introducing a fan blowing the air
above the cups away, while they used an open control cup to measure the air resistance by
comparing the evaporation from this cup with an analytical model [160]. Slightly different
methods are described in ASTM E96-95, where the cup is placed in a desiccator containing
saturated MgCl2 or Mg(NO3)2·6H2O solution to provide a constant relative humidity, and
the water transferred through the film is measured by an analytical balance [161,162]. Other
tests, such as the sweating guarded hot plate test according to ISO 11092, the inverted
cup method, the dynamic moisture permeation cell test method, the desiccant inverted
cup test method, etc., are only scarcely reported for nanofiber mats in the literature [163].
Nevertheless, it is important to mention the method used, since even the methods giving
results in the same units (typically g/(m2 day)) deliver quite different results for identical
samples [164].

14. Air Permeability

Air permeability is one of the parameters often measured for macroscopic textiles, but
less often for electrospun nanofiber mats, potentially because it can partly be estimated
from water vapor transmission tests [153]. Nevertheless, some studies report measuring
the air permeability of nanofibrous scaffolds directly, usually giving the transmitted air
volume per area and time, i.e., in the unit cm3/(cm2 s) or cm/s. Pakolpakcil et al. used a
commercial air permeability tester at a fixed pressure of 100 Pa and a test area of 20 cm2,
resulting in values of around 10–12 cm/s [126]. Using the same parameters, Sun et al.
found values of around 1–3 cm/s for their nanofiber mats electrospun from polyamide and
multi-wall carbon nanotubes [165]. Yardimci et al. combined the same pressure with a test
area of 50 cm2 and found values of around 2.7–2.9 cm/s [166]. Slightly different parameters
of 125 Pa and 38.3 cm2 were used by Kim et al., who measured air permeability values in
the range of 3.6–5.3 cm/s for their polyurethane-coated nanofiber mats [167]. Sarwar et al.,
on the other hand, applied a constant air flow of 2 cm/s and measured the air permeation
in liters per minute [168].

Other methods, such as methods based on falling pistons in a chamber closed by the
investigated textile fabric [169–173], are usually not reported for nanofiber mats.

15. Thermal Properties

The thermal conductivity of an electrospun nanofiber mat is often correlated with its
electrical conductivity; however, in many cases, only the thermal conductivity is measured.
Depending on the planned application, sometimes a high thermal conductivity is sought,



Membranes 2023, 13, 488 15 of 23

while often the high porosity of a nanofiber mat, combined with the low thermal conduc-
tivity of most polymers, is used to prepare heat-blocking nanofibrous membranes instead.

Thermal conductivity can be evaluated, e.g., by a diffusivity measurement instrument
at a defined temperature, often not far above the room temperature [174]. Measurements at
high temperatures, however, are also possible using the hot disk method, e.g., using infrared
thermography on the upper side of the sample, which is placed on the hot disk [175–177].
Besides a hot plate to heat up one sample side, a light flash, e.g., from a pulsed xenon lamp,
can also be applied to heat one side of the sample [178–180].

16. Conclusions

The physical parameters that are typically measured on electrospun nanofiber mats
for biotechnological applications can be described as morphology-related ones (porosity,
pore size and specific surface area, fiber diameter and orientation, roughness and thickness
of the nanofiber mat), hydrophobic/hydrophilic properties and water uptake, mechanical
properties, and electric conductivity as well as water vapor and air permeability. Other
potentially interesting properties, such as solute transport, which could be measured in
a side-by-side diffusion chamber [57], are only scarcely reported. Table 1 gives a brief
overview of these properties and typical measurement procedures as well as sample
dimensions and test standards, if mentioned in the papers.

Table 1. Physical properties, typical measurements, sample dimensions and standards.

Physical Property Test Procedures Dimensions, Standards References

Porosity
Fluid uptake [39–45]

Gas pycnometer ASTM D2000 [47]
Apparent density [57]

Pore size distribution
SEM images, ImageJ [52,61]
Thermoporometry [85–87]

Specific surface area BET isotherms [88–90]
Nanofiber diameter SEM images, DiameterJ [51,60]

Nanofiber orientation SEM images, ImageJ [54]

Surface roughness

CLSM [61]
SEM and Fiji software [114]

SEM and Gwyddion software [115,116]
Atomic force microscopy [119–121]

Nanofiber mat thickness
Textile thickness tester [52]

Laser profilometer [54]
Micrometer caliper [57]

Hydrophobicity Sessile drop [43,44,50,53,88]
Water uptake Mass difference dry/wet [140–143]

Mechanical properties Tensile tests

10 mm × 10 mm [131]
15 mm × 20 mm [45]

Length 100 mm, ASTM D882 [46]
10 mm × 30 mm, ASTM D882 [48]
10” × 3”, EN ISO 13934:1:1999 [89]

Electrical conductivity Impedance measurement [88]
Conductivity meter [114]

Water vapor permeability Bottle permeation test 1.18 cm2 [42]
1.77 cm2 [44]

Air permeability Air permeability tester
20 cm2 [126]
50 cm2 [166]

38.3 cm3 [167]

Thermal conductivity Hot plate [175–177]
Light flash [178–180]

Since most of these parameters can be measured in different ways, it is generally
highly recommended to precisely define the measurement technique, regarding the phys-
ical principle, environmental conditions and all parameters that can be modified. This
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should also become a standard when commercial instruments are used but whose exact
function is often not completely known even to the user and cannot be reproduced by other
researchers who do not own the same instrument, or for country-based standards that are
not necessarily available worldwide. Generally, in many cases, more exact descriptions or
definitions of the measured parameters are necessary, e.g., regarding the term “roughness”,
which can mean the surface roughness of a single nanofiber, but also the areal roughness of
a whole nanofiber mat.

Moreover, some of the typical textile test methods, such as the simple spray test or wa-
ter/alcohol test for the determination of the hydrophobicity of a fabric, or tests well-known
from other research areas, such as thermoporometry, should be investigated regarding their
usability for electrospun nanofiber mats, and their limits should be discussed as well as the
possibilities they offer by enabling more tests if highly specialized equipment to measure a
certain parameter is not available.

We hope that this review will encourage colleagues to test some new measurement
techniques and extend their experimental descriptions so that all experiments can be
reproduced by other research groups.
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