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Abstract: The β-cyclodextrin polymer (PβCD) cross-linked with pyromellitic dianhydride (PD) and
functionalized with an amino group (PAβCD) was introduced into a matrix made of sodium alginate
(SA). Scanning electron microscopy (SEM) images showed a homogeneous surface of the composite
material. Infrared spectroscopy (FTIR) testing of the PAβCD confirmed polymer formation. The tested
polymer increased its solubility relative to the polymer without the amino group. Thermogravimetric
analysis (TGA) confirmed the stability of the system. Differential scanning calorimetry (DSC) showed
the chemical binding of PAβCD and SA. Gel permeation chromatography (GPC-SEC) showed high
cross-linking of PAβCD and allowed for accurate determination of its weight. The formation of
the composite material such as PAβCD introduced into a matrix made of sodium alginate (SA) has
several potential environmental implications, including the use of sustainable materials, reduced
waste generation, reduced toxicity, and improved solubility.

Keywords: β-cyclodextrin polymer; composite material; sodium alginate; amino-β-cyclodextrin
polymer

1. Introduction

Hydrogels (HG) are three-dimensional polymer networks capable of absorbing large
amounts of water [1]. Hydrogel composites (HGC) are chemically and physically stable,
have a smooth, flexible polymer network, and are reusable and multifunctional. These
flexible polymer materials retain the ability to swell and retain the right amount of water in
their structure, but without dissolving in water [2]. Their main development can be seen
in the field of environmental cleaning. Composites based on hydrogels show excellent
absorption efficiency in removing inorganic pollutants, including heavy metals, as well
as organic pollutants, including drugs and pesticides. One of the main challenges in
the modification of hydrogels is to obtain a fully regenerative reusable material, while
maintaining its stability.

Sodium alginate (SA) is the sodium salt of alginic acid, obtained from the natural
environment, most often from the cell walls of brown algae. It is a white-yellow powder,
soluble in water. It thickens in an aqueous solution and forms a gel in the presence of
a divalent calcium ion. The main use of this natural polymer is water purification. The
physicochemical properties of SA allow for the efficient absorption of heavy metals such as
Cu, Cd, and Pb [3,4]. The multitude of functional groups allows the absorption of organic
compounds such as drugs [5–7], pesticides, and herbicides [8–10].

β-cyclodextrin (βCD) is a starch derivative, non-toxic to humans and easily available.
The cyclic structure with a visible cavity allows for the formation of inclusion complexes
of hydrophobic compounds. Despite the average solubility, it is very popular as a base
for systems that absorb hydrophilic compounds. Cross-linked β-cyclodextrin polymers
(PβCD) are a group of polymers based on β-cyclodextrins linked with a cross-linking
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compound [11–13]. Particular attention is paid to cross-linked polymers, which have an
abundant porous structure, as they are promising absorbent systems. The modification of
cyclodextrin hydroxyl groups with substituents significantly affects the interaction between
the polymer and the absorbed compounds [14]. Cyclodextrin polymers are successfully
used as pollution-absorbing systems [15–17].

In the first stage, a modified β-cyclodextrin polymer was obtained. β-cyclodextrin
was monosubstituted at position 6 with an amino group. This significantly increased the
solubility of the compound. In the next step, the amino derivative was protected with
a protecting group (BOC) to reduce cross-linking at this site. Cross-linking was carried
out using a bifunctional linker—pyromellitic dianhydride. The synthesis was carried out
and described in earlier articles [18,19]. It introduces hydroxyl and carboxyl groups into
the system. A polymer system containing both cationic and anionic groups was obtained.
Thanks to this, it gained the status of polyampholyte. Modification of the system with
amino groups made it possible to obtain a polymer with higher solubility compared with
the polymer without modification. Moreover, the porous system contains cavities, not
only derived from β-cyclodextrins, but also as spaces in the network. The polymer system
was suspended with sodium alginate. Using encapsulation in an electric field, hydrogel
composites were created, capable of absorbing inorganic and organic compounds.

The use of β-cyclodextrin as a carrier molecule in polymers of intrinsic microporosity
(PIMs) has been extensively studied due to its ability to selectively complex with a variety
of guest molecules. The amine-functionalized β-cyclodextrin polymer used in this study
may have potential as a carrier molecule in PIMs, particularly in applications related to
removing inorganic and organic contaminants [20]. Furthermore, the monodisperse and
branched polymer system with a high degree of porosity and better solubility relative
to PβCD may also have implications in drug delivery systems, where the polymer can
encapsulate and release drugs in a controlled manner [21].

2. Materials and Methods
2.1. Reagents and Solvents

β-Cyclodextrin (βCD), N, N-dimethyl formamide (DMF), and sodium hydride were
purchased from Sigma-Aldrich, St. Louis, MO, USA. DMF was distilled under a vacuum.
The dried DMF was stored in a dark bottle over calcium hydride. Sodium hydride (60%
in oil) was dried with hexane. Sodium alginate with low viscosity was purchased from
Buchi, Switzerland, and pyromellitic dianhydride (PA) was purchased from Alfa Aesar,
Ward Hill, MA, USA. Acetone, acetic acid, and hexane were purchased from Chempur,
Piekary Slaskie, Poland. Mono-6-azido-6-deoxy-β-cyclodextrin (NβCD), Mono-6-amino-6-
deoxy-β-cyclodextrin (AβCD), and blocking the amine group by BOC (BOCAβCD) were
synthesized according to the procedure [19].

2.2. Synthesis of Polymer BOCAβCD Crosslinked with Pyromellitic Anhydride (PAβCD)

The synthesis was analogously performed per the method described in BOCAβCD
(1 g, 1.62 mmol) and was dissolved in DMF (17.59 mL). NaH (0.01 g, 7.5 mmol) was washed
with hexane and added in one portion with vigorous. The mixture was stirred for 24 h.
After this time, PA (0.73 g, 7.97 mmol) was added in one portion, and the solution was
mixed for another 24 h. The product was precipitated with acetone and dried in a vacuum
desiccator at room temperature [19].

2.3. Preparation of Sodium Alginate/Poly-amino-β-cyclodextrin (SAPAβCD) Microparticles

Microparticles were formed using the vibration technique on a Buchi B-395 Pro en-
capsulator. The 1.5% solution of alginate and a 0.5% aqueous solution of the resulting
polymer (60 mL) were prepared. The parameters of the encapsulation are given in Table 1.
An amount of 1 mM CaCl2 crosslinker solution was made. A solution of the polymer and
alginate fell into the curing solution placed on a magnetic stirrer.
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Table 1. The parameters of the encapsulation.

Nozzle Diameter (µm) Concentration of
Alginate (%) Flow Rate (mL/min) Frequency (Hz) Voltage (V) Amplitude

1000 2 30 100 500 0.4
450 1.5 9 300 500 0.5
80 1 1 2000 500 0.6

2.4. Characterization of the PAβCD
2.4.1. FT-IR Measurement

A Fourier-transform infrared spectroscopy (FT-IR) measurement was prepared on an
FT-IR spectrophotometer (Nexus Nicolet, Waltham, MA, USA) in the wavelength range of
4000–400 cm−1, with a resolution of 4 cm−1 and the number of scans equal to 32. Potassium
bromide (KBr) pellets and the test sample were compressed using a manual hydraulic press.

2.4.2. GPC/SEC Analysis

Gel permeation chromatography with size-exclusion chromatography (GPC/SEC)
analysis was performed on a 1260 Infinity II Multi-Detector GPC/SEC System equipped
with an LS, RI, and viscometry detector by Agilent (Santa Clara, CA, USA). The tests were
performed using water with 0.02% NaN3 as the eluent and two PLaquagel-OH Mixed-H
300 × 7.5 mm chromatographic columns (Agilent Technologies, Santa Clara, CA, USA) at a
flow rate of 1.0 mL/min. A solution of the sample in water at a concentration of 1 mg ml−1

was prepared. A 50 µL solution was injected into the chromatographic system. Recorded
chromatograms were analyzed by Agilent GPC/SEC Software.

2.4.3. XRD Measurement

The reaction product was analyzed by X-ray powder diffraction (XRD) using a Rigaku
MiniFlex 600 powder diffractometer (Curadiation), Rigaku, Tokyo, Japan. The samples
were powdered before measurement. The structures were refined by the Rietveld method
using the procedures of the FullProf software package.

2.4.4. Solubility Test

The water solubility test was analogously carried out to the method [22]. A saturated
solution was made from the tested polymer. The excess of the substance was added to
5 mL of water and stirred for 2 h at 25 ◦C. The undissolved excess was centrifuged in
an MPW-260R centrifuge from MPW Med. Instruments—15,000 rpm and 25 ◦C, 20 min.
An amount of 1 mL of the supernatant solution was taken (ms). The collected solution
was evaporated, and the precipitate was weighed (mp). The solubility (S) was obtained
following Equation (1).

S(%) = (mp/ms) × 100%, (1)

2.5. Characterization of the SAPAβCD
2.5.1. SEM Measurement

A VEGA3 TESCAN instrument (Tescan, Brno, Czech Republic) was used to obtain
information on the surface characteristics of the PAβCD. Samples were used in powdery
forms. All samples were subjected to a beam energy of 5 kV.

2.5.2. TGA Measurement

Thermogravimetric analysis (TGA) was recorded on a STARe System TGA/DSC 3+
thermal analyzer by Mettler Toledo (Greifensee, Switzerland) calibrated by indium, zinc,
and aluminum. A sample of the tested material in open alumina crucibles was placed
in the measuring chamber and heated from 0 to 1000 ◦C with a temperature increase
of 20 ◦C/min, in the range of 0–500 ◦C inert gas flow at 90 mL/min, and in the range
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of 500–1000 ◦C air flow at 90 mL/min. The measurements were duplicated. Recorded
thermograms were analyzed with Mettler Toledo STARe Evaluation Software.

2.5.3. DSC Measurement

Differential scanning calorimetry (DSC) was recorded on a STARe System DSC 3
thermal analyzer by Mettler Toledo (Switzerland), calibrated by indium and zinc. A
sample of the tested material in an aluminum crucible with a lid with an opening was
placed in the measuring chamber, heated from 0 to 500 ◦C with a temperature increase
of 20 ◦C/min. Inert gas flow was at 90 mL/min. The measurements were duplicated.
Recorded thermograms were analyzed with Mettler Toledo STARe Evaluation Software.

3. Results and Discussion
3.1. Synthesis of Polymer BOCAβCD Crosslinked with Pyromellitic Anhydride (PAβCD)

Synthesis was analogously performed to the method described in [18,19]. The β-cyclodextrin
enriched with the amine group was used to create the polymer, with significantly im-
proved solvent properties. The well-known pyromellitic dianhydride (PA) was used as
the cross-linking agent. NaH was used to activate the hydroxyl groups. The cross-linking
reaction was based on the deprotonation of the hydroxyl groups in the β-cyclodextrin ring
in the C2 position and the attachment of PA. Deprotonation and crosslinking took place in
dry DMF. During cross-linking, the solution turns into a gel which dissolves upon stirring.
The obtained polymer contains both anionic and cationic groups as shown in Figure 1.
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Figure 1. The scheme of polymer structure.

3.2. Preparation of Sodium Alginate/Poly-amino-β-cyclodextrin (SAPAβCD) Microparticles

Using the encapsulator, particles of various sizes between 160 and 2000µm were
obtained. The diameter of the particles increases twice the size of the nozzle. The surface is
smooth and uncracked. Figure 2 shows the particle magnified 40 times (a) and the particles
after drying (b). Particles were air dried at ambient temperature. The weight of the particles
is reduced by 95% after drying.
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3.3. Characterization of the PAβCD
3.3.1. FT-IR Measurement

FTIR spectral analysis was performed to confirm the functional groups. This is possi-
ble by providing information in the form of characteristic peaks or changes in their intensity.
These spectra are shown in Figure 3. The PAβCD spectrum contains characteristic defor-
mation bands 869 cm−1 and 820 cm−1 in the dactyloscopic region originating from PA. The
spectrum also shows the disappearance of skeletal bands in the region of 2000–1500 cm−1

coming from the anhydride ring, due to its opening during cross-linking. In the range of
2200–2000 cm−1, there are overtones coming from PA. A strong band O-H 3569.77 cm−1

appeared from the carbonyl group formed after the anhydride ring broke. The above bands
were compared with the spectrum of AβCD and βCD.
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3.3.2. GPC-SEC Analysis

The molecular weight distributions of the PAβCD are shown as GPC-SEC curves in
Figure 4a. The retention times of the masses were: 15.95 min for the first fraction, 18.49 min
for the second fraction, 19.53 for the third fraction, and 21.41 for the fourth fraction. Peak
number 4 is the off-scale peak of the calibration curve. The molecular weight distributions
of the βCD are shown as GPC-SEC curves in Figure 4b. The retention time of the mass was
19.53 min. The data collected from the GPC-SEC chromatograms are presented in Table 2.
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Table 2. The parameters of the GPC-SEC analysis.

PAβCD

Peak No. Max. RT (min) Mp (kDa) Mn (kDa) Mw (kDa) PD *

1 15.95 13.7 13.7 13.7 1.000
2 18.49 5.0 5.3 5.4 1.021
3 19.53 1.1 1.1 1.1 1003

βCD

Peak No. Max. RT (min) Mp (kDa) Mn (kDa) Mw (kDa) PD *

1 19.53 1.1 1.1 1.1 1.002

* Polydispersity, PD = Mw/Mn.

The weight-average molecular weight (Mw) for peak 1 was 13.7 kDa, and 5.4 kDa
for peak 2. Mw for peak 3 was 1.1 kDa. The number-average molecular weight (Mn) was
successively 13.7 kDa and 5.3 Da. Mn for peak 3 was 1.1 kDa. The mass distribution
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values for the 3rd peak, close to the molecular weight of βCD, suggest its presence in the
unpolymerized state. The synthesized polymer was characterized by polydispersity close
to 1.

The branching of individual polymer fractions was marked using Mark–Houwink
plots (Figure 5). The slope of the curve for the first PABCD peak (Figure 5a) is slight. The
fraction is unbranched. The slope of the curve for the second peak is high (α = 4.68), which
indicates its significant branching (Figure 5b).
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3.3.3. XRD Measurement

The XRD diffractogram is shown in Figure 6. The PAβCD diffractogram shows broad,
low-intensity bands compared with the sharp and intense βCD peaks reported in the
literature [23,24]. This indicates the amorphous nature of the polymer. The crystallinity of
βCD and PD decreases, increasing the sites available for bonds.
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3.3.4. Solubility Test

The solubility of highly cross-linked b-cyclodextrin polymers is an important param-
eter affecting their functionality. As shown in Figure 7, the value of WS (%) for PAβCD
increased by about 10% compared with PβCD. This can be attributed to the amino groups
present in PAβCD.
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3.4. Characterization of the SAPAβCD
3.4.1. SEM Measurement

As shown in Figure 8a,c βCD exists as amorphous irregular crystals [25], while PAβCD
(Figure 8b,d) is observed as sharp-edged crystals. Image comparison shows that PAβCD is
structurally different from βCDs, also in terms of size (βCD particles are up to 200 µm in
size, while PAβCD particles are around 20 µm).
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3.4.2. TGA Measurement

The TGA thermogram of SA shows five weight losses (Figure 9). The first is in the range
of 49–181 ◦C, which is related to dehydration at the level of 8% [26]. The second and third
losses are between 183 and 336 ◦C and are associated with depolymerization, including
loss of volatile components, chain breakage, and fragmentation of alginate—approx. 39%.
The final decomposition of alginate occurred in the range of 391–500 ◦C, with a value of
approx. 6% and its oxidation is between 627 and 812 ◦C (loss of approx. 9%).
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The thermogram for SAPβCD is similar to that of sodium alginate. It also shows
five weight losses. The first is in the range of 49–154 ◦C, related to dehydration at the level
of 10%. The second and third losses are between 201 and 333 ◦C at the level of approx.
37%—depolymerization. The final decomposition occurred in a similar temperature range
(428–500 ◦C), with a value of approx. 6% and its oxidation is between 624 and 847 ◦C (loss
of approx. 10%).

The same situation occurred for SAPAβCD. The thermogram consists of five mass
losses. The first is in the range of 51–154 ◦C (dehydration at the level of approx. 8%). The sec-
ond and third losses are between 180 and 329 ◦C at the level of approx. 38%—depolymerization.
The final decomposition took place in a similar temperature range (394–500 ◦C), with a
value of approx. 6% and its oxidation is between 627 and 812 ◦C (loss of approx. 10%). Such
similar thermograms of each of the compounds confirm the chemical bonding between the
polymers. Detailed results of the thermal analysis are presented in Table 3.

Table 3. The parameters of the TGA and DSC analysis.

TGA Thermogram

SA

Step 1 (%) Step 2 (%) Step 3 (%) Step 4 (%) Step 5 (%)

8.25 20.16 18.68 5.52 8.72

Type of effect

Dehydration Depolymerization Depolymerization Decomposition Oxidation

Temperature limits (◦C)

49.79–181.58 183.00–258.55 260.25–335.35 391.60–503.64 627.55–812.39

SAPβCD

Step 1 (%) Step 2 (%) Step 3 (%) Step 4 (%) Step 5 (%)

10.02 17.09 18.99 6.35 13.00

Dehydration Depolymerization Depolymerization Decomposition Oxidation

Temperature limits (◦C)

46.07–154.31 201.57–251.83 252.34–332.76 428.75–506.61 624.98–847.54
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Table 3. Cont.

SAPAβCD

Step 1 (%) Step 2 (%) Step 3 (%) Step 4 (%) Step 5 (%)

7.73 21.80 16.51 6.33 10.36

Type of effect

Dehydration Depolymerization Depolymerization Decomposition Oxidation

Temperature limits (◦C)

51.50–194.96 180.32–258.97 255.291–329.25 394.70–504.42 627.55–812.39

DSC thermogram

SA

Effect 1 (J/g) Effect 2 (J/g) Effect 3 (J/g) Effect 4 (J/g) Effect 5 (J/g)

−251.34 - −47.16 111.82 18.69

Type of effect

Exothermic - Exothermic Endothermic Endothermic
dehydration - depolymerization depolymerization decomposition

Peak (◦C)

121.03 - 212.14 294.02 455.77

SAPβCD

Effect 1 (J/g) Effect 2 (J/g) Effect 3 (J/g) Effect 4 (J/g) Effect 5 (J/g)

−91.66 −90.38 −22.37 185.53 -

Type of effect

Exothermic Exothermic Exothermic Endothermic -
dehydration depolymerization depolymerization depolymerization Decomposition

Peak (◦C)

101.81 173.28 218.69 280.27 478.09

SAPAβCD

Effect 1 (J/g) Effect 2 (J/g) Effect 3 (J/g) Effect 4 (J/g) Effect 5 (J/g)

−32.70 - −124.29 100.29 27.59

Type of effect

Exothermic - Exothermic Endothermic Endothermic
dehydration - depolymerization depolymerization decomposition

Peak (◦C)

111.99 - 205.20 293.75 459.27

Macrospheres during the last stage of TG measurement were charred and covered with
sodium oxide (Figure 10). The emitted gases include water, carbon (II) and (IV) oxides, ni-
trogen oxides, and hydrides, which may come from amino groups in the polymer structure.

3.4.3. DSC Measurement

DSC thermogram SA contains four thermal effects (Figure 11). The first with a peak at
121.03 ◦C is an exothermic effect of −251.34 J/g, which is related to dehydration. Another
is the exothermic effect of −47.6 J/g, associated with the initial stage of depolymerization
(partitioning of the polymer chain)—peak 212.14 ◦C. The third effect is a large endother-
mic peak of 11.82 J/g at 294.02 ◦C, corresponding to further depolymerization. The last
endothermic peak at 455.77 ◦C corresponds to the decomposition of SA (−18.69 J/g).
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The thermogram for SAPβCD contains five thermal effects. Four of them correspond
to effects for SA. The first, with a peak at 101.81 ◦C, is an exothermic effect of −91.66 J/g,
which is related to dehydration. It is less energetic, which indicates a weaker binding of
water in the structure of the system. The second peak that did not appear in the thermogram
for SA was the depolymerization peak of PβCD (−90.38 J/g, 173.28 ◦C). The next two
are SA depolymerization with the value of −22.37 J/g and 185.53 J/g at the temperatures
of 218.69 and 280.27 ◦C, respectively. The last peak is the decomposition of the whole
structure (−478.09 J/g).

A slightly different thermogram can be presented for SAPAβCD. The thermogram
contains four thermal effects. The first of them is low in energy, but strongly stretched,
with a value of −32.70 J/g, which is associated with dehydration. The change in the
appearance of the peak resulted from a different method of drying the compound. Another
exothermic effect is the combined effect of depolymerization of PβCD and SA. This is
suggested by its energy value of −124.29 J/g. The last two are endothermic effects from
SA depolymerization and thermal decomposition of the entire structure (100.29 J/g and
27.59 J/g) at temperatures of 293.75 and 459.27, respectively.

4. Conclusions

In this study, a composite material consisting of sodium alginate and an amine-
functionalized β-cyclodextrin polymer was successfully formed. On the basis of the results
obtained for PAβCD, it can be concluded that a monodisperse and branched polymer
system with the same length of particle chains was obtained. This polymer is amorphous
compared with native βCD, with better solubility relative to PβCD. The surface of the
polymer shows significant porosity with a large number of fissures. The resulting material
has a large surface area, high porosity, and excellent adsorption properties. It can selec-
tively adsorb and remove various contaminants from water, such as heavy metals, organic
pollutants, and dyes. Furthermore, highly cross-linked cyclodextrin polymers have been
utilized as catalysts for various reactions, such as oxidation, reduction, and esterification.
The large surface area and porosity of the polymer provide a large number of active sites
for catalysis, while the hydrophobic interior of the cyclodextrin cavity can selectively ac-
commodate certain substrates. The SAPAβCD composite material is a thermally stable
system with no significant deviations in thermogravimetric analysis relative to SA. The
surface of SAPAβCD is homogeneous and smooth, without cracks or scratches.

These discoveries have the effect of expanding the range of SAPAβCD practical appli-
cations. The presented polymer system can be a good material for various pharmaceutical
and medical applications.

In addition, the obtained SAPAβCD composite material can be used in many envi-
ronmental applications such as removing inorganic and organic contaminants, potentially
providing an eco-friendly solution to environmental pollution. The potential use of the
composite material in pharmaceutical, biomedical, and environmental applications could
reduce waste generation by providing a material that is durable and can be reused multiple
times. The better solubility of the composite material compared with PβCD could reduce
the number of solvents needed during production and the environmental impact of solvent
disposal. The use of sodium alginate as a matrix material is a sustainable choice because it
is derived from natural sources such as brown seaweed.

In summary, highly cross-linked cyclodextrin polymers have shown great potential as
versatile materials with a wide range of applications, from environmental remediation to
drug delivery and catalysis.
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