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Abstract: Inverted perovskite solar cells with a p-i-n configuration have attracted considerable atten-
tion from the research community because of their simple design, insignificant hysteresis, improved
operational stability, and low-temperature fabrication technology. However, this type of device is
still lagging behind the classical n-i-p perovskite solar cells in terms of its power conversion effi-
ciency. The performance of p-i-n perovskite solar cells can be increased using appropriate charge
transport and buffer interlayers inserted between the main electron transport layer and top metal
electrode. In this study, we addressed this challenge by designing a series of tin and germanium
coordination complexes with redox-active ligands as promising interlayers for perovskite solar cells.
The obtained compounds were characterized by X-ray single-crystal diffraction and/or NMR spec-
troscopy, and their optical and electrochemical properties were thoroughly studied. The efficiency of
perovskite solar cells was improved from a reference value of 16.4% to 18.0–18.6%, using optimized
interlayers of the tin complexes with salicylimine (1) or 2,3-dihydroxynaphthalene (2) ligands, and
the germanium complex with the 2,3-dihydroxyphenazine ligand (4). The IR s-SNOM mapping re-
vealed that the best-performing interlayers form uniform and pinhole-free coatings atop the PC61BM
electron-transport layer, which improves the charge extraction to the top metal electrode. The ob-
tained results feature the potential of using tin and germanium complexes as prospective materials
for improving the performance of perovskite solar cells.

Keywords: tin; germanium; coordination compounds; cyclic voltammetry; UV–Vis spectroscopy;
fluorescence spectroscopy; buffer layers; perovskite solar cells

1. Introduction

Coordination compounds play an important role in biology and physiology and are
commonly used in medicine and catalysis, in metallurgy for the extraction and processing
of elements, and in analytical chemistry; they also are applied as materials for microelec-
tronics and photovoltaics technologies [1–5]. The aforementioned applications mainly
involve transition metal complexes, whereas the use of main-group-element coordination
compounds are also becoming more widespread [6,7]. The main group elements usually
do not have multiple stable oxidation states, unlike transition metals, but this issue could
be mitigated by the use of redox-active ligands [8].
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The Group 14 elements are of great importance in materials science, covering the
historical gap from the first semiconductors to the currently emerging perovskite solar cells.
In the series “silicon–germanium–tin–lead”, the germanium coordination compounds are
more resistant to hydrolysis than the silicon derivatives [9]. In turn, the tin compounds
are significantly less toxic compared to the lead-based analogs [10,11]. In that context,
germanium compounds occupy a special position in coordination chemistry, since their
toxicity is extremely low [12,13]. Thus, germanium- and tin-based materials can have an
important competitive advantage over lead compounds and complexes of transition metals,
which are generally toxic.

Tin coordination compounds with redox-active ligands are characterized by a rel-
atively small HOMO-LUMO gap, which sometimes enables semiconductor properties,
makes them fluorescent in the visible range, etc. [14]. They can be used as materials for
optoelectronic devices [15], organic light-emitting diodes [16], and solar cells [17], as well
as for fluorescence bioimaging [18,19]. Much less information can be found on the use of
germanium coordination compounds in materials science. Still, it is already known that
the use of redox-active ligands enables a significant decrease in the energy of LUMO levels
of the compounds [20,21] and increase in their HOMO energy levels [22], thus delivering
materials with a HOMO-LUMO gap of about 2 eV [22]. In addition, there was a report on
the germanium derivative with phenanthrenediol and bipyridine that exhibited intense
fluorescence in the visible range [23].

The practical application of Group 14 elements for energy harvesting is now greatly
inspired by the emerging perovskite solar cells, which are based on complex lead and/or
tin halides as absorber materials. Among different device architectures reported to date,
p-i-n perovskite solar cells have many advantages, such as simple fabrication, high stability,
and negligibly low hysteresis [24]. However, the interface between the top metal electrode
(such as Ag and Al) and the electron transport layer (ETL, commonly represented by
a fullerene derivative PC61BM) is not sufficiently stable, causing multiple aging effects,
such as corrosion or delamination; the barrier formed between the ETL and top metal
electrode leads to poor electron extraction [25]. Interface engineering can significantly
enhance the performance and stability of p-i-n perovskite solar cells. It can be used to
align material energy levels across the interface and to decrease interfacial losses caused
by surface recombination [26]. Interface engineering can also improve the morphology of
the electron transport layer, tailor the work function of contact layers, and enhance the
long-term stability of the devices [25].

To date, many different materials have been investigated as interlayers in p-i-n per-
ovskite solar cells, e.g., organic molecules [27], metal–organic frameworks [28], metal
oxides [29], polymers [30], and carbon-based materials [31]. In particular, small organic
molecules have attracted a particular interest due to their easy synthesis, purification,
and tailorable and reproducible properties. Furthermore, organic interlayers can be de-
posited by solution-processing at low temperatures, which makes interface engineering a
low-energy and inexpensive technology [32].

In this work, we present the synthesis of the tin and germanium coordination
compounds 1–5 with the redox active dihydroxynaphthalene, dihydroxyphenazine, and
Schiff base ligands (Scheme 1); investigation of their electrochemical behavior and optical
properties; and evaluation of the designed materials buffer layers in inverted perovskite
solar cells.
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Scheme 1. The synthesis of new tin and germanium coordination compounds 1−5 and also com-
pound 6 previously reported by M. Nanjo et al. [23]. 

  

Scheme 1. The synthesis of new tin and germanium coordination compounds 1–5 and also
compound 6 previously reported by M. Nanjo et al. [23].

2. Materials and Methods
2.1. Materials

Diethyltin oxide Et2SnO was purchased from Gelest, germanium dioxide GeO2
was purchased from Germanium and Applications Ltd. (Novomoskovsk, Russia), and
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2,3-dihydroxynaphtalene was from Acros Organics (Geel, Belgium). The methanol and
toluene used in the synthesis were purified by standard methods [33]. For cyclic voltam-
metry, UV–Vis, and fluorescence experiments, dimethylformamide (Acros Organics, Geel,
Belgium) with an initial water content of <100 ppm was stored in a glove box over dried
4 Å molecular sieves. Tetrabutylammonium tetrafluoroborate (Aldrich, Buchs, Switzer-
land) was dried under oil-pump vacuum at 80 ◦C for 4 h. After this, the water content
in pure DMF and 0.1 M Bu4NBF4/DMF did not exceed 20 ppm, as determined by Karl
Fischer titration.

2.2. Synthesis of Compounds 1–6

(2,2-Diethyl-5-methyl-4,5-dihydrobenzo[h][1,3,6,2]dioxazastannonin-5-yl)methanol
(compound 1). 2-((2-Hydroxybenzylidene)amino)-2-methylpropane-1,3-diol (synthesized
according to [34]) (0.125 g, 0.597 mmol) was dissolved in 10 mL of methanol upon heating
for 1 h, then Et2SnO (0.1144 g, 0.59 mmol) was added, and the reaction mixture was heated
at reflux for 9 h. Methanol was distilled off and replaced with toluene. After cooling, the
precipitate was filtered off and dried in a vacuum of a water jet pump. The yield of the
product was 79% (0.181 g, 0.47 mmol).

1H NMR (300 MHz, DMSO-d6, δ, ppm): 8.35 (s, 1H, JSn-H = 45.58 Hz, CH=N),
7.40–7.36 (m, 1H, arom. CH), 7.31–7.25 (m, 1H, arom. CH), 6.63–6.58 (m, 2H, arom.
CH), 5.15 (m, 1H, OH), 3.97–3.78 (m, 1H, CH2), 3.47–3.42 (m, 3H, CH2 and H of CH2),
1.39–0.99 (m, 13H, CH3 and two Et groups). 13C NMR (75 MHz, DMSO-d6, δ, ppm):
171.45 (CH=N), 169.38 (C), 136.01 (arom. CH), 135.63 (arom. CH), 121.41 (arom. CH),
117.56 (C), 115.05 (arom. CH), 69.56 (CH2), 64.56 (CH2), 19.11 (CH3), 13.30 (CH2 of Et), 12.20
(CH3 of Et), 9.84 and 9.78 (CH3 and CH2 of Et). HRMS for positive ions: found 386.0777 for
[M + H]+, calculated 386.0775 (Supplementary Figures S3–S5).

2,2-Diethylnaphtho[2,3-d][1,3,2]dioxastannole (compound 2). Et2SnO (0.128 g, 0.66 mmol)
was added to a mixture of 2,3-dihydroxynaphtalene (0.105 g, 0.66 mmol) in 2 mL of
methanol and 18 mL of toluene. The reaction mixture was heated at reflux for 4 h
and filtered. The precipitate was dried in vacuum. The yield of the product was 68%
(0.15 g, 0.45 mmol).

1H NMR (300 MHz, DMSO-d6, δ, ppm): 7.38–7.33 (m, 2H, arom. CH), 6.99–6.94 (m,
2H, arom. CH), 6.77 (s, 2H, arom. CH), 1.35–1.27 (m, 4H, CH2), 1.17–1.12 (m, 6H, CH3);
13C NMR (75 MHz, DMSO-d6, δ, ppm): 155.97 (C-O), 128.60 (C), 124.52, 120.67, 106.18,
18.40 (CH2), 9.25 (CH3). HRMS for positive ions: found 337.0244 for [M + H]+, calculated
337.0247; found 359.0062 for [M+Na]+, calculated 359.0067 (Supplementary Figures S6–S9).

2,2-Diethyl-[1,3,2]dioxastannolo[4,5-b]phenazine (compound 3) was prepared from
2,3-dihydroxyphenazine (synthesized according to [35]) and Et2SnO in a yield of 77%
in a similar manner as that used for compound 1.

1H NMR (300 MHz, DMSO-d6, δ, ppm): 7.93–7.89 (m, 2H, arom. CH),
7.56–7.53 (m, 2H. arom. CH), 6.85 (s, 2H, arom. CH), 1.38 (m, 4H, CH2), 1.15 (m, 6H,
CH3). 13C NMR (75 MHz, DMSO-d6, δ, ppm): 162.83 (C), 143.35 (C), 139.88 (C), 127.78 (arom.
CH), 126.22 (arom. CH), 103.08 (arom. CH), 20.41 (CH2), 9.37 (CH3). HRMS for positive ions:
found 389.0303 for [M+H]+, calculated 389.0309 (Supplementary Figure S10–S13).

Complex 4. 2,3-Dihydroxyphenazine (0.636 g, 3 mmol) and GeO2 (0.104 g, 1 mmol)
were added to 20 mL of water. The reaction mixture was heated at reflux for 28 h and
filtered. The precipitate was dried in vacuum and then extracted with chloroform. The
yield of the product was 72% (0.505 g, 0.72 mmol).

1H NMR (300 MHz, DMSO-d6, δ, ppm): 8.2 (dd, 6H, J1 = 6.5 Hz, J2 = 3.4 Hz), 7.94
(dd, 6H, J1 = 6.5 Hz, J2 = 3.4 Hz), 7.26 (s, 6H). HRMS for negative ions: found 705.0579
for [M + H]−, calculated 705.0592 (Supplementary Figures S14 and S15).

Complex 5. 2,3-Dihydroxyphenazine (0.636 g, 3 mmol) was dissolved in 50 mL of
methanol. Then metallic sodium (0.138 g, 6 mmol) was added to the reaction mixture. The
mixture was stirred for 1 h, under argon, and then GeCl4 (0.214 g, 1 mmol) was injected
(the mixture color changed from red to green within several seconds). The precipitate of



Membranes 2023, 13, 439 5 of 19

NaCl was filtered off, and then the solvent was removed from the filtrate in vacuum. The
yield of the product was 77% (0.575 g, 0.77 mmol).

1H NMR (300 MHz, DMSO-d6, δ, ppm): 8.17 (dd, 6H, J1 = 6.5 Hz, J2 = 3.4 Hz),
7.91 (dd, 6H, J1 = 6.5 Hz, J2 = 3.4 Hz), 7.21 (s, 6H). HRMS for negative ions: found
705.0597 for [M+H]−, calculated 705.0592 and 352.0260 for [M]2−, calculated 352.0259
(Supplementary Figures S16–S18).

Complex 6 was synthesized according to [23].

2.3. Instrumentation
1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were recorded in DMSO-d6 on

a Bruker AM300 instrument at ambient temperature. NMR spectra were assigned using
residual DMSO-d6 (1H NMR δ = 2.5 ppm, 13C NMR δ = 39.5 ppm). High-resolution mass
spectra (HRMS) were measured on a Bruker micrOTOF II instrument, using electrospray
ionization (ESI). The measurements were performed in the positive or negative ion mode
(interface capillary voltage 4.5 kV), with a mass range from m/z 50 to m/z 1600, and external
or internal calibration was performed with ESI Tuning Mix, Agilent. Syringe injection
was used for solutions in acetonitrile or methanol (flow rate 3 µL min−1). Nitrogen was
applied as a drying gas (flow rate 4 L min−1); the interface temperature was set at 200 ◦C.
A Mettler-Toledo Titrator C10SD instrument was used for the Karl Fischer titration.

The oxidation and reduction behavior of the starting ligands and complexes 1–5 was
analyzed by cyclic voltammetry, using an IPC-Pro-MF digital potentiostat (Econix). So-
lutions of the compounds were prepared, and all measurements were performed in an
argon-filled glove box with water and oxygen levels below 1 ppm. The studied compounds
that were dissolved in the supporting electrolyte (0.1 M Bu4NBF4/DMF) with a concentra-
tion of 3 × 10−3 M were electrochemically tested in a standard three-electrode glass cell at
a potential scan rate of 0.1 V s−1. The working electrode was a glassy carbon disc electrode
with a diameter of 1.7 mm. Before using, the electrode was polished with sandpaper and
then with the GOI paste until the surface attained a mirror shine. The counter electrode was
a Pt wire pre-annealed in a gas-burner flame to remove oxides and other possible contami-
nations. The potentials of the studied processes were measured versus the Ag wire coated
with AgCl (prepared by galvanostatic anodizing in a 5% HCl solution) separated from the
bulk electrolyte solution by an electrolytic bridge filled with the supporting electrolyte. The
reference electrode was calibrated with respect to the ferrocene/ferrocenium couple.

UV–Vis spectroscopy was performed using an Agilent 8453 instrument. The spectra
were registered for 1 × 10−4 M solutions in MeCN in a 10 mm quartz cell with a PTFE
stopper. The solutions of the compounds were prepared in the same glove box. Before
taking the cell out of the box, the cell–stopper contact was sealed with Parafilm, and then
the spectrum was recorded within several minutes.

Fluorescence spectra were recorded using a Jasco FP-8300 spectrofluorometer. The
technique for preparing samples and solutions was similar to that used in recording UV–Vis
spectra. The quantum yields were determined using rhodamine B as a standard, whose
quantum yield (0.40) in methanol is known [36].

Each CV curve and spectrum were reproduced at least three times.

2.4. X-ray Crystallographic Data and Refinement Details

X-ray diffraction data for 1 were collected at 100K on a Rigaku Synergy S diffrac-
tometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterlessω-scan
technique), using monochromatized Mo Kα-radiation. The intensity data were integrated
and semi-empirically corrected for absorption and decay by the CrysAlisPro program [37].
The structure was solved by direct methods, using SHELXT [38], and refined on F2, us-
ing SHELXL-2018 [39] in the OLEX2 program [40]. All non-hydrogen atoms were re-
fined with individual anisotropic displacement parameters. The position of the hydroxy
H3A atom was found from the electron density-difference map. All other hydrogen
atoms were placed in ideal calculated positions (C-H distance = 0.950 Å for aromatic,
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0.980 Å for methyl, and 0.990 Å for methylene hydrogen atoms) and refined as riding
atoms with relative isotropic displacement parameters taken as Uiso(H) = 1.5Ueq(C) for
methyl groups and Uiso(H) = 1.2Ueq(C) otherwise. A rotating group model was applied
for methyl groups. Disorders were refined in a regular manner by applying similarity
constraints on anisotropic displacement parameters on similar atoms and by constraining
similar distances. The SHELXTL program suite [41] and the Mercury program [42] were
used for molecular graphics in the Supplementary Materials and in the manuscript, corre-
spondingly. Crystal data, data collection, and structure refinement details are summarized
in Supplementary Table S1. The structure was deposited at the Cambridge Crystallographic
Data Center, with the reference CCDC number 2243131; it also contains the supplemen-
tary crystallographic data. These data can be obtained free of charge from the CCDC via
https://www.ccdc.cam.ac.uk/structures/ (accessed on 10 March 2023).

2.5. Device Fabrication and Characterization

Glass/ITO substrates (15 Ohm/sq., Kintec, Shenzhen, China) were sequentially
cleaned with toluene and acetone and then sonicated in deionized water, acetone, and
isopropanol. A solution of 1.5 mg/mL of poly[bis(4-phenyl)(4-methylphenyl)amine] (PTA)
was spin-coated onto ITO at 4000 rpm for 20 s. The resulting PTA films were then dried at
100 ◦C for 10 min. The MAPbI3 precursor solutions (DMF:NMP = 4:1) were spin-coated
at 4000 rpm, and toluene (150 mL) was dropped on the film 11 s after the initiation of
spin-coating to induce the film crystallization. The spinning was continued for 60 s, and
then the deposited films were annealed on a hotplate at 100 ◦C for 5 min. A 30 mg/mL
solution of PC61BM in chlorobenzene was spin-coated at 1500 rpm on the top of the MAPbI3
films. The interfacial buffer layers of compounds 1–6 were deposited by spin-coating their
isopropanol solutions (optimal concentrations are given below) at 4000 rpm in air. Alu-
minum top electrodes (100 nm) were deposited by thermal evaporation in high vacuum
(10−6 mbar). The device active area was 0.08 cm2, as determined by a shadow mask. All
steps of the device fabrication, except substrate cleaning and coating of compounds 1–6,
were carried out under an inert atmosphere inside a nitrogen glove box.

The current–voltage (J–V) characteristics of the devices were obtained under an inert
atmosphere, using the simulated 100 mW/cm2 AM1.5 solar irradiation provided by a
KHS Steuernagel solar simulator integrated with an MBraun glove box. The intensity of
illumination was checked every time before each measurement, using a calibrated silicon
diode with the known spectral response. The J–V curves were recorded using Advantest
6240A source-measurement units. The obtained JSC values were reconfirmed by inte-
grating the EQE spectra against the standard AM1.5G spectrum. The EQE spectra were
recorded under an inert atmosphere inside a nitrogen glove box, using a specially de-
signed setup (LOMO instruments (Russia) and electric components from Stanford Research
Instruments (USA)).

3. Results and Discussion
3.1. Synthesis of Compounds 1–6

One of the most common types of complexones used in the synthesis of coordi-
nation compounds is Schiff bases, among which 2-((2-hydroxybenzylidene)amino)-2-
methylpropane-1,3-diol is often used (Scheme 1, L). At present, the complexation of
L with iron [43], cobalt [43–45], nickel [43], copper [43], manganese [34,44], molybde-
num [46,47], zinc [48], vanadium [49,50], etc., has been described. To the best of our knowl-
edge, only one derivative of L with the main group element, germanium, has been pub-
lished [51]. In the present work, we synthesized the tin complex 1 by the treatment of L with
Et2SnO in methanol (Scheme 1). As can be seen from the X-ray diffraction data (Figure 1;
Supplementary Figures S1 and S2 and Tables S1–S4), the target compound 1 contains
the donor–acceptor bond with the imine nitrogen, in addition to the four Sn-C and Sn-O
covalent bonds. It is known [52] that this bond can be much shorter in the tin complexes
with Schiff bases than the typical Sn← N coordination bond (>2.37 Å [53]). In particular,

https://www.ccdc.cam.ac.uk/structures/
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its length is 2.146–2.233 Å for the derivatives studied in [52] and 2.136–2.157 Å in [18]. This
value is slightly longer for 1 (2.2369 Å) but also follows this trend. In addition, the bond
length is quite close to the structurally similar motif containing two methyl substituents on
tin [54] (2.230 Å). In a single crystal, compound 1 is organized into characteristic [55,56]
dimers formed by two donor–acceptor bonds between the tin atoms and alcoholic oxygen
atoms of the neighboring molecule. The Sn(1)-O(1) and Sn(1)-O’(1) bond lengths are 2.0992
and 2.4090 Å, respectively, and the angles O(1)-Sn(1)-O’(1) and Sn(1)-O(1)-Sn’(1) are 69.07◦

and 110.93◦, resulting in a flat parallelogram. The 1H NMR (nuclear magnetic resonance),
13C NMR, and HRMS (high-resolution mass spectrometry) spectra of compound 1 are
presented in Supplementary Figures S3–S5.
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Figure 1. Molecular structure of 1 (p = 50%). Selected bond lengths (Å) and bond angles (◦):
Sn(1)-O(2) 2.2657(10), Sn(1)-O’(1) 2.4090(10), Sn(1)-O(1) 2.0992(10), Sn(1)-N(1) 2.2369(11),
O(2)-Sn(1)-O’(1) 133.29(3), O(1)-Sn(1)-O(2) 157.64(4), O(1)-Sn(1)-O’(1) 69.07(4), Sn(1)-O(1)-Sn’(1)
110.93(4), O(1)-Sn(1)-N(1) 76.33(4), N(1)-Sn(1)-O(2) 81.34(4), and N(1)-Sn(1)-O’(1) 145.23(4).

One of the most common types of redox-active ligands is represented by the catechol
derivatives [57]. Having one aromatic ring and two sufficient donor oxygen substituents,
catechol can be oxidized relatively easy, but the reduction of such systems is difficult.
To mitigate that issue, one could increase the size of the aromatic system. Naphthalene
can be considered the simplest redox-active motif with accessible reduction and oxida-
tion potentials [58], and it is also capable of fluorescence with a relatively high quantum
yield [59]. Thus, we also synthesized a new tin complex 2 by refluxing Et2SnO with
2,3-dihydroxynaphthalene in a methanol/toluene mixture, as described in the experimen-
tal section. It is worth noting that the Sn(IV) derivatives with dihydroxynaphthalene are
poorly described in the literature [60,61], and their properties are insufficiently studied. The
1H NMR, 13C NMR, HSQC (heteronuclear single quantum coherence) NMR, and HRMS
spectra of compound 2 are presented in Supplementary Figures S6–S9.

Phenazine is one of the most abundant structural motifs, both in practice [62] and in
wildlife [63], enabling fluorescence in the visible range. The catechol derivative,
2,3-dihydroxyphenazine [64], was first utilized herein to obtain the tin complex 3 (1H NMR,
13C NMR, HSQC NMR, and HRMS spectra are shown in Supplementary Figures S10–S13).
At the same time, when attempting to obtain germanium bis(catecholate) with such a
ligand by its interaction with GeO2, i.e., similarly to how such a derivative was previously
obtained with 2,3-dihydroxynaphthalene [22], it was found that complex 4, with three
ligands, was formed (1H NMR and HRMS shown in Supplementary Figures S14 and S15).
The central part of the complex is the germanium-centered dianion, whereas the counte-
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rions are apparently two hydronium cations in the case of the synthesis in water under
neutral conditions. If the synthesis is carried out with 2,3-dihydroxyphenazine sodium
salt, the product is the complex 5 with sodium cations as counterions. The presence
of the germanium dianion in the structure is confirmed by the ESI (electrospray ioniza-
tion) HRMS data (Supplementary Figure S16), revealing the polyisotopic molecular ion
with m/z 352.0260 (z = −2) characteristic of germanium. The 1H NMR and HRMS of
compound 5 are presented in Supplementary Figures S17 and S18.

3.2. Optoelectronic and Physicochemical Properties of 1–6

The electrochemical behavior of the new compounds 1–5 upon oxidation and reduction
was studied, and their absorption and fluorescence spectra were recorded. The results are
summarized in Table 1.

Table 1. Peak potentials for the oxidation and reduction of 1–5, absorption and fluorescence maxima
in DMF, Stokes shifts, and quantum yields.

Compound
Ep

ox, V *
∆E, V *

λabs, nm λfl, nm
Stokes Shift, cm−1 Φfl

Ep
red, V * Wabs, eV Wfl, eV

1
0.936

3.019
368 443

4601 0.45
−2.083 3.37 2.80

2
0.490

3.155
340 386

3505 0.34
−2.665 3.65 3.21

3
0.858

2.379
419 527

4891 0.84
−1.521 2.96 2.35

4
≈0.908

≈1.817
418 478

3003 0.60
≈−0.909 2.97 2.60

5
≈0.956

≈1.762
342 357

1229 0.19
≈−0.806 3.63 3.48

* 0.1 M Bu4NBF4/DMF as a supporting electrolyte; glassy carbon electrode; scan rate, 100 mV s−1; potentials vs.
Ag/AgCl.

The cyclic voltammetry (CV) curves of 1 (Figure 2a) manifest irreversible reduction
(–2.08 V) and oxidation (0.94 V) peaks. It should be noted that the reduction process
becomes quasi-reversible with an increase in the potential scan rate. By analyzing [65] the
CV curves recorded at the scan rates up to 4 V s−1, a second-order kinetic curve for the
chemical reaction following the reduction was obtained. The reaction rate constant was
determined as the slope of the kinetic curve: 377 L mol−1 s−1. The concentration of active
radical anions was estimated as C0·Ip

ox/Ip
red according to the Randles–Sevcik equation,

assuming that the diffusion coefficients of 1 and radical anions were comparable (C0 is the
concentration of 1 in the bulk solution; Ip

red and Ip
ox are the peak currents for the forward

reduction and reverse oxidation peaks, respectively). According to the UV and fluorescence
spectroscopy data, compound 1 shows its absorption maximum at 368 nm (Table 1) and
fluorescence maximum (blue-violet light) at 443 nm (Figure 2b). This corresponds to the
transition with an energy of 2.80 eV, which generally correlates with a potential difference
of 3.02 V. The quantum yield of 1 is quite high and approaches 0.45.
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Figure 2. CV curves of the oxidation (red) and reduction (blue) of complexes 1 (a) and 4 (c)
(C = 3 mM) in a 0.1 M Bu4NBF4/DMF supporting electrolyte on a glassy carbon disc electrode
at a potential scan rate of 100 mV s−1. Insets show the reduction curves for 1 at various scan rates
and second-order kinetic plot for the chemical reaction following the electrochemical reduction of 1.
Circles are experimental data points, whereas the dashed line is a linear fit. Absorption (blue) and
fluorescence (red) spectra of 1 (b) and 4 (d) in DMF (C = 0.1 mM).

Compound 2 is reduced at a very negative peak potential of –2.67 V close to the
edge of the supporting electrolyte stability window. On the contrary, the oxidation of
2 proceeds quite easily, with a peak potential of 0.49 V. Both processes are chemically
irreversible, which means that the radical cation and the radical anion of 2 are unstable.
Using the oxidation and reduction peak potentials, the value of the HOMO/LUMO gap
of 2 can be estimated as somewhat higher than 3 eV. The UV spectrum of 2 in DMF
(Supplementary Figure S19) exhibits a maximum at 340 nm in the UV range close to the
visible range (Table 1), while the compound shows violet-light emission with a maximum
of 386 nm. The absorption and emission properties correspond to a radiative transition
energy of 3.21 eV, which is quite close to the oxidation/reduction peak potential difference
(3.16 V). The quantum yield of 2 is quite high and approaches 0.34, which is a notably
higher value than, for example, that of naphthalene (0.23 [59]).
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Compound 3 is a structural analogue of 2 with an enlarged aromatic system containing
three conjugated rings and two heterocyclic nitrogen atoms, which enhance the acceptor
properties of the system and modulate its chromophore behavior. Based on this, we
expected compound 3 to be easier to reduce and harder to oxidize as compared to 2.
Indeed, as can be seen from the CV curves (Supplementary Figure S20), the reduction of
compound 3 starts at −1.52 V, while it is oxidized at 0.86 V; i.e., the potential difference
is 2.38 V (Table 1). The UV spectrum of 3 (Figure S20) shows an absorption maximum in
the violet range at 419 nm, while the fluorescence is green, with a maximum at 527 nm.
This corresponds to a radiative transition energy of 2.35 eV, which is quite close to the
electrochemical potential difference of 2.38 V. The fluorescence behavior of 3 is characterized
by a very high quantum yield of 0.84.

Compared to compound 3, compound 4 contains more acceptor phenazine fragments,
thus allowing us to expect a lower reduction potential and a higher oxidation potential.
Indeed, compound 4 is irreversibly reduced at rather low potentials with the peak of
−0.91 V (Figure 2c and Table 1). The irreversible peak at 0.91 V refers to the oxidation of 4.
According to fluorescence spectroscopy data (Figure 2d), compound 4 emits blue light with
a maximum at 478 nm, which corresponds to a transition of 2.60 eV and poorly correlates
with the electrochemical potential difference (1.82 V). The quantum yield of 4, like that of 3,
is quite high and reaches 0.60.

The electrochemical behavior of compound 5 is similar to that of compound 4 since
they are isostructural and differ only by the counterions (Scheme 1). Compound 5 is
reduced and oxidized irreversibly at peak potentials of –0.81 V and 0.96 V, respectively
(Supplementary Figure S21). However, the replacement of the counterion leads to a
noticeable blue shift of the fluorescence maximum to 357 nm (3.48 eV, Table 1) and a
decrease in the quantum yield down to 0.19.

We also investigated the thermal stability of compounds 1–6 by using thermal gravime-
try technique (Supplementary Figure S22). It was found that compounds 1–3 are quite
thermally stable, and their decomposition temperatures (5% weight loss) correspond to
254, 332, and 206 ◦C, respectively. Compound 1 decomposes in a single stage, most
likely producing SnO2 (39% of weight) and volatile organic species. On the contrary,
compound 2 decomposes in several stages, and the first one corresponds to the elimination
of diethyl ether moiety (22% weight loss), whereas the solid residue apparently represents
SnO (40% of remaining weight). Compound 3 undergoes a similar decomposition pathway
involving an initial elimination of Et2O (19% weight loss) and then the rest of the organic
ligands, thus leaving SnO in the residue. The lower decomposition temperature of 3, as
compared to that of 2, could be related to the participation of the phenazine nitrogen
atoms in stabilization of coordinationally unsaturated Sn ions, which are formed after
the elimination of Et2O. Compounds 4–6 appeared to be much less thermally stable and
have decomposition temperatures of 95, 137, and 195 ◦C, respectively. The observed lower
stability of germanium complexes as compared to the tin derivatives might be partially
related to the presence of volatile molecules, i.e., H2O in the case of 4 and tetrahydrofuran
in the case of 6. Still, it seems that the thermal stability of complexes is mainly influenced
by the core element, which is Sn for 1–3 and Ge for 4–6. Compounds 4 and 5 showed
plateau-less decomposition behavior, whereas the weight of the non-volatile residue sug-
gests that it has a composition of LGeO in the case of 4 (40% of weight) and LGeO*Na2O
(48% of weight) in the case of 5 (L—dihydroxyphenazine ligand). Compound 6 undergoes
decomposition with the main weight loss at 200–500 ◦C with the formation of Na2O*GeL2
(L—dihydroxyphenanthrene), which corresponds to ~39% of the residual weight. Further
heating up to 1000 ◦C results in purely inorganic residue of Na2GeO3 (residual weight
~14%). To summarize, all compounds 1–6 showed sufficiently high thermal stability and
should not decompose under the solar cell operational conditions.
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3.3. Evaluation of the Complexes 1–6 as Buffer Layer Materials in p-i-n Perovskite Solar Cells

In order to evaluate the practical applicability of the synthesized materials, we in-
vestigated their performance as buffer layers at the ETL/top electrode interface in p-i-n
perovskite solar cells. Figure 3a shows the schematic layout of the used device architec-
ture with the glass/ITO/PTA/MAPbI3/PC61BM/Al configuration. Poly[bis(4-phenyl)
(4-methylphenyl)amine] (PTA) and phenyl-C61-butyric acid methyl ester (PC61BM) were
used as materials for hole- and electron-transport layers, respectively, whereas the MAPbI3
(where MA is methylammonium CH3NH3

+) complex lead iodide with the perovskite lattice
was used as an absorber material. The device structure was completed by the deposition
of aluminum top electrodes, using the thermal evaporation of metal in high vacuum. All
details of perovskite solar cell fabrication are given in the Materials and Methods.
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Tin and germanium complexes 1–6 were used as interlayers between PC61BM and
the Al top electrode. It should be noted that compounds 1–3 have considerably higher
lowest unoccupied molecular orbital (LUMO) energies than PC61BM (Figure 3b). However,
such cathode interlayer materials as bathophenanthroline (BPhen) and bathocuproine
(BCP), which are commonly used in highly efficient PSCs, have similar energy levels. Thus,
high LUMO energy levels do not prevent efficient electron extraction most probably due
to the doping of these interlayers by metal deposited atop, which results in Fermi level
pinning and forming an ohmic contact interphase between the ETL (PC61BM) and top
metal electrode. We believe that compounds 1–6 could function in the same way as BCP
and BPhen. Another important aspect is the ability of BCP and BPhen to chelate metal ions
and prevent their diffusion deeper into the ETL structure. In that context, the complexes
of tin and germanium studied in this work could also trap metal atoms/ions due to their
interactions with redox-active ligands, also bearing chelating phenazine units.

The deposition of compounds 1–6 atop PC61BM films modified their surface prop-
erties: it increased their surface energy mainly due to the rise of its polar component
(Table S5). The water contact angles decreased, particularly for PC61BM/5 system (38.2◦), in
comparison with bare PC61BM films (91.1◦). Thus, we could conclude that the deposition of
compounds 1–6 makes PC61BM films more hydrophilic, which is favorable for the adhesion
of top metal electrode layers forming stable interfaces with oxide/nitride
passivation interlayers.

To investigate the behavior of compounds 1–6 as cathode interlayers, we deposited
them on the top of the PC61BM layer by spin coating from isopropanol solutions at
a constant spinning rate of 4000 rpm. In this experiment, we also assembled control
samples of perovskite solar cells in which the PC61BM layer was exposed to pure iso-
propanol. To optimize the layer thickness of compounds 1–6, we varied their concen-
trations in solution. The dependence of the solar cell parameters on material concen-
tration is presented in Figure 4 for compound 1: it is seen that the best device per-
formance was achieved using 0.125 mg mL−1. Similar plots for other compounds are
shown in Supplementary Figures S23–S28, whereas all numeric information is given in
Supplementary Tables S6–S11. It should be noted that the maximal achievable con-
centration of compounds 1–6 was 1 mg/mL, so we could not go above it due to the
solubility limit.

Figure 3c shows the current–voltage (J-V) characteristics of the best perovskite solar
cells assembled using interlayers 1–6, whereas their characteristics are summarized in
Table 2. As one may see from these data, the use of compound 6 led to the significant
deterioration of the photovoltaic parameters of the devices. At the same time, compounds 3
and 5 had almost no effect on the device performance and demonstrated power conversion
efficiencies (PCE) close to those of the reference samples. Finally, complexes 1, 2, and
4 noticeably increased the solar cells efficiency from 16.4% to 18.6%, 18.5%, and 18.0%,
respectively. This improvement is primarily associated with an increase in the fill factor,
which may indicate a faster charge extraction and more efficient charge transport processes
in the perovskite solar cells using these interlayers. To confirm the obtained short-circuit
current density (JSC), we integrated the external quantum efficiency (EQE) spectra against
the reference AM1.5G solar emission spectrum and obtained comparable current density
values (Figure 3d).
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Figure 4. Open-circuit voltage, VOC (a); short-circuit current density, JSC (b); fill factor, FF (c); and
power conversion efficiency, PCE (d), of perovskite solar cell as a function of the concentration of
compound 1 in the solution used for films’ coating.

Table 2. Characteristics of the solar cells, using derivatives 1–6 as interlayers (champion device
characteristics are given in brackets).

Interlayer Optimal Material
Concentration, mg/mL VOC, mV JSC, mA/cm2 FF, % PCE, %

none - 994 ± 26 (1020) 22.2 ± 0.9 (23.1) 69 ± 3 (70) 15.8 ± 0.6 (16.4)
1 0.125 1000 ± 35 (1035) 22.0 ± 1.0 (22.5) 78 ± 2 (80) 17.6 ± 1.0 (18.6)
2 1 1035 ± 11 (1035) 22.2 ± 0.7 (22.2) 79 ± 1 (80) 18.0 ± 0.5 (18.5)
3 1 1012 ± 10(1022) 21.5 ± 0.5 (21.6) 71 ± 3 (74) 15.8 ± 0.5 (16.3)
4 1 1013 ± 11 (1010) 22.3 ± 0.7 (23.0) 75 ± 3 (77) 17.2 ± 0.8 (18.0)
5 0.25 998 ± 14 (1012) 22.9 ± 0.3 (23.2) 67 ± 2 (69) 15.6 ± 0.5 (16.1)
6 0.25 999 ± 19 (988) 20.3 ± 0.9 (20.1) 67 ± 4 (70) 13.2 ± 0.7 (13.9)

It is notable that the lowest performance was observed for solar cells using
compounds 5 (16.1%) and particularly 6 (13.9%) as interfacial buffer layer materials. The
deterioration of the photovoltaic characteristics could be ascribed to the presence of mobile
sodium ions in both 5 and 6, which apparently lead to some undesired interfacial effects.
Indeed, compound 4, which differs from 5 just by the absence of sodium counter ions,
enables a considerably better photovoltaic performance (18% for the best cells). It is highly
possible that the deposition of aluminum atop 5 and 6 leads to some unfavorable interfacial
chemical processes, e.g., top electrode corrosion mediated by sodium in 0 (metallic) or +1
oxidation states. The observed correlation suggests that sodium, and perhaps also other
alkali metal ions, should be avoided in the composition of interfacial buffer-layer materials.

We also performed preliminary stability tests for the reference cells by using bare
PC61BM as ETL and the devices assembled with PC61BM/compound 1 combination. Both
types of devices expectedly showed almost identical degradation behavior
(Supplementary Figure S29) since it is known that the operational stability of p-i-n per-
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ovskite solar cells with fullerene-based ETLs is limited by the absorber/ETL interface [66,67].
Thus, even though interlayers based on compounds 1, 2, and 4 can enhance the perfor-
mance of p-i-n PSCs presumably due to the formation of optimal interface with the top
metal contact, some additional absorber/ETL interface engineering is needed to achieve
the desired device operational stability.

To verify the formation of uniform buffer coatings atop PC61BM, we investigated the sur-
face composition and morphology of the ITO/PTA/MAPbI3/PC61BM/(compound 1–6) stacks
by using the infrared scattering scanning near-field microscopy (IR s-SNOM) technique.
The assembled perovskite solar cells were scanned in the areas between the top electrodes,
thus enabling a direct comparison of the film morphology and photovoltaic performance
characteristics. Basically, IR s-SNOM is used for mapping the distribution of a material at
some characteristics IR absorption frequencies. Thus, considering the Fourier-transform
infrared (FTIR) spectra of MAPbI3, PC61BM, and compound 1 (Supplementary Figure S30),
non-overlapping peaks in vibrational spectra at 962 cm−1 (CH3NH3 group in MAPbI3),
1738 cm−1 (carbonyl group of PC61BM), and 1323 cm−1 (characteristic of 1) were chosen
for IR s-SNOM mapping. Figure 5 shows the exemplary set of AFM topography and IR
s-SNOM images for the samples using compound 1 as interfacial coating, whereas similar
graphs for other systems are presented in Supplementary Figures S31–S40.
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IR s-SNOM maps at the frequencies of 962 cm−1 (MAPbI3, (b)), 1738 cm−1 (PC61BM, (c)), and
1323 cm−1 (compound 1, (d)).

It should be noted that the IR s-SNOM technique collects the information from the
upper 10–15 nm of the films. Since the thickness of the interfacial buffer coatings of 1–6
was less than 15 nm, it is not surprising that the PC61BM underlayer was clearly visible
on all the images. On the contrary, none of the samples showed the presence of pinholes
or other types of defects, where the MAPbI3 perovskite phase is exposed on the surface.
Thus, we could conclude that the electron transport layer of PC61BM in combination with
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the deposited above buffer layers of compounds 1–6 provide very uniform and defect-free
coatings atop the perovskite absorber films.

Compounds 1–6 also showed a very homogeneous distribution over the PC61BM films’
surface, as revealed by IR s-SNOM microscopy (Figure 5 and Supplementary Figures S29–S38).
Basically, there were no noticeable differences in the film morphology and the uniformity of
distribution of compounds 1–6 in the studied samples, which could account for significant
variations in the photovoltaic performance of these systems. Therefore, we could conclude
that the performance of perovskite solar cells is affected mostly by the chemical nature of
the buffer layers rather than the morphology of their films. Thus, this feature has to be
addressed in further rational designs of interfacial coatings for p-i-n perovskite solar cells.

4. Conclusions

We designed and thoroughly characterized three new tin and two novel germanium
complexes with redox-active ligands, which demonstrated interesting optical and elec-
trochemical characteristics, in particular, high fluorescence quantum yields (up to 0.84)
for green (527 nm for 3) and even deep blue (386 nm for 2 and 357 nm for 5) emission;
this points toward potential applications in nanophotonics (LEDs and lasers). Herein, we
systematically explored the synthesized coordination compounds as interfacial buffer layer
materials for inverted p-i-n perovskite solar cells. All of these compounds formed uniform
coatings above the PC61BM electron transport layer and underneath top metal electrode
(Al) as revealed by IR s-SNOM mapping. It has been shown that introducing buffer layers
of compounds 1, 2, and 4 at the PC61BM/Al interface results in a substantial increase in
the device power conversion efficiency from 16.0% to 18.0–18.6%. Some correlations were
revealed between the molecular structure of the compounds and their effect on the per-
ovskite solar cell performance. In particular, the presence of Na+ counterions in complexes
5 and 6 resulted in deterioration of all device characteristics presumably due to unfavorable
interfacial reactions (e.g., top electrode corrosion) promoted by alkali metal. We believe that
this study provides useful design guidelines for developing efficient interfacial materials
for high-performance perovskite solar cells.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/membranes13040439/s1, Table S1: Crystal data, data collec-
tion and structure refinement details refinement for 1; Figure S1: The molecular structure of 1
(p = 50%); Table S2: Selected bond lengths (Å) for 1; Table S3: Selected bond angles (◦) for 1;
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