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Abstract: Electrospun nanofiber mats are usually applied in fields where their high specific surface
area and small pore sizes are important, such as biotechnology or filtration. Optically, they are mostly
white due to scattering from the irregularly distributed, thin nanofibers. Nevertheless, their optical
properties can be modified and become highly important for different applications, e.g., in sensing
devices or solar cells, and sometimes for investigating their electronic or mechanical properties.
This review gives an overview of typical optical properties of electrospun nanofiber mats, such
as absorption and transmission, fluorescence and phosphorescence, scattering, polarized emission,
dyeing and bathochromic shift as well as the correlation with dielectric constants and the extinction
coefficient, showing which effects may occur and can be measured by which instruments or used for
different applications.
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1. Introduction

Electrospinning can be used to produce very fine fibers, typically in the range of some
ten to some hundred micrometers, from a polymer solution or melt [1–3]. Usually, a sy-
ringe with a fine needle or a polymer-coated wire or rotating drum enable introducing the
polymer solution into a strong electric field, which forces the polymer droplets to fly from
the high-voltage electrode to the grounded collector [4–6], while several other techniques
are also available and enable faster spinning, or producing special fibers, such as core-shell
fibers [7–9]. The nanofibers deposited on the collector are usually arbitrarily oriented,
but different techniques such as a fast-rotating collector or introduction of conductive or
dielectric areas in the collector can be used to gain a certain amount of orientation of the
fibers [10–12]. The diameters of these nanofibers can have a broad distribution, while sev-
eral studies concentrated on optimizing the electrospinning process so that this distribution
is narrowed [13–15]. Furthermore, it is possible to give the electrospun nanofiber mats
diverse physical or chemical properties, i.e., electrical or magnetic properties [16–18], by
blending polymers or adding nanoparticles to the spinning solution [19–21].

All these aspects will influence the optical properties of nanofiber mats. Naturally, the
structural properties of nanofiber mats will influence their optical properties, not only by the
fiber diameter distribution, but also by defects [22]. As usual in polymers, the strain in the
fiber surfaces will influence the absorption spectra of the nanofibers [23]. Tebyetekerwa and
Ramakrishna describe how strain, deformations, electrical-charge storage, or even doping
of electrospun nanofibers could be investigated optically, applying different methods such
as photoluminescence (PL), absorbance, or polarization measurements [24]. On the other
hand, it is possible to tailor the optical properties of nanofiber mats, e.g., to produce
perovskite-embedded CsPbX3 nanofiber mats with different polymers which show a high
photoluminescence intensity and can thus be used in highly luminescent white LEDs [25].
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Measurements of the optical properties of such nanofiber mats are usually performed
by spectrophotometric methods, often applying a UV-visible (UV/Vis) spectrometer, be-
sides other techniques such as diffuse reflectance spectroscopic (DRS) measurements,
etc. [26–28]. However, many more specialized methods are available and will be described
in the next sections.

On the other hand, the impact of the environment on the optical properties of nanofi-
brous membranes makes them suitable as sensing devices, e.g., for toxicants, pH value,
temperature, acids, volatile organic compounds, etc. [29–33].

This review describes the different optical properties of electrospun nanofiber mats,
measurement techniques, and potential applications, concentrating on the visible light spec-
trum and partly directly neighboring parts of the spectrum, where the latter is measured
with the same instrument, e.g., a UV/Vis spectrometer.

2. Absorption/Absorbance

The absorption and the absorbance characterize the ability of a material to absorb
light. The absorbance Abs is defined as Abs = log10(Pin/Ptrans) with the incident radi-
ant power Pin and the transmitted radiant power Ptrans, or, as it is typically measured,
Abs = log10

(
Pre f

trans/Psample
trans

)
with the transmitted radiant powers Pre f

trans of a blank ref-

erence and Psample
trans of the sample under investigation [34]. Absorption coefficients are

sometimes given as numbers, sometimes with the unit m−1, so that care must be taken
comparing different studies [34].

One of the fields in which broadband light absorption is important is light harvesting,
e.g., for solar steam generation [35–37]. Liu et al. produced an Ag@MXene/poly(acrylonitrile)
(PAN) nanofiber mat, which they used as a solar evaporator, and found that the combination
of the plasmonic Ag nanoparticles (NPs) and the MXene nanosheets resulted in a large
sunlight absorption of 93% along the whole solar spectrum as well as catalytic degradation
of nitro compounds and antibacterial properties [38]. Using a folded origami structure,
they produced a solar evaporator, which was largely independent from the angle of the
impinging sunlight and could evaporate water with up to 2 kg/(m2 h).

Optical sensors can also be based on changes in absorption [39–41]. Abedalwafa et al.
prepared colorimetric biosensors from electrospun nanofiber membranes with aptamer-
conjugated Ag NPs [42] (aptamers are short, single-stranded DNA or RNA which show
high selectivity for binding to well-defined targets), which they used to optically detect
kanamycin as a model analyte by detecting a color change from pink to white.

A broad research area is related to photocatalytic degradation, which can be improved
if the absorption of the catalyst can be found in the visible light range, i.e., in the largest part
of the sunlight spectrum [43–45]. For this, Jian et al. prepared La-doped ZnO nanofibers
by electrospinning and subsequent calcination [46]. They showed that a small amount
of La could reduce the relatively large band gap of ZnO, enabling more absorption of
visible light. This, in turn, resulted in better photocatalytic degradation of the model dye
Rhodamine B. Similarly, Baylan and Yildirim used manganese to dope ZnO nanofibers
and reported a red-shift of the band edge so that larger wavelengths, i.e., smaller energies
of the arriving light are necessary for photocatalytic activities, correlated with improved
photocatalytic degradation activity as tested for methylene blue model dye [47]. Lim et al.
used Bi2O3 nanofibers for photocatalytic tests and showed that by combining the two
phases, α-Bi2O3 and β-Bi2O3, the band gap could be tailored, resulting in the possibility to
optimize the degradation of Rhodamine B [48]. Another way to improve the photocatalytic
degradation of methylene blue was chosen by Aghasiloo et al. who prepared highly porous
TiO2 nanofibers by electrospinning in a humid environment [49]. The increased light ab-
sorption due to the high specific surface area also significantly increased the photocatalytic
degradation efficiency. A more complex composition of nanofibers was chosen by Wei et al.
who prepared Ag/ZnWO4/WO3 composite nanofibers, which showed a clearly higher
absorption edge compared to Ag/WO3 or WO3 solely, as depicted in Figure 1b, resulting
in higher photocatalytic degradation of methylene blue (Figure 1a) [50]. Here, in addition,
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the reduced photoluminescence (PL) intensity of the Ag/ZnWO4/WO3 nanofibers (Figure 1c)
was mentioned as another factor influencing the photocatalytic activity, showing that
Ag/ZnWO4/WO3 nanofibers accelerated the separation of the photogenerated electron-
hole pairs. Combining Ga2O3/ZnO/WO3 heterojunction composite nanofibers, Zhang et al.
could also improve the photocatalytic degradation of Rhodamine B as compared to WO3
or ZnO/WO3 nanofibers, which was attributed to enhanced optical absorption and sup-
pression of carrier recombination, and the S-scheme heterojunction interface built by the
contact of Ga2O3, ZnO, and WO3 [51]. Lu et al. found improved photoreactivity of TiO2
nanofibers assembled from nanosheets, which further increased the specific surface area
and correspondingly the photocatalytic oxidation of acetone [52].
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Figure 1. (a) Photocatalytic decomposition of methylene blue with WO3, Ag/WO3, and
Ag/ZnWO4/WO3 composites nanofibers, (b) UV/Vis diffuse reflectance spectra, and (c) photolumi-
nescence spectra of as-prepared samples. From [50], copyright (2019), with permission from Elsevier.

In addition to this often-mentioned area of application, the absorbance of nanofiber
mats is also measured for basic research, in this case not necessarily showing a red-
shift of the UV/Vis absorbance. Sharma et al., e.g., produced polyvinyl pyrrolidone
(PVP)/poly(ethylene oxide) (PEO) nanofibers filled with PbS nanoparticles and found a
significantly increased absorption with increasing PbS content, combined with a blueshift
of the reflectance onset, besides tenability of the band gap by the size of the PbS nanoparti-
cles [53].

While absorbance measurements are, as mentioned in this section, often used to tailor
the absorbance edge towards higher wavelengths to reach better photocatalytic properties
or for similar applications, these measurements can also be used to investigate the optical
band gap of materials, as described in the next section.

3. Optical Band Gap Investigation

The optical band gap of semiconductors is usually detected from absorption spectra
by using Tauc plots. The band gap energy can be estimated according to the Tauc formula
(αhν) = A

(
hν− Eg

)n/2 with the absorption coefficient α (proportional to the Kubelka–
Munk function F(R) = (1− R)2/2R with the reflectance R of the sample [54]), the photon
energy hν, a constant A, the band gap Eg, and an integer n, which is 1 for direct and 4
for indirect band transitions [55]. As shown in Figure 2, the band gap can be calculated
from plotting (αhν)2/n versus the energy of the absorbed light, here for direct transition
semiconductors, and the band gaps are directly found by extrapolating the linear parts of
the spectra towards the x-axis [55]. In the case of indirect band gaps, the y-axis is (αhν)1/2

instead of (αhν)2 in the case of direct band gaps [56,57]. The graphs often show a doubled
minimum or similar unexpected features if the wrong y-axis is chosen, while it is also
possible to use both plots for immiscible blends with direct and indirect band gaps [56,57].
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Figure 2. (a) Absorbance spectra, (b) band gap determination by drawing the line at (αhυ)2 of the
electrospun nanofibers. For polyvinylidene fluoride (PVDF), no band gap could be calculated since
the absorbance was too low. From [55], copyright (2019), originally published under a CC-BY license.

Using this technique, Matysiak et al. characterized the different blends of poly(acrylonitrile)
(PAN) with the conductive polymers polypyrrole (PPy), polythiophene (PT), and polyani-
line (PAni) and found a reduction in the band gap of pure PAN (4.08 eV) to minimum
3.77 eV for composite nanofibers containing 3% PAni [58]. Interestingly, Bayan et al. even
found a significant difference in the band gaps of hollow core PAni and bulk PAni, which
they used to improve the charge transport in the buffer layer of organic solar cells [59].
Oppositely, band gap energies of different disordered and ordered TiO2 nanofibers and
nanotubes were identical within measurement accuracy, as shown by Wang et al. [60].

Sabzehmeidani et al. showed a strong band gap shift of CeO2/CuS composite
nanofibers as compared to CeO2 nanofibers, which was favorable for visible light-induced
photodegradation of methylene blue [61]. Similarly, Safartoobi et al. found different band
gaps for Cu(1−x)MnxFe2O4 nanofibers with different x between 0 and 0.75 [62]. Gea et al.
blended ZnO nanofibers with Ag and/or graphene oxide (GO) and found a reduction in
the band gap from 2.98 eV for pure ZnO to 2.75 eV for ZnO-Ag-GO nanocomposites [63].
Similarly, SnO2 nanowires in pure form or as composites with PVP showed band gaps
varying with structure and material blend [64,65].

4. Transmission

While the optical transmission through a sample is often calculated from absorbance
measurements (and vice versa) by Lambert–Beer law Abs = −log(T), with the transmission
T defined as the fraction of light intensity visible behind the sample [66]. While it is usual
to give the transmission in percent, it is mathematically impossible to have a unit in the
argument of a logarithm, although this is also often found in the literature. As an example,
an absorbance of 1 is correlated with a light transmission of 10%, while an absorbance of 2
means a light transmission of 1%.

Although both these values seem to be clearly correlated in theory, this law may cause
practical problems, e.g., if reflection and scattering in the sample have to be taken into
account, which are part of the extinction (cf. Section 5), but not of the absorbance, or if too
high values of the absorbance (typically higher than 1.5) are measured [66]. A very detailed
description of these and other typical practical measurement errors is given in [66].

In addition to these potential problems of calculating transmission from absorbance
measurements, the literature research showed clearly that transmission measurements are
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mostly performed for different purposes, which is why this optical property is described in
a separate section. Mostly, high transmission values are aimed at [67,68], e.g., in case of
nanofibrous photodetectors based on transparent p-n junctions [69], transparent nanofiber-
reinforced hydrogels for sensing or light-conducting applications [70,71], or solar-reflecting,
infrared-transmitting nanofiber mats which block solar heating, but enable radiative cooling
in the infrared [72].

Liu et al. investigated nanofibrous polyurethane (PU) electret window screens used
for air filtration and found transmission values of approx. 5–50%, depending on the
wavelength and on the areal density of the nanofiber mats [73]. Similarly, Liu et al. prepared
transparent electrospun particulate matter filters from superhydrophobic PDMS/PMMA
fibers and found an optical transmittance of 16–86% combined with high removal efficiency,
as depicted in Figure 3 [74]. For the same purpose, Wang et al. showed electrospun
filters with high transparency and improved filtration efficiency due to a different nanofiber
distribution in the membrane, reached by a modified electrospinning process [75]. Similarly,
Liang et al. demonstrated a highly transparent polyurethane nanofibrous air filter for fine
particulate matter [76].
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Another application of transparent nanofiber mats is given by edible films used
for food packaging, which is why Ebrahimi et al. developed transparent gluten films
containing nanofibers in which the nanofibers reduced the transparency, but at the same
time eliminated the undesired yellowish color of the pure gluten films [77]. On the other
hand, Feng prepared nanofiber mats from poly (lactic acid) (PLA) with different amounts
of TiO2, which were highly intransparent at different UV wavelengths as well as at 600 nm,
while the pure PLA film showed a transmission around 67% [78].

Finally, it should be mentioned that the optical property of transparency is correlated
with the electrical sheet resistance and other electrical properties [79,80], which will be
discussed subsequently.
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5. Dielectric Constant and Index of Refraction

While the complex dielectric function is defined as εr(ω) = ε′(ω) + iε′′ (ω) with the
real part ε′(ω) and the imaginary part ε′′ (ω), the complex index of refraction is defined
as n∗ = n + iκ with the real and the imaginary part n and κ (the extinction coefficient,
giving rise to the damping of a light wave), respectively. With εr(ω) = (n∗)2, the relations
ε′ = n2− κ2 and ε′′ = 2nκ follow, where all parameters are frequency-dependent. Further
calculations allow correlating n and κ with the conductivity of a material [81]. However,
these calculations are scarcely performed in terms of nanofiber mats.

Nevertheless, the dielectric constant of nanofiber mats is often investigated, e.g., by
impedance measurements, which enable calculating ε′(ω) from the absolute value of the
impedance or from an LCR meter with terminal parallel capacitance and ε′′ (ω) from the
loss tangent [82–84]. However, only a few papers measured both optical refractive index
values as well as dielectric constants [85–87], so that here only measurements of real and
imaginary parts of the index of refraction are further described.

The extinction coefficient can be calculated by κ = αλ/(4π) with the absorption
coefficient α and the light wavelength λ [88,89]. The absorption coefficient can be calcu-
lated from the measured absorbance by α = 2.303A/d with the sample thickness d [90].
Kenawy et al. used this equation to determine the wavelength-dependent extinction co-
efficient of [1 H-Pyr+Ben]B nanofiber thin film, which they suggested for energy storage
and solar cell applications [91]. Going further, they calculated the real and imaginary part
of the dielectric constant from n and κ and showed that the real part was much higher
than the imaginary part, indicating that the examined nanofibers could store much electric
and magnetic energy. Similarly, Matysiak and Tanski calculated the extinction coefficient
of amorphous ZnO/crystalline ZnO NPs from the measured absorbance and showed a
significant effect of the calcination temperature of the composite nanofibers on their optical
properties [92]. Ibrahim et al. found a significantly increased extinction coefficient upon
blending PEO with GO and multi-walled carbon nanotubes [93]. For PAN/PEO nanofibers
with different amounts of GaN, Ahmad et al. calculated the extinction coefficient and
refractive index and found a reduction in the extinction coefficient for wavelengths in the
visible range of the spectrum, while the index of refraction increased [94].

The real part of the refractive index is more often mentioned than the extinction. This
is probably due to the high impact of scattering in nanofiber mats, usually causing a low
transparency [95]. Transparency is thus often significantly increased if the nanofiber mat
is in a wet state, with water or other fluids filling the voids inside [96], or if nanomem-
branes with low fiber content are prepared by electrospinning instead of fully fibrous
membranes [97]. In some cases, such as in the light scattering layers of dye-sensitized solar
cells (DSSCs), this fact is even advantageous [98,99].

While Fraunhofer diffraction is not applicable for nanofibers with diameters in the
same order of magnitude as the impinging light wavelengths, the Mie theory—originally
developed for small spherical particles—is often used with modifications, taking into
account the anisotropic shapes of the nanofibers [100]. Based on the Mie scattering theory,
Li et al. modeled light scattering from a nanofibrous PAN membrane and showed that
light scattering properties could be adjusted by tailoring the nanofiber diameter, in this
way improving the color yield and finally preparing LEDs with good light scattering
characteristics [101]. As depicted in Figure 4, white luminescence of a commercial LED
could be transferred into red, yellow, and blue luminescence by these nanofiber mats with
tailored diameters, and at the same time, the light was scattered and thus protects the eye
from the concentrated white light [101].
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scattered light of LED chip. From [101], copyright (2021), with permission from Elsevier.

In addition to these applications where scattering was improved or reduced, partly
wavelength-dependent, it is also possible to use measurements of scattering properties for
sensing. In this way, Pirdadeh-Beiranvand et al. used resonance light scattering (RLS) of
PVA nanofibers, decorated with Ni0.5Zn0.5Fe2O4 nanoparticles, to detect sunitinib, a cancer
drug, from the change in the scattering intensity [102]. The authors also investigated the
influence of diverse other ions or molecules on the change in the RLS spectra and found
them to be negligible, i.e., that this optical sensor has a high selectivity towards sunitinib.
Even more specialized sensing applications were reported for scattered reflection from
magnetic nanofiber mats, usually referred to as D-MOKE (diffractive magneto-optical Kerr
effect), where measurements along different angles of reflection were shown to contain
information about the magnetism of a sample, which can be measured by measuring the
rotation of the original linear polarization axis of the impinging laser beam [103,104].

6. Photoluminescence

Photoluminescence (PL) belongs to the often-mentioned optical properties of nanofiber
mats [105–107] which are, however, not always fully defined. Photoluminescence can be
differentiated into the fast fluorescence and the long-lasting phosphorescence, besides
time-resolved measurement of photoluminescence, which measures the PL decay with
time after excitation by a short light pulse. In all cases, the re-emitted photons are red-
shifted, i.e., have smaller energy than the absorbed ones, often using UV irradiation to reach
luminescence in the visible range. Among the typical applications of such measurements,
there are investigations of semiconductors as well as fluorescence microscopic images of
mammalian cells, stained with fluorescent dyes, allowing differentiation between the cell
nucleus and fibroblasts [108–110]. Photoluminescence is also important for nanofiber-based
solar concentrators with perovskites [111]. Perovskites can not only be used for solar
cells [112–114] but may also show circularly polarized photoluminescence [115,116].

The photoluminescence spectrum, especially the maximum, can be influenced by
the preparation of electrospun nanofiber mats, e.g., by the pyrolysis process of sulfur
self-doped g-C3N4 nanofibers, which showed enhanced photocatalytic activity and light
harvesting properties, as compared to the bulk material [117]. For electrospun bioactive
glass containing Er3+ and Tb3+ ions, Deliormanli et al. found emission bands around
506 nm and 566 nm for an excitation wavelength around 374 nm, with additional bands
for 1% Er3+ and more additional emission bands for Tb3+ or combinations of both dopants,
showing different emission centers for the dopants [118]. Investigating different polymeric
nanofibers with ZnO, Myundrul et al. found significantly increased photoluminescence of
PVDF/ZnO nanofibers for an excitation wavelength of 325 nm [119].

In addition to these investigations of the sample properties by photoluminescence, PL
can also be used, e.g., for oxygen sensing by praseodymium-modified ZnO nanofibers [120],
while PSMMA nanofibers with LaPO4:Eu3+ were shown to have strong PL, making such
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nanofibers useful for optic and photonic devices [121]. Comparing undoped and Cu-doped
ZnO electrospun nanofibers showed new defect states due to Cu incorporation into the
ZnO lattice, resulting in polarized photoluminescence and decreased band gaps [122].
Packaging coaxially electrospun nanofibers with circularly polarized white luminescence
with a UV chip resulted in white LEDs [123].

When a paper explicitly mentions fluorescence measurements, often optical sensors
are the aim of the study [124]. Such electrospun fluorescence sensors can detect, e.g.,
ammonia [125], microRNA as a marker for cancer cells [126], nitroaromatic explosives [127],
pH values [128], chiral recognition of molecular enantiomers [129], temperature [130],
pathogenic bacteria [131], or aniline vapor [132].

Phosphorescence, on the other hand, was suggested as an alternative to electrical
light in medical endoscopes [133] or for anti-counterfeiting applications [134], but in most
cases it is used as an oxygen sensor [135–139]. Furthermore, other phosphorescent sensors
were suggested, such as Zn2+ phosphorescent sensors [140,141], phosphorescent sensors
for humidity [142], or several other physical and chemical stimuli, such as pressure, heat,
pH value, explosives, or heavy metal ions [143].

7. Polarization

In most cases, the aforementioned spectroscopic measurements are not related to the
polarization of the incident or the emitted/reflected light. Investigations by polarized light
optical microscopy, however, may be used to investigate the molecular orientation within
the nanofibrous membrane, as depicted in Figure 5, where the edge of the film (Figure 5b)
shows varying colors, and higher magnified micrographs taken with changing polarizer
orientation (Figure 5(c-1–c-4)) indicate variation of the visible color [144]. While polarized
measurements are also possible in the infrared [144,145], here we only discuss polarization
in the visible range of the light spectrum [146].
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indicating different parts of the film have different optical properties (a) center, (b) edge of the film
under lower magnification (×5, scale bar: 500 µm), and (c-1–c-4) edge part of the film under the
higher magnification (×20, scale bar: 100 µm) with changing polarizer orientation from vertical
(c-1) to lateral direction (c-4). Reprinted with permission from [144]. Copyright (2019) American
Chemical Society.
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Polarized optical microscopy was used, e.g., by Thum et al. who embedded liquid
crystals (LCs) in coaxially electrospun nanofibers with a PVP sheath and azobenzene-doped
LC core [147,148]. They showed that the azobenzene chromophores enabled photochemical
switching between nematic and isotropic phases of the LC, i.e., UV light triggers the phase
transition from nematic to isotropic phases, while visible light reversed this process. In this
way, UV made the fibers visible in polarized optical microscopy (POM), and visible light
made them invisible for the POM again.

Anisiei et al. used POM to roughly estimate the fiber crystallinity of chitosan/PEO
and chitosan nanofibrous membranes [149]. They found birefringent textures in polarized
light, which they identified as alignment of the chitosan chains upon electrospinning.

In addition to polarized optical microscopy, Bernardo et al. reported about polarized
second harmonic generation (SHG) of anisotropic poly-ε-caprolactone (PCL) nanofibers in
which nonlinear nanocrystals were embedded [150]. The setup to measure SHG was based
on a mode-locked Ti:sapphire laser with a 100 fs pulse width and 76 MHz repetition rate.
Variable polarizers were used in the incident and emitted light. The strong contrast in the
measured curves at different polarizations revealed strong alignment of the nanocrystals
inside the fibers.

Meng et al. embedded halide perovskite nanocrystals in PVA nanofibers and measured
their polarization by using a picosecond pulsed diode laser whose light was circularly
polarized as an incident beam, which was focused on the sample by an inverted fluores-
cence microscope [151]. The resulting photoluminescence from the sample was measured
depending on these photons’ polarization. The authors found a strong polarization angle-
dependence of the photoluminescence. By comparing experimental results and theoretical
considerations, they attributed this effect to dielectric confinement with quantum confine-
ment in the perovskite nanocrystals and suggested using such materials for displays, lasers,
or waveguides. The same group also suggested nanofibers with embedded perovskite
nanocrystals for down-shifting applications in liquid crystal display backlights or other
polarization-dependent photonic devices [152].

Using an isotropic exciting light source, Chen et al. found strong anisotropy for emis-
sion with polarization parallel or perpendicular to the axis of their poly(3-hexylthiophene-
2,5-diyl) (P3HT) nanofibers, with much higher emission intensity and a red-shifted maxi-
mum for the polarization perpendicular to the fiber axis [153].

Fu et al. showed by polarized luminescence measurements that CsPbBr3 nanorods
embedded in polystyrene (PS) nanofibers could be aligned by an external magnetic field
applied during electrospinning [154].

8. Bathochromic Shift

The bathochromic shift is a red-shift of the absorption spectrum of a material, based on
the assembly between conjugated polymer backbones [155]. It is well known, e.g., from the
binding of anthocyanins to TiO2 in DSSCs [156–158], as depicted in Figure 6 [158]. However,
it can also be found in many other material blends or upon embedding nanoparticles in
nanofibers [159–161].

Philip et al., e.g., reported bathochromic shifts when they embedded silver nanoparti-
cles in poly(methyl methacrylate) (PMMA) nanofibers, which was attributed to the impact
of the surface plasmon resonance absorption bands of the Ag NPs [162]. Similarly, Li et al.
recognized a bathochromic shift when they compared the ternary (Eu(NTA)3L) (L = ligand)
complex with Eu(NTA)3 embedded in PVA nanofibers, which they attributed to a coordina-
tion interaction with the ligand L [31]. Baptista et al. also reported a strong bathochromic
shift between the photoluminescence spectra of 2-amino-4-nitroaniline and 3-nitroaniline
nanocrystals embedded in poly-L-lactic acid nanofibers, besides SHG light emission [163].
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On the other hand, Kato et al. used the bathochromic shift of the absorption maximum
of PMMA upon contact with methanol solutions containing anions, which they attributed
to the hydrogen bond formation between urea in the polymer and the anions penetrating
into the nanofibers, thus using the bathochromic shift for sensing [164]. Similarly, Gal et al.
found a strong bathochromic shift when their nanofiber mats containing zinc 10-ethyl-10H-
phenothiazine-3carboxylate or rubidium 10-ethyl-10H-phenothiazine3-carboxylate got in
contact with different solvents, also called solvatochromism [165].

Oh et al. as well as Park et al. found bathochromic shifts of their meta-aramid/dye
and cesium lead bromide perovskite nanofibrous membranes upon contact with ammonia,
making these nanofiber mats suitable for ammonia sensing [166,167]. This effect is depicted
in Figure 7 for varying NH3 concentrations [166].
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9. Dyeing

In addition to the aforementioned bathochromic shift, based on chemical reactions,
nanofiber mats can also change their color when they are dyed. An often-applied process is
adding a dye directly to the spinning solution, which should result in a colored nanofiber
mat [168–171].

For PVA nanofiber mats, Fadil added Remazol Yellow FG dye and Ase Direct Supra
Red BWS dye to the spinning solutions, respectively, resulting in yellow and red dyed
nanofibers, while the direct dye Ase Direct Supra Red BWS contained relatively large
molecules and thus strongly increased the average fiber diameters [172].

Using cationic dyes, Yan et al. showed dyeing poly(vinyl butyral) (PVB) nanofiber
mats in different colors, here red, yellow, light-blue, and black, which kept the colors nearly
unchanged for 6 months [173]. Water-fastness of these colorful nanofiber mats is shown in
Figure 8 [173].
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Figure 8. As-spun colored nanofibrous membranes (a) immersed in water; (b) after 24 h; (c) comparing
membranes before and after immersion in water; and (d) UV-Vis diffuse reflectance spectroscopy of
these membranes. From [173], copyright (2016), originally published under a CC-BY license.

Balakrishnan et al. chose alizarin, indigo, as well as different pigment dyes for dyeing
PLA melt-electrospun nanofiber mats [174]. They reported a significant increase in the PLA
melt viscosity, especially at low shear rates due to the added dyes; a decrease in the melt
resistance; and colorant aggregates in some of the electrospun fibers. For the latter problem,
they suggested integration of a screw system to provide shear during electrospinning.

Reactive dyes were used by Kishimoto et al. who dyed chitin nanofibers with blue,
red, yellow colors, and mixtures of them, resulting in colors which were resistant even to
hot water and detergents [175].

A combination of low IF emissivity and high solar absorption, useful for radiative
heating of the human body in a cold environment, was reached by adding dyes to a
PAN electrospinning solution, followed by magnetron sputtering a thin Ag layer on the
electrospun nanofiber mat [176]. The IR emission could be controlled by tailoring the fiber
diameter, while the Ag layer resulted in high solar radiation absorption.

Jatoi et al. chose another path and dyed electrospun PCL nanofiber mats in a continu-
ous (pad-dry-cure) as well as a semicontinuous (pad-batch) process with disperse dyes [177].
They found good color fastness after washing, showing that dyeing after electrospinning is
also possible. Similarly, PAN/CuS photothermal nanofiber mats, used for thermal manage-
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ment, were found to be dyeable [178]. Li et al. reported improved dyeability with anionic
dyes when they modified PAN chemically before electrospinning [179].

10. Conclusions

While the optical properties of electrospun nanofiber mats are often ignored, in many
cases they nevertheless enable investigations of their morphology, physical, and chemical
properties. Transmission and absorbance can be tailored for the respective applications,
while dyeing enables strong coloring in spite of the scattering of the mostly randomly
oriented thin nanofibers. Furthermore, color changes of special nanofibrous materials can
be used for sensing applications.

Modern research in the field of materials develops not only due to the achievement
of greater resolving power of instruments measuring the electronic, mechanical, electrical,
and optical parameters, but mainly thanks to the introduction of innovations to the inner
structure of materials. Particularly important for this development is the transition from
classical, structurally continuous materials, such as a variety of alloys, into structurally
discontinuous materials. This results in completely new, sometimes surprising features. In
the case of electrospun materials, the fibrous structure forces new properties. In the case of
interactions between nanofiber mats and electromagnetic waves, local effects result from the
existence of internal reflections and dispersion, which reveal specific dielectric and optical
properties of the material as a whole. Similarly, in terms of electro-optical properties and
the coupled elastic and thermal effects which are typical for electronic devices, phenomena
such as reflection, transport through material interfaces, and conduction of light along
single fibers occur, and at the same time, attempts to technologically control the anisotropy
of optoelectronic properties on the macro scale. Appropriate selection of the production
parameters of these nanofiber mats introduces components of directionality, resulting
in anisotropic as well as optically and spectroscopically dispersive properties of these
innovative materials.

While morphological or mechanical properties of electrospun nanofibrous membranes
are often discussed, this review thus gives a brief overview of typical optical measurements
which enable deeper characterization of nanofiber mats.
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