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Abstract: High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very impor-
tant type of fuel cell since they operate at 150–200 ◦C, allowing the use of hydrogen contaminated
with CO. However, the need to improve stability and other properties of gas diffusion electrodes
still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber
material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacry-
lonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton
conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent
deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the
proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better
performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl
phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time.
These anodes were studied by electron microscopy and tested in membrane-electrode assembly for
H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the
HT-PEMFC performance.

Keywords: carbon nanofibers; HT-PEMFC; proton-conducting polymer; platinum deposition; Pt/CNF;
electrospinning; PIM-1; gas diffusion electrode; polyacrylonitrile; PBI-OPhT-P

1. Introduction

The search for new and the development of existing electrocatalytic materials are very
important for progress in the field of alternative energy, particularly fuel cells (FC) [1,2]. In
the context of global decarbonization, renewable energy sources, compared with intermit-
tent and unstable power generation, may eliminate the temporal and spatial gap between
energy consumption by end-users and its availability; fuel cells can generate power flexibly
at any time, as long as hydrogen supply is sufficient [3,4]. The high-temperature polymer-
electrolyte membrane (HT-PEM) fuel cells [5,6] (Figure S1) possess many advantages, the
most significant of which is the ability to operate with CO-contaminated hydrogen [7,8].
Polybenzimidazole (PBI)-type membranes doped with phosphoric acid are used for this
type of FC and are capable of conducting protons without moisture [9–11]. This allows the
polymer-electrolyte membrane to operate at elevated temperatures of 150–200 ◦C [12,13].
However, to increase its efficiency, further improvement of the main components of the

Membranes 2023, 13, 479. https://doi.org/10.3390/membranes13050479 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes13050479
https://doi.org/10.3390/membranes13050479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0001-8255-2113
https://orcid.org/0000-0002-1267-0402
https://orcid.org/0000-0002-1468-0719
https://orcid.org/0000-0003-0894-5087
https://orcid.org/0000-0003-1016-0158
https://doi.org/10.3390/membranes13050479
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes13050479?type=check_update&version=1


Membranes 2023, 13, 479 2 of 17

high-temperature polymer-electrolyte membrane fuel cell (electrodes, membrane) is re-
quired [1,2,5–17].

Electrodes for HT-PEM FC are usually based on carbon black with Pt nanoparticles
deposited as a catalyst. Due to their instability during the FC operation in phosphoric acid
media at a sufficiently high temperature (150–200 ◦C) at high potential, their replacement
with more stable carbon nanostructured materials is required. Recently, we have shown that
carbon nanofiber (CNF) mats (self-supporting entire non-woven carbon nanofiber material)
based on polyacrylonitrile (PAN) or polyheteroarylenes can be used as electrocatalyst
support for Pt nanoparticles and applied as electrodes for the high-temperature polymer-
electrolyte membrane FC [18–33].

The electrospinning method allows for obtaining sub-micrometer-sized polymer
nanofibers [34], providing a higher nanofiber surface. The electrodes based on CNF were
obtained using the method of electrospinning from the polymer solution [35,36], followed
by temperature stabilization [37,38], pyrolysis [39,40] and Pt deposition. However, the
electrocatalysts may require further optimization.

Triple point formation in Pt/C electrodes is essential for HT-PEM FC operation. It
requires a carbon solid phase for electron transfer, a phosphoric acid medium for proton
transfer and gas transport channels (hydrogen, oxygen or air) to be linked to the Pt electrocat-
alyst. Thereby, among the various factors affecting the electrode operation, the organization
of continuous proton transport along the surface of the nanofibers is mostly required to
enhance the transport of the proton from the triple point to the PBI membrane on the anode
side of the fuel cell. Earlier, we showed that Zr-containing electrodes based on CNF mats are
efficient in HT-PEM FC [22,23]. These CNF were obtained by pyrolysis at 1000 ◦C, leading
to partial graphitization of the nanofibers [41,42], providing electrical conductivity.

Deposition of various polymers capable of protonation on carbon nanofibers of the
FC electrode may improve the proton conductivity in electrode and FC performance. For
instance, PIM-1 [43–54] is a microporous polymer with high hydrogen permeability. In
addition, its protonation ability is well-known [55]. Similarly, Nafion® [56–60] is a well-
known proton-conducting polymer [2].

The already-mentioned PBI [61–66] are a large type of proton-conducting polymers
which are used as polymer-electrolyte complexes with phosphoric acid for HT-PEM FC
membranes. For example, the N-ethyl phosphonated PBI-type polymer (PBI-O-PhT-P),
deposited on carbon nanofibers of the anode, introduces additional phosphonic functional
groups, which may presumably improve proton conductivity. Earlier, we have shown that
for a membrane based on PBI-O-PhT-P (also abbreviated as PEPBI-O-PH), when operated
in HT-PEM FC, the value of the open circuit voltage was quite low (0.760 V) [67]. This can
be explained by some features of the chemical structure of the polymer, particularly the loos-
ening of polymer chains by side ethylphosphonic groups. As a result, the electrochemical
crossover of hydrogen through the membrane is enhanced.

The aim of this work is an attempt to enhance the HT-PEM FC performance by
applying the proton-conducting polymers onto CNF; this can provide additional proton
conductivity when applied onto the CNF, retaining hydrogen permeability under HT-
PEMFC operation conditions.

In the current study, proton-conducting polymers PIM-1, PBI-O-PhT-P and Nafion®

were applied onto the PAN-based CNF and tested as Pt-anodes for high-temperature
polymer-electrolyte membrane fuel cell for the first time.

2. Materials and Methods
2.1. Electrocatalyst Preparation
2.1.1. Electrospinning

Composite PAN-based nanofibers were obtained by the needle-free electrospinning
method from a free surface, according to the NanospiderTM technology. The electrospinning
process was performed on a NS Lab NanospiderTM setup from Elmarco (Liberec, Czech
Republic) at a relative humidity of 8%, at voltage of 69 kV, with a distance between
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electrodes of 190 mm from the electrospinning polymer solution, which contained 3.25 g of
PAN (Mw 150·103 Da), 0.1 g of UM-76 carbon black (~3 wt.% relative to PAN) and 0.03 g of
zirconium (IV) chloride well-dispersed in 50 mL of N,N-dimethylformamide (DMF) in an
ultrasonic bath for 3 h. As a result, PAN/UM/Zr composite nanofibers were obtained in
the form of a mat.

2.1.2. Stabilization, Zinc Deposition and Pyrolysis

PAN/UM/Zr nanofiber mat was stabilized (oxidized) at 350 ◦C in air for 2 h in a
Binder MDL 115 heating chamber (Tuttlingen, Germany) to make the material suitable
for further pyrolysis. The resulting material (PAN/UM/Zr/Ni-350) was immersed in
0.5 wt.% solution of zinc nitrate in water/ethanol (1:3 v/v) for ~24 h and dried at 100 ◦C
for 2 h. Then, the sample was pyrolyzed at 1000 ◦C for 2 h under vacuum at a heating
rate of 3 ◦C min−1 using a Carbolite (CTF 12/80/700) vacuum oven (Hope Valley, UK)
equipped with a Eurotherm 3216 series controller. As a result, the shape of the CNF mat
(PAN/UM/Zr-350/Zn-1000) was saved.

2.1.3. Polymer Deposition

Nafion® perfluorinated ion-exchange resin (a perfluorinated resin solution containing
Nafion™ 1100 W, 5 wt.% in lower aliphatic alcohols and water, contains 15–20% water) was
purchased from Sigma-Aldrich (St. Louis, MO, USA). PIM-1 was synthesized by the precip-
itation polyheterocyclization in dimethyl sulfoxide according to [68,69]. PBI-O-PhT-P (also
abbreviated as PEPBI-O-PH) was synthesized according to [67]. The proton-conducting
polymers PIM-1, PBI-O-PhT-P or Nafion® (Figure 1) were deposited onto the CNF by
adding 200 mg of 0.1 wt.% of polymer (PIM-1, PBI-O-PhT-P or Nafion®) solution in CH2Cl2,
formic acid or water/isopropanol (1:1 v/v), respectively. As a result, polymer-coated CNF
were obtained (PIM-1/CNF, PBI-O-PhT-P/CNF and Nafion/CNF, respectively).
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2.1.4. Platinum Deposition

Platinum was deposited onto the CNF and polymer-coated CNF mats, with a surface
area of 6.76 cm2 separately for each mat, in 10 mL of aqueous solution containing the
calculated amount of H2[PtCl6]·6H2O as a source of platinum and 0.5 g of formic acid as a
reducing agent for 3 days to obtain Pt/CNF, Pt/PIM-1/CNF, Pt/PBI-O-PhT-P/CNF and
Pt/Nafion/CNF electrocatalysts with a Pt concentration of 1.2 mgPt cm−2. The resulting
electrocatalysts were thoroughly washed with distilled water and dried at 100 ◦C for 2 h
under vacuum.
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2.1.5. Inverted Platinum and Polymer Deposition

For comparison, the proton-conducting polymers were applied to already platinated
samples of Pt/CNF in the same way as described in Section 2.1.3. As a result, the polymer-
coated electrocatalysts PIM-1/Pt/CNF, PBI-O-PhT-P/Pt/CNF and Nafion/Pt/CNF were
also obtained.

2.1.6. Elemental Analysis and Electrical Conductivity

The elemental analysis data were determined using an Elementar vario MICRO cube
C,H,N-analyzer (Langenselbold, Germany) equipped with a thermal desorption column.

The in-plane electrical conductivities of the CNF mat (PAN/UM/Zr-350/Zn-1000)
were found with a RLC E7-8 setup (Minsk, Belarus) equipped with a four-point probe.
The sample thickness, which is necessary for the electrical conductivity measurements,
was determined with an ElektroPhysik eXacto thickness gage (Cologne, Germany). The
elemental analysis and electrical conductivity of the CNF are shown in Table 1.

Table 1. Electrical conductivity and elemental analysis of pyrolyzed CNF (PAN/UM/Zr-350/Zn-1000).

Sample σ, S/cm %C %N %H %Zr

CNF 24.7 82.9 5.24 1.47 0.2

2.2. Morphological Characterization

The structure of the composite еlectrospun polyacrylonitrile-based CNF was investi-
gated by the methods of scanning electron microscopy (SEM) using a FEI Scios microscope
(FEI, Hillsboro, OR, USA), transmission electron microscopy (TEM), high-resolution trans-
mission electron microscopy (HR TEM), scanning transmission electron microscopy with
a high-angle annular dark-field detector (HAADF STEM) and energy-dispersive X-ray
spectroscopy (EDX) elemental mapping using a Thermo Fisher Scientific Osiris (Waltham,
MA, USA) equipped with a high-angle annular dark field (HAADF) detector and Super-X
EDX detection system based on Silicon Drift Detector (SDD) technology. Electron micro-
scope images were analyzed using Digital Micrograph (GMS 3, Gatan, Pleasanton, CA,
USA), TIA (TIA 16, Siemens AG, Munich, Germany), Esprit (Esprit 2, Bruker, Billerica, MA,
USA) and JEMS software (P. Stadelmann JEMS—EMS Java version 2004 EPFL, Lausanne,
Switzerland). For electron microscopy studies, the samples of CNF were well-dispersed in
acetone to separate the fibers using an ultrasonic bath for 20–30 min. Then, the obtained
suspensions were introduced onto copper lacey carbon grids.

2.3. HT-PEM Fuel Cell Operation
2.3.1. Electrochemical Characterization

For the anode tests, the membrane-electrode assemblies (MEA) were prepared with
a working area of 5 cm2. The MEA were placed in a standard Arbin Instruments testing
cell (College Station, TX, USA) with two graphite flow field plates. The HT-PEM fuel
cell was operated with a typical Celtec®-P 1000 MEA cathode [70] and the CNF-based
anodes developed in this study. The PBI-OPhT membrane, cross-linked with zirconium
acetylacetonate and doped with phosphoric acid (350–400%, up to 25 molecules of o-
phosphoric acid per polymer unit), which was developed earlier by our group [71–73], was
used for the MEA. Fuel cell operation was carried out at 160 and 180 ◦C. The anode was
supplied with hydrogen obtained through electrolysis from a GVCh-6 hydrogen generator
(Khimelektronika, Moscow, Russia) at a rate of 200 mL min−1 and the cathode was supplied
with atmospheric air at a rate of 1000 mL min−1 without additional humidification. The
polarization curves were obtained on a P-150X Potentiostat-galvanostat (Electrochemical
Instruments, Chernogolovka, Russia). For voltammetry measurements, the fuel cell voltage
was scanned at a rate of 10 mV s−1 in the cell voltage range 0.95–0.02 V.

The measurements of the HT-PEMFC membrane through plane resistance (mΩ cm2)
were performed by the method of electrochemical impedance spectroscopy (EIS). The EIS
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experiments were performed on a SmartStat PS-250 Potentiostat-galvanostat (Electrochemi-
cal Instruments, Chernogolovka, Russia) at 0.4 A cm−2, applying a sinusoidal current with
an amplitude of 50 mA in the frequency range 50 kHz–0.1 Hz.

2.3.2. Hydrogen Crossover Measurements

Hydrogen crossover through the membrane at the operating temperatures of the
HT-PEM fuel cell was measured by the method of linear sweep voltammetry by supplying
hydrogen to the anode and argon (99.998% purity) to the cathode; the gases were supplied
at an ambient pressure with flow rates of 50 mL min−1. Finally, the open-circuit voltage
reached a steady-state value of about 120 mV, and the voltage was swept slowly at a rate of
1 mV s−1 to 500 mV; the current of hydrogen oxidation was recorded. Hydrogen penetrated
the membrane, then appeared in the cathode catalyst layer and was completely oxidized.
The current value measured under these conditions is assumed to be equal to the flow
of hydrogen diffusing through the membrane. The current density corresponding to the
crossover of hydrogen through the membrane was quantified at 350 mV. Higher electrode
potentials were avoided to prevent the oxidation of platinum.

2.4. Adsorption Studies
2.4.1. N2 Adsorption

Nitrogen adsorption isotherms were obtained on a 3P Micro 200 Surface Area and
Pore Size Analyzer (3P Instruments, Odelzhausen, Germany) at 77 K in the pressure range
10−3–1 bar. The Brunauer–Emmett–Teller (BET) equation was applied to the N2 adsorption
isotherm data according to the Rouquerol criteria [74]. N2 cross-sectional area and adsorbed
N2 density were taken as 0.162 nm2 and 0.808 g mL−1, respectively.

2.4.2. CO2 Adsorption

CO2 adsorption isotherms [(adsorbed volume VSTP (cm3 g−1) calculated for standard
temperature and pressure (STP) conditions (1 bar, 273 K) vs. relative pressure p/p0 (p0
is saturated vapor pressure)] were obtained on a 3P Micro 200 Surface Area and Pore
Size Analyzer (3P Instruments, Odelzhausen, Germany) at 10−3–1 bar and 273 K. The
Dubinin-Radushkevich (DR), non-local density functional theory (NL-DFT) and grand
canonical Monte-Carlo (GCMC) methods were applied to the CO2 adsorption isotherm
data using NovaWin, version 11.04, Quantachrome Instruments (Boynton Beach, FL, USA),
considering a CO2 cross-sectional area of 0.210 nm2, adsorbed CO2 density of 1.044 g mL−1,
saturated vapor pressure of the adsorbate p0 of 3.485 MPa and affinity coefficient β of
0.35 [75]. Pore-size distributions were obtained according to the NL-DFT method.

3. Results
3.1. Electron Microscopy

Three proton-conducting polymers, PIM-1, PBI-O-PhT-P and Nafion® (Figure 1),
may provide additional proton conductivity when applied to the CNF. We expect this
improvement because PIM-1 protonation ability is well-known [55]. Nafion® [56–60] is
another well-known proton-conducting polymer [2]. The N-ethyl phosphonated PBI-
type polymer (PBI-O-PhT-P), deposited on the CNF of the anode, introduces additional
phosphonic functional groups, which can improve proton conductivity. Earlier, we showed
that a proton-conducting membrane can be prepared from PBI-O-PhT-P (also abbreviated
as PEPBI-O-PH or PhEPBI-O-PhT) [67]; its proton conductivity was described in detail [76].
At the same time, it could remain permeable to hydrogen under the operation conditions
of HT-PEMFC due to the peculiarities of its structure, as explained before. Platinum
nanoparticles were deposited onto polymer-coated carbon nanofibers (polymer/CNF) to
obtain electrodes of general formula Pt/polymer/CNF. The Pt/polymer/CNF structures
were studied by the method of electron microscopy.

SEM images of the CNF structure with the deposited PIM-1 are shown in Figure 2.
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Platinum was deposited on the PIM/CNF in an aqueous solution of H2[PtCl6], using
HCOOH as a reducing agent. The general SEM image (Figure 2a) indicates that the fibers
located on the surface of the mat are covered with a uniform layer of platinum. However,
the CNF lying in the depth are covered with platinum “islands” or have no coating at all
(Figure 2b,c). At the same time, porous accumulations of platinum several microns in size are
observed on the CNF surface (Figure 2d). Most likely, they are located in a polymer shell.

Figure 3 shows a bright field TEM image of a single Pt island that is “immersed” in
the polymer.
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The presence of a polymer shell on the CNF is also indicated by a selected area
electron diffraction (SAED) pattern with a strong background and individual bright signals
of platinum (Figure 3a–c). The island of platinum is a polycrystalline agglomerate with
individual nanocrystals of 5–10 nm. In addition, individual platinum particles of rounded
shape with a size of 2–10 nm are clearly observed on the fibers.

When Pt is deposited on Nafion/CNF, the formation of a Pt “skin” with a width of
up to 120 nm is observed in the upper layers of the mat. Due to the large thickness, the
coating peels off and breaks on many fibers, which is clearly seen in the TEM and SEM
images (Figures 4 and 5).
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In contrast to the Pt/PIM/CNF and Pt/Nafion/CNF samples, the polymer coating in
the Pt/PBI-O-PhT-P/CNF sample is less uniformly distributed over the surface. It can be
seen that the CNF are coated with the polymer, while the platinum possesses the shape
of islands. In some places, the polymer layer is absent (shown by arrows in Figure 6b).
TEM studies (Figure 7) show that the morphology of platinum particles differs from those
indicated above: Pt nanocrystals possess an acicular shape. The length of some Pt needles
can be up to 20 nm long. At the same time, particles of rounded shape are present. The
needle-shaped particles placed directly on the nanofiber with the corresponding SAED
image are shown in Figure 7a,b. The HAADF STEM image, element distribution maps and
corresponding EDX spectrum illustrating the distribution of Pt along the length of the fiber
are shown in Figure 7c–h.
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Comparison with uncoated Pt/CNF (prepared without a polymer coating) showed
that platinum is uniformly distributed on the fiber surface throughout the entire depth of
the mat, with a predominance of the acicular morphology of platinum (Figures 8 and 9).
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TEM and SEM images of nanofibers with the deposited PBI-O-PhT-P are shown in
Figures 6 and 7.

3.2. Adsorption Studies

The initial non-platinated CNF (PAN/UM/Zr-350/Zn-1000) sample was studied by
the N2 and CO2 adsorption methods to determine its specific surface area and specific
volume. The data from the Brunauer–Emmett–Teller (BET) method applied to the N2
adsorption isotherm (77 K) show quite low values (15 m2/g). Possibly, it is due to the
inaccessibility of micropores to nitrogen due to kinetic difficulties at such a low temperature
(77 K). Therefore, to overcome the kinetic difficulties, an alternative method of the CO2
adsorption (273 K) was applied [77]. The CO2 adsorption isotherm data were used to find
the micropore specific volume (V), adsorption energy (E) and pore width (D) values by the
DR method and the micropore specific volume (V) and specific surface area (S) values by
the NL-DFT and GCMC methods (Table 2).

The differences in values obtained by different methods are typical, since different
theoretical approaches and considerations are applied to different methods. The adsorption
isotherm and NL-DFT pore-size distribution data are shown in Figure 10.
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Table 2. The specific volume (V), specific surface area (S), adsorption energy (E) and pore width (D)
values of the micropores for the CNF (PAN/UM/Zr-350/Zn-1000) sample from the CO2 adsorption
data (273 K) by the DR, NL-DFT and GCMC methods.

Sample

DR NL-DFT GCMC

V,
cm3 g−1

E,
kJ mol−1

D,
nm

S,
m2 g−1

V,
cm3 g−1

S,
m2 g−1

V,
cm3 g−1

CNF 0.194 20.99 1.24 310 0.107 341 0.135
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The presented data on microporosity (Table 2, Figure 10) are typical for microporous
materials and suggest the possibility to use the material as a support for Pt nanoparticle
catalyst in HT-PEM FC.

3.3. HT-PEM Fuel Cell Performance

The performance of the HT-PEM FC MEA with different Pt/polymer/CNF anodes
when platinum is deposited on polymer-coated CNF is shown in Figure 11.
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Figure 11. (a) Polarization curves and (b) power density data for HT-PEM FC MEA with CNF-based
anodes at 180 ◦C for Pt/CNF (blue, solid line), Pt/PBI-O-PhT-P/CNF (red, solid line), Pt/PIM-1/CNF
(orange, solid line), Pt/Nafion/CNF (green, solid line); and at 160 ◦C for Pt/CNF (blue, dashed line),
Pt/PBI-O-PhT-P/CNF (red, dashed line), Pt/PIM-1/CNF (orange, dashed line), Pt/Nafion/CNF
(green, dashed line).

The polarization curves and power density data for the Pt/polymer/CNF are com-
pared with the Pt/CNF sample without polymer coating in the HT-PEM FC operation at
160 and 180 ◦C. As seen in Figure 10, Pt/PBI-O-PhT-P/CNF shows higher performance
compared with Pt/CNF. At the same time, the application of CNF coated with Nafion®
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and PIM-1 as supports for platinum nanoparticles leads to much lower HT-PEM FC per-
formance. It can be related to a less uniform polymer coating on the CNF in the case of
PBI-O-PhT-P compared with Nafion® or PIM-1, as shown above by electron microscopy.
As a result, more platinum nanoparticles possess an acicular shape and grow directly on
the CNF surface instead of being located on the polymer layer, which improves electron
transfer during HT-PEM FC operation.

The inverted anode structure, when the polymer was applied on the already prepared
CNF with deposited platinum (Pt/CNF), was also studied. The polarization curves and
power density data for these samples of general formula polymer/Pt/CNF for HT-PEM
FC operation at 160 and 180 ◦C are shown in Figure 12.
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anodes at 180 ◦C for Pt/CNF (blue, solid line), PBI-O-PhT-P/Pt/CNF (red, solid line), PIM-1/Pt/CNF
(orange, solid line), Nafion/Pt/CNF (green, solid line); and at 160 ◦C for Pt/CNF (blue, dashed line),
PBI-O-PhT-P/Pt/CNF (red, dashed line), PIM-1/Pt/CNF (orange, dashed line), Nafion/Pt/CNF
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As can be seen from Figure 12, the HT-PEMFC performance for the anode coated with
PBI-O-PhT-P (PBI-O-PhT-P/Pt/CNF) is still higher than for the uncoated Pt/CNF sample.
The application of Nafion® and PIM-1 onto the already prepared Pt/CNF resulted in a very
slight decrease in HT-PEMFC performance, making its performance similar to the uncoated
Pt/CNF sample.

Data on the membrane resistance and hydrogen crossover through the membrane
during HT-PEMFC operation at 160 and 180 ◦C, obtained by the electrochemical impedance
spectroscopy and linear sweep voltammetry methods, are given in Table 3.

Table 3. Membrane resistance and hydrogen crossover through the membrane data for HT-PEM FC
MEA with different anode samples.

Sample Rmemb (160 ◦C),
mΩ cm2

Rmemb (180 ◦C),
mΩ cm2

IH2 crossover
(160 ◦C), mA cm−2

IH2 crossover
(180 ◦C), mA cm−2

Pt/CNF 59.0 ± 0.5 65.0 ± 0.5 4.8 ± 0.1 5.4 ± 0.1
Pt/PBI-O-PhT-P/CNF 61.0 ± 0.5 69.0 ± 0.5 1.1 ± 0.1 1.3 ± 0.1

Pt/PIM-1/CNF n/d n/d n/d n/d
Pt/Nafion/CNF 91.2 ± 0.5 90.5 ± 0.5 n/d n/d

PBI-O-PhT-P/Pt/CNF 78.5 ± 0.5 76.0 ± 0.5 0.2 ± 0.1 0.3 ± 0.1
PIM-1/Pt/CNF 71.1 ± 0.5 68.5 ± 0.5 n/d n/d
Nafion/Pt/CNF 82.0 80.0 0.2 0.4

n/d—not determined.

As can be seen from Table 3, the membrane resistance at 160 ◦C is in the range
60–90 mΩ cm−2 and, at 180 ◦C, is in the range 65–90 mΩ cm−2. These values are typical
for the PBI-O-PhT membrane and do not differ significantly, since the same PBI-O-PhT
membrane was used in all studied MEA. At the same time, the higher resistance for
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samples with Nafion® (91.2 mΩ cm−2 for Pt/Nafion/CNF) may be related to a more
uniform deposition of Nafion® on the CNF surface, according to electron microscopy data,
which slightly worsens the electrical conductivity. The hydrogen crossover through the
membrane at 160 and 180 ◦C (Figure S2) corresponds to the typical PBI-O-PhT membrane
operation in HT-PEMFC and does not exceed 3–5 mA cm−2.

4. Discussion

In this part, a discussion of the main findings and the revealed general observations is
provided for three proton-conducting polymers (Figure 1) applied on CNF (Table 1). The
polymers applied onto the CNF are PIM-1 (Figures 2 and 3), Nafion® (Figures 4 and 5) and
PBI-O-PhT-P (Figures 6 and 7). The data is compared with the pristine samples without
polymer deposition (Figures 8 and 9).

The application of proton-conducting polymers on carbon nanofiber materials in
order to increase the proton conductivity of electrodes is possible in two ways. The first
possibility is to apply the polymer onto the CNF before platinum deposition. In this case,
platinum nanoparticles would be open to gases, but the electron transfer between platinum
nanoparticles and carbon material may be disturbed. Such a situation can be observed using
electron microscopy methods when platinum nanoparticles are “immersed” into a polymer
layer. Another possibility is to deposit platinum nanoparticles directly onto the CNF,
followed by the deposition of a proton-conducting polymer. In this case, electron transfer
between platinum nanoparticles and carbon material can be ensured. At the same time,
after polymer deposition, platinum can be excessively covered with the polymer, which
may prevent good contact of platinum nanoparticles with gases, particularly hydrogen.
One of the best ways to evaluate the effectiveness of the presented approach is to perform
HT-PEM fuel cell tests where polymer-coated CNF with deposited Pt nanoparticles are
used as electrodes, particularly anodes. The presented data for the microporosity studies
(Figure 10, Table 2) are typical for microporous PAN-based CNF and suggest the possibility
of using the material as a support for a Pt nanoparticle catalyst in HT-PEM FC.

According to the HT-PEM FC performance data presented in Figure 11, when Pt is
deposited on polymer-coated CNF, the HT-PEM FC performance depends on the nature of
the studied polymer. In the case of Nafion® and PIM-1, the HT-PEM FC performance is
significantly lower compared with the case of the uncoated Pt/CNF. At the same time, in
the case of PBI-O-PhT-P, the performance is higher than in the case of the uncoated Pt/CNF.
This can be explained by a less uniform PBI-O-PhT-P coating on the CNF, which leaves
some parts of the CNF uncoated (as shown in Figure 6), compared with Nafion® and PIM-1
coatings, which appear more uniform (Figures 2 and 4). A more uniform polymer coating
results in poorer contacts between Pt nanoparticles and CNF and, presumably, affects the
distribution of Pt nanoparticles, which also looks irregular compared with the Pt/CNF
sample (Figures 8 and 9). A less uniform PBI-O-PhT-P coating on the CNF results in a sig-
nificant number of places uncoated with polymer. It allows platinum nanoparticles to grow
directly on the carbon surface of the CNF, however, very close to the proton-conducting
polymer necessary for proton transfer. Apparently, it results in a better distribution of Pt
nanoparticles and an acicular morphology of Pt nanoparticles, which has been shown in
the past to be more active than spherical. The uncoated Pt/CNF also possesses a uniform
distribution of platinum predominantly acicular in shape (Figures 8 and 9). Obviously,
these features, combined with higher proton transfer due to polymer deposition, can im-
prove the HT-PEM FC performance for Pt/PBI-O-PhT-P/CNF, as seen from the data in
Figure 11. Thus, the HT-PEMFC performance order depending on the polymer applied
onto the anode is as follows:

PBI-O-PhT-P > polymer-uncoated > PIM-1 > Nafion®

The inverted method of polymer deposition, when the polymer is applied to the
already Pt-decorated CNF, leads to a very different situation. Interestingly, the order of the
HT-PEMFC performance depending on the polymer remains the same, but the values are
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much closer to each other and to the uncoated Pt/CNF sample. This can be explained by
the Pt nanoparticles of acicular morphology already formed on the CNF surface with a
uniform distribution, which were used for the proton-conducting polymer deposition. The
application of PIM-1 and Nafion® reduces the HT-PEM FC performance, slightly reducing
H2 transport to platinum, but not significantly, compared to the uncoated Pt/CNF sample
(Figure 12, Table 3). At the same time, the application of PBI-O-PhT-P onto Pt/CNF leads
to an improvement in the HT-PEM FC performance, presumably due to better proton
conductivity in the anode without preventing H2 transport to platinum nanoparticles
(Figure 12, Table 3).

The electrochemical impedance spectroscopy and linear sweep voltammetry provide
the membrane resistance and hydrogen gas crossover through the membrane values in
the assembled HT-PEMFC at 160 and 180 ◦C. The values are similar and correspond to
the typical PBI-O-PhT membrane. However, the slightly higher resistance values in the
case of Nafion® may reflect some disruption in electrical conductivity and result in inferior
HT-PEM FC performance compared with other polymers and the uncoated sample.

5. Conclusions

The study shows that HT-PEMFC performance depends on the proton-conducting
polymer applied to the anode. The order of positive effect of the polymer on HT-PEM fuel
cell performance is as follows:

PBI-O-PhT-P > polymer-uncoated sample > PIM-1 > Nafion®

This is true for both cases: direct deposition of a proton-conducting polymer onto
the CNF followed by deposition of Pt nanoparticles and deposition of a polymer onto
already prepared Pt-decorated CNF. However, for the second case of polymer deposition,
the values are much closer to each other. The EIS data correspond to these findings.

As shown by electron microscopy, the difference in performance can be explained by
how the polymer coats the CNF and by platinum morphology. The obtained data show the
advantage of the non-uniform coating of CNF by PBI-O-PhT-P.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/membranes13050479/s1, Figure S1: HT-PEMFC operation scheme;
Figure S2: EIS Nyquist plots.
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