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Abstract: Polyvinyl alcohol (PVA) pervaporation (PV) membranes have been extensively studied in
the field of ethanol dehydration. The incorporation of two-dimensional (2D) nanomaterials into the
PVA matrix can greatly improve the hydrophilicity of the PVA polymer matrix, thereby enhancing
its PV performance. In this work, self-made MXene (Ti3C2Tx-based) nanosheets were dispersed in
the PVA polymer matrix, and the composite membranes were fabricated by homemade ultrasonic
spraying equipment with poly(tetrafluoroethylene) (PTFE) electrospun nanofibrous membrane as
support. Due to the gentle coating of ultrasonic spraying and following continuous steps of drying
and thermal crosslinking, a thin (~1.5 µm), homogenous and defect-free PVA-based separation layer
was fabricated on the PTFE support. The prepared rolls of the PVA composite membranes were
investigated systematically. The PV performance of the membrane was significantly improved by
increasing the solubility and diffusion rate of the membranes to the water molecules through the
hydrophilic channels constructed by the MXene nanosheets in the membrane matrix. The water
flux and separation factor of the PVA/MXene mixed matrix membrane (MMM) were dramatically
increased to 1.21 kg·m−2·h−1 and 1126.8, respectively. With high mechanical strength and structural
stability, the prepared PGM-0 membrane suffered 300 h of the PV test without any performance
degradation. Considering the promising results, it is likely that the membrane would improve the
efficiency of the PV process and reduce energy consumption in the ethanol dehydration.

Keywords: ultrasonic spraying; mixed matrix membranes (MMMs); composite membrane; MXene
(Ti3C2Tx); polyvinyl alcohol (PVA); pervaporation

1. Introduction

As a new type of bioliquid fuel, ethanol has been heralded all over the world as
an alternative energy reducing air pollution and greenhouse gas emissions [1,2]. With
aggravation of environmental pollution and exhaustion of fossil energy such as coal and
crude oil, fuel ethanol has become an important energy source. The worldwide main source
for fuel ethanol extraction is bio-fermentation. It can produce 6–10 wt.% ethanol, which
is condensed to 95 wt.% by distillation [3]. However, the traditional distillation process
cannot easily break the vapor-liquid equilibrium. Furthermore the reactive distillation and
extractive distillation requires high energy consumption. Therefore, a new separation pro-
cess is needed to further increase the concentration of the bioethanol, preparing anhydrous
ethanol to replace the fossil energy. Pervaporation (PV) is a new type of membrane separa-
tion technology featured with low energy consumption, environmental friendliness, lower
carbon-footprint, easy scale-up and easy coupling with other separation technologies [4,5].
Most importantly, based on the dissolution-diffusion model, it is less tightly bound by the
vapor-liquid equilibrium, which endows it with advantages in difficult liquid separations
such as azeotrope mixture and near-boiling point components [6]. In recent years, industrial
applications of the PV processes in the field of organic solvent dehydration have been
widely realized [7,8]. Many hydrophilic polymer membranes, such as chitosan (CS) [9],
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polyvinyl alcohol (PVA) [10], sodium alginate (SA) [11], etc. have been used for the separa-
tion of ethanol-water binary systems. The extraordinary physical and chemical properties
of the PVA enable it to maintain the separation performance in long-term operation, which
is suitable for providing basic membrane material during organic solvent dehydration [12].
In the 1980’s, the German GFT company fabricated commercial PVA composite membrane,
realizing the commercial membrane application of the PV process [13]. Their PVA compos-
ite membrane with a flux of 1.0 kg·m−2·h−1 and separation factor of 100~200 could treat
80~95 wt.% ethanol aqueous solution. However, the large number of hydroxyl functional
groups in the PVA molecular chains made it prone to swell in solution, resulting in defects
in the membrane structure and limiting its further industrial application [14]. In order
to improve the water resistance of the PVA membrane, thermal or chemical crosslinking
method is employed to condense the hydroxyl functional groups among the PVA molecular
chains, thereby inhibiting the swelling of the PVA membrane [15]. However, this will
increase the density of the PVA membrane, reducing the free volume of the PVA molecular
chains and the hydrophilicity of the membrane. Thus, it reduces the flux and separation
factor of all PVA-based membranes. In order to improve the degree of the PVA crosslinking
without sacrificing its hydrophilicity, many modification methods, for example grafting
and blending, have been proposed [16,17]. Among them, blending with hydrophilic two-
dimensional (2D) nanomaterials, such as MXene (Ti3C2Tx-based), graphene oxide (GO),
grafted (g)-C3N4, metal organic frameworks (MOFs), and covalent organic frameworks
(COFs), has attracted extensive attention [18–23].

MXene is a new type of 2D material, which consists of a series of 2D transition metal
carbides, carbonitrides and nitrides [24]. Atomic-thick MXene nanosheets can be obtained
by selectively etching away the A-element atoms in the MAX phase ceramic material. For
example, Ti3C2Tx-based MXene nanosheets can be obtained by etching the Al atoms in
the Ti3C2Al ceramic material [25]. Similarly to the GO, the surface and edge of the MXene
nanosheets are rich in oxygen-containing functional groups, -OH and -O-, which endows
it with excellent hydrophilicity. Furthermore, taking Ti3C2Tx nanosheet as an example,
the single-layer of its nanosheet has a five-layer atomic structure which gives it excellent
mechanical strength and thermal stability [26]. To date, the state-of-the-art PVA-based
membranes have been modified by the MXene nanosheets for the PV process enhancement.
Cai et al. incorporated the Ti3C2Tx nanosheets into the PVA matrix which promoted the
crosslinking density of the PVA membrane and showed a significant increase in the PV
performance [27]. Yang et al. prepared the Ti3C2Tx nanosheets with PVA to form the mixed
matrix membranes (MMMs) which exhibited outstanding PV performances for various
aqueous-ion or -alcohol mixtures dehydration [26]. Wang et al. and Li et al. added MXene
nanosheets into natural polysaccharide sodium alginate and chitosan polymeric matrix to
improve the PV performances of the MMMs [28,29]. So far, the researches on the MXene
incorporated PVA-based MMMs for PV processes are still in the laboratory exploration
stage. The large-scale preparations of the PVA/MXene MMMs for the PV processes with
industrial applications are currently on hold.

Here in this work, we employed ultrasonic spraying method to fabricate a designed
composite membrane. As shown in Figure 1, PVA-based casting solution with the Ti3C2Tx
nanosheets as filler and glycerol as crosslinker was deposited on roll of poly(tetrafluoroethylene)
(PTFE) electrospun nanofibrous support, followed with drying and thermal crosslinking
sections. Then, the composite membrane with thin, homogenous and defect-free PVA-based
separation layer on the PTFE supports was obtained. The prepared PVA composite mem-
brane was characterized by Fourier transform infrared spectroscopy (FTIR), field emission
surface scanning electron microscope with energy dispersive X-ray detector (FESEM-EDX),
X-ray diffraction (XRD), thermogravimetry (TG), differential scanning calorimetry (DSC),
X-ray photoelectron spectroscopy (XPS), and universal testing machine (UTM) to analyze its
surface morphology, microstructure, chemical structure, crystal structure, thermal stability,
and mechanical strength. The PV performances such as water flux and separation factor
were also systematically tested by the homemade evaluation equipment. The membrane
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structure was optimized by the MXene nanosheets and its properties for the PV were
improved significantly. The prepared PVA-based mixed matrix composite membranes
showed excellent prospects for various industrial applications.
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Figure 1. Schematic diagram of preparing the PVA composite membrane by homemade ultrasonic
spraying equipment. 1. PTFE supports 2. Unwinding roller 3. Heating roller 4. Heating furnace
5. PVA composite membrane 6. Winding roller 7. Ultrasonic spraying controller 8. Nozzle.

2. Experimental Section
2.1. Materials

Polyvinyl alcohol (PVA, purity ≥ 98.5%, alcoholysis degree ≥ 99%, Mw = 73,900–82,700
g·mol−1) was received from Anhui Wanwei Group Co., Ltd. (Chaohu, China). Glycerol
(GC, purity ≥ 99.5%), LiF (Purity ≥ 99.99%), HCl (36–38%) and ethanol (AR grade) were
purchased from Shanghai Titan Scientific Co., Ltd. (Chaohu, China). PTFE support (Fluo-
ropore, width = 220 mm, length = 15 m, mean pore size = 0.22 µm) was purchased from
Merck & Co. Inc. (Chaohu, China). MAX (Ti3AlC2) powder (400 mesh) was purchased
from Nanjing Xianfeng Nanomaterials Technology Co., Ltd. (Chaohu, China). Deionized
water (DI water) was homemade in the laboratory.

2.2. Preparation of Ti3C2Tx-Based MXene Nanosheets

MXene nanosheets were fabricated by the in situ etching method which is provided in
our previous study [30]. Briefly, 2.4 g LiF, 35mL HCl (12 M) and 2 g of MAX powder were
mixed and stirred for 48 h at a temperature of 40 ◦C. After being diluted by and sonicated
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in DI water for 3 h, the mixture was filtrated and freeze-dried. The MXene nanosheets were
received finally.

2.3. Preparation of the Composite Membranes

A certain amount (in Table 1) of the PVA and GC were added to boiling DI water. The
mixture was continuously stirred until the PVA was completely dissolved. After cooling
to room temperature, the PVA/GC solution was obtained. A certain amount (in Table 1)
of the MXene powder was added in DI water at room temperature, and ultrasonically
dispersed for 20 min to obtain a uniform MXene dispersion. The MXene dispersion was
mixed with the PVA/GC solution and stirred at room temperature for 24 h to obtain
a PVA/GC/MXene mixed solution. Finally, the PVA/GC/MXene casting solution was
obtained after the mixture was left to stand for 24 h for defoaming.

Table 1. The composition of different PVA/GC/MXene composite membranes.

Membranes
(Dense Separation Layer)

Addition Amounts (g) Support
(0.22 µm Pore Size)PVA GC MXene Water

PVA 30 0 0.0 970.0 PTFE
PVA/GC (PG) 30 5 0.0 965.0 PTFE

PVA/GC/MXene (PGM-0) 30 5 1.0 964.0 PTFE
PVA/GC/MXene (PGM-1) 10 5 1.0 984.0 PTFE
PVA/GC/MXene (PGM-2) 50 5 1.0 944.0 PTFE
PVA/GC/MXene (PGM-3) 70 5 1.0 924.0 PTFE
PVA/GC/MXene (PGM-4) 100 5 1.0 894.0 PTFE
PVA/GC/MXene (PGM-5) 30 1 1.0 968.0 PTFE
PVA/GC/MXene (PGM-6) 30 9 1.0 960.0 PTFE
PVA/GC/MXene (PGM-7) 30 5 0.5 964.5 PTFE
PVA/GC/MXene (PGM-8) 30 5 1.5 963.5 PTFE
PVA/GC/MXene (PGM-9) 30 5 2.0 963.0 PTFE
PVA/GC/MXene (PGM-10) 30 5 3.0 962.0 PTFE

The PVA/GC/MXene casting solution heated to 40 ◦C was added into the ultra-
sonic spraying system in Figure 1. The flow rate of the casting solution was adjusted
to 10 mL/min. The N2 pressure was set at 0.05 MPa, the ultrasonic power was hold at
15 W, and the winding rate of the PTFE support (average pore size of 0.22 µm, an average
thickness of 200 µm, a width of 350 mm, and a length of 30 m per roll) was set at 0.5 m/min.
The temperature of the heating roll was set to 110 ◦C, and the temperature of the heating
furnace was set to 150 ◦C. With the above operating parameters, fresh PVA/GC/MXene
composite membrane was obtained using the equipment in Figure 1. According to different
addition amounts of the PVA, GC and MXene, the prepared various PVA/GC/MXene
composite membranes are listed in Table 1.

2.4. Characterization of the Membrane

Field emission surface scanning electron microscope with energy dispersive X-ray
detector (FESEM-EDX, SU8010, Hitachi, Tokyo, Japan, operated at 10 kV) were used to
analyze the microstructures of the membrane’s top-surfaces and cross-sections. Chem-
ical structures of the membrane top-surfaces were investigated by FTIR (Nicolet iS 50+
Contiuum, Thermo Fisher, Waltham, MA, USA). X-ray photoelectron spectroscopy (XPS,
Thermo escalab 250Xi, Waltham, MA, USA) was employed to analyze the surficial chemical
structure of the membrane. Crystal structures of the membranes were examined by an
XRD (TD-3500, Dandong Tongda, Dandong, China). TG and DSC analyses were con-
ducted to analyze thermal property of the membrane (Mettler Toledo, Columbus, OH, USA,
TGA/DSC 3+ series), where the carrier gas was high purity nitrogen (purity ≥ 99.999%).
The temperature was increased from 30 ◦C to 700 ◦C with a heating rate of 10 ◦C·min−1

in the TG test, while the temperature ranged from 30 ◦C to 200 ◦C with a heating rate of
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2 ◦C·min−1 during the DSC test. Water contact angle (WCA) was measured to characterize
the hydrophilicity of all the membranes (KRUSS, DSA100).

2.5. Swelling Degree of the Membrane

Refer to the method described in the literature [28,31], the details are given as follows.
The membrane was cut to a square with a size of 5 × 5 cm. Three pieces of the squares
(5 × 5 cm) were weighed in dry state (m1) and soaked in 70 ◦C DI water for 48 h. Then
the wet samples were taken out and weighed again (m2) after wiping off water droplets.
The swelling degree (SD) of the membrane was calculated by Equation (1) with an average
value of the three squares.

SD =
m2 −m1

m1
× 100% (1)

2.6. Tensile Property Test of the Membrane

The test method was provided in the literature [32,33]. The PVA composite membrane
was cut into a dumbbell-like shape with length 115 mm, width 25 mm, and axis width
6 mm. The testing machine was adjusted with the test fixture spacing limit of 50 mm when
fixing the sample on the machine. By using the TRAPEZIUM LITE X software (349-05249),
the experimental parameters (both sample specifications and the data to be measured) were
determined as follows. The tensile speed was set to 25 mm/min, the maximum load was
100 N, and the maximum stroke was 60 mm. The sample thickness was also input into
the testing system with the relative humidity 50% and ambient temperature 25 ◦C. When
the sample was pulled off, the experiment was terminated. Each sample was measured
five times, and the average value was recorded. The tensile strength Ts was calculated
according to Equation (2).

Ts =
F
S

(2)

where Ts is tensile strength (MPa), F is the maximum load when the samples were torn off
(N), S is the cross-sectional area of the samples (m2).

At the same time, the elongation at break (Eb) of the composite membrane was
also measured.

2.7. Pervaporization (PV) Performance Measurement

A homemade PV testing device was used to characterize the fluxes and separation
factors of all membranes, as shown in Figures 2 and S1 (Supplementary Materials). The feed
solution was the ethanol/water solution with ethanol concentration 95 wt.% at temperature
40 ◦C. The key PV parameters, total flux (J), water flux (Jw), ethanol flux (Je), and separation
factor (α) of the membrane were calculated by the following Equations (3)–(6) [34]

J =
W
At

(3)

Je = J·y (4)

Jw = J − Je (5)

α =
y/(1− y)
x/(1− x)

(6)

where J is the total flux (g·m−2·h−1), W is the mass of the permeate (g), A is the effective
permeate area of the membrane (m2), t is the permeation time (h), α is the separation
factor, y is the mass fraction of the ethanol in the permeate (g/g), x is the mass fraction
of the ethanol in the feed solution (g/g). Here, the ethanol content in the permeate was
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detected by gas chromatography (GC-9860, Nanjing Haozhi Pu Analytical Equipment Co.,
Nanjing, China).
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A long-term PV test was also conducted with the homemade PV device at 50 ◦C.
After one hour circulating the feeding solution (95 wt.%, ethanol/water), the permeate
compounds were collected every two hours in the cold trap. The key PV parameters could
be calculated by Equations (3) to (6). To keep the composition and weight of the feeding
solution unchanged, the permeate solution with the same concentration was added back
in the feeding tank. The total operation time of the test was 300 h, including 9 h every
night when the feeding side of the device was circulating normally and the vacuum on the
permeate side was turned off without collecting the permeate.

2.8. Hansen Solubility Parameters

Hansen solubility parameter (HSP) were used to estimate the affinity between two
materials [35]. δd for dispersion, δp for polarity and δh for hydrogen bonding were the three
components of the HSP. These three components, similar to three spatial coordinate axes,
construct the Hansen solubility space. Any material and solvent can be found at exact
coordinates in the Hansen solubility space. Thus, the solubility distance Ra between any
two materials can be calculated based on their spatial coordinates using Equation (7) [36].

Ra =
√

4(δd1 − δd2)
2 +

(
δp1 − δp2

)2
+ (δh1 − δh2)

2 (7)

The radius R0 of the Hansen sphere of the material can also be calculated through
its spatial coordinates [35]. The ratio of the solubility distance Ra to R0 is defined as the
relative energy difference (RED), as shown in Equation (8). The smaller the value of RED,
the stronger the affinity between the two materials.

RED = Ra/R0 (8)

3. Results and Discussion
3.1. Microstructure and Chemical Structure

A single-layer Ti3C2Tx nanosheet was prepared by the in situ etching method of LiF
and HCl [30]. The Ti3C2Tx nanosheets were freeze-dried thoroughly, and the grey powder
was obtained, as shown in Figure 3a. Then, the aqueous dispersion of the grey powder was
dropped on an anodic aluminum oxide (AAO) substrate and the dispersed nanosheets were
observed under the FESEM. As shown in Figure 3b, the nanosheet with a radial dimension
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of 2 µm had a single-layered structure since the pore structure of the AAO underneath was
observed clearly.
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Figure 3. (a) MXene (Ti3C2Tx) powder, (b) FESEM image of the MXene nanosheet on an anodized
aluminum oxide (AAO).

Spray-coating was a common method [37] for preparing composite membranes which
could lower the thickness of the separation layer as much as possible. As shown in
Figure S2c,f, ultrasonic spraying generated a small droplet size, homogenous size distribu-
tion and had a soft impact on the support surface. Compared with the gas dynamic spray
in Figure S2a,b,d,e, it avoided the formation of air bubbles and promoted fabrication of a
thinner and more homogenous layer on the support.

In Figure 4a–c, smooth and flat surfaces were observed in the PVA, PG and PGM-0
composite membranes. It demonstrated the homogenous coating of the ultrasonic spraying
method. Several small bulges appeared on the surface (Figure 4c) of the PGM-0, and
more Ti element can be observed in the top-surface of PGM-0 membrane than that of pure
PVA membrane (Figure S3), which may ascribe to the existence of the Ti3C2Tx nanosheets.
Additionally, in Figure 4d–f, the thicknesses of the separation layers were all about 1.5
to 2.0 µm without any defects between the separation layers and the PTFE supports. It
demonstrated very good compatibility between the PVA-based separation layers and the
PTFE supports.
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As shown in Figure 5a, all of the PVA, PG and PGM-0 composite membranes had strong
absorption peaks at the wavenumber of 3270 cm−1 and 1080 cm−1 which were ascribed to the
C-OH structure of the PVA molecular chains. The peaks at the wavenumbers of 2920 cm−1 and
1408 cm−1 observed in the three composite membranes were ascribed to the C-H stretch and
CH2 bend, which were mainly attributed to the carbon skeletal chain of each PVA molecular.
No obvious difference existed between the FTIR curves of PVA and PG composite membranes
because of the same elements and similar molecular structures of the PVA and GC molecules.
However, the characteristic peak of the C-F structure was observed in the patterns of the
PGM-0 composite membrane and pure MXene nanosheets. It obviously demonstrated the
successful incorporation of the MXene nanosheets in the PGM-0 composite membrane [38].
More interestingly, as shown in Figure 5b, the characteristic peak of C=O in PGM-0 membrane
shifted towards higher wavenumbers compared to PVA and PG membranes, indicating a strong
hydrogen bonding interaction between the incorporated MXene nanosheets and PVA molecular
chains [39]. At the same time, a weak characteristic peak of C-O-Ti appears at 710 cm−1 [40],
indicating that some Ti-OH on the surface of MXene nanosheets has undergone crosslinking
reaction with C-OH groups in the PVA molecular chains, generating C-O-Ti covalent bonds.
Therefore, MXene nanosheets achieve crosslinking of PVA molecular chains through both
hydrogen bonding interactions and covalent bonds. In addition, the characteristic peaks at
1235 cm−1, 1130 cm−1, 1038 cm−1, and 918 cm−1 correspond to the C-O-C structure [41], which
is the covalent structure generated by crosslinking of GC molecules with PVA molecular chains
and crosslinking between PVA molecular chains, and thus is commonly present in PVA, PG,
and PGM-0 membranes.
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In Figure 5b, the peak angle at 19.5◦ in the three PVA-based composite membranes was
attributed to the semi-crystalline structures of the PVA polymeric matrix [42]. However,
the Ti3C2Tx peak (001) [43–45] at the XRD pattern of the MXene powder was not observed
in the PGM-0′s figure, implying that most of the Ti3C2Tx nanosheets were distributed in
the bulk phase of the membrane and the small amount of the Ti3C2Tx nanosheets at the
membrane’s top-surface did not excite obvious diffraction peak in the XRD pattern.

The response of XPS signal of the membrane chemical structure was sensitive when the
composition of the membrane changed. As shown in Figure 6a, C, O and Ti elements were
detected in the PGM-0 membrane’s top-surface. The relative content of Ti was 2.12 at.% in
Table 2, implying the existence of Ti3C2Tx nanosheets in the PGM-0 composite membrane.
Multi-peaks of C1s, O1s and Ti2p were resolved to the probable chemical structures as
shown in Figure 6b–d. The C=O and C-OH were mainly derived from the GC and PVA
molecules. The Ti-OH and C-Ti structures which were all originated from the Ti3C2Tx
nanosheet were observed in the multi-peaks of C1s, O1s and Ti2p. According to the relative
content of the C-Ti structure in the C1s, 6.06 at.% in Table 2, it was confirmed that few
MXene nanosheets were distributed on the top-surface of the PGM-0 composite membrane
and most of them were incorporated in the membrane’s bulk phase.

Based on the analysis above, we can infer that MXene nanosheets in the membrane
mainly achieve crosslinking with PVA molecular chains through hydrogen bonding inter-
actions between their surface Ti-OH and C-OH groups in PVA molecular chains, as well
as Ti-O-C covalent bonds. GC molecules mainly achieve crosslinking with PVA molecular
chains through covalent bonds. Therefore, GC and MXene nanosheets will significantly
change the performances and structures of PVA membrane.
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Table 2. XPS binding energy and relative content of each element (C, O, S and Ti) and chemical
structures originated from the peak resolution.

Elements C1s O1s Ti2p

Structures C-C C-OH C-Ti C=O O=C HO-Ti TiO2 H2O Ti-C

Peaks (eV) 284.78 285.78 287.48 288.78 532.49 533.64 531.91 534.78 459.28

Relative Content
(at.%)

58.00 34.99 6.06 1.22 61.42 14.82 21.26 2.50 100.00

71.24 26.64 2.12

3.2. Thermal and Mechanical Stability

As a composite material, both the thermal and mechanical stabilities of the membrane
were important for its potential industrial application in the future.

In Figure 7a, according to the heat flow curves of the three membranes, glass transition
temperature (Tg) of the pure PVA membrane was only 79.1 ◦C, and the Tg of the PG
and PGM-0 membranes were increased to 92.8 ◦C and 101.4 ◦C, respectively, after the
crosslinking with the GC molecules and the incorporation of the MXene nanosheets. When
the ambient temperature increased to 230 ◦C and 400 ◦C, a great mass decrease was
observed in the PVA and PG membranes in Figure 7b, which mainly originated from the
degradation of the PVA polymeric matrix [46,47]. The initial degradation temperature
and mass retention rate of the PG membrane were a little higher than those of the PVA
membrane, implying that the crosslinker GC molecules enhanced the thermal stability of
the PVA matrix. Furthermore, the weight loss curve of the PGM-0 membrane was slightly
different from those of the other two membranes. The weight loss in the temperature range
of 300 ◦C to 350 ◦C mainly came from the degradation of the MXene nanosheets. The
initial degradation temperature of the PVA polymeric matrix and mass retention rate in the
PGM-0 membrane curve were obviously higher than those of the PVA and GC membranes,
demonstrating that the MXene nanosheets in the PGM-0 membrane greatly improved the
thermal stability of the PVA matrix. Same as the present result, Pan et al. [48] also proved
that the MXene improved the thermal stability of the PVA matrix. In Woo’s [49] work, the
reason the thermal stability increasing the MXene/PVA nanocomposite was attributed to
the excellent interfacial interaction between the MXene and PVA via crosslinking. Hence,
the polymeric PVA matrix could be crosslinked by the GC molecules and MXene nanosheets
(as shown in Figure 8). Both of them reinforced the PVA-based membrane matrix and
made the membrane structure stable later on. Based on the above analysis, as shown in
Figure 7c, it is reasonable that the swelling degree (SD) of the PGM series membrane was
mainly lower than those of the PVA and PG membranes. As in the PGM series membranes,
the membrane’s SDs were influenced by the relative contents of the PVA, GC and MXene.
When the relative contents of the GC and MXene decreased (Figure 7c), the SD increased.
Reversely, the relative contents of the GC and MXene increased (Figure 4d,e). The SD
decreased. This was also in accord with their influence on the structure and stability of
the PVA-based membranes. Moreover, when the addition amount of the MXene was
3 g (Figure 7e), the SD increased a little, which was attributed to the inhomogeneous
distribution and agglomeration of the MXene nanosheets in the PVA polymeric matrix.
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nanosheets.

As in the WCA, values of the PGM series were lower than those of the PVA and PG
membranes, indicating the enhancement of the membrane hydrophilicity. It was mainly
attributed to the addition of the MXene nanosheets in the PVA matrix. Meanwhile, from
Table 3, it can be seen that the RED value of MXene and water was much lower than that of
PVA and water, indicating that MXene has a stronger affinity with water. This is also the
main reason for the reduction in the water contact angle of the PGM membrane. Although
both of the GC and MXene nanosheets had crosslinking effects on the PVA molecule chains,
their crosslinking mechanisms were different. Similarly to the GO, the MXene nanosheets
improved the stability of the PVA matrix mainly through the hydrogen bonding between
hydroxyl groups on its surface and hydroxyl groups on the PVA molecular chains [48,49].
However, the connection of the GC molecules and PVA molecule chains were mainly the
covalent bounds generated between the carboxyl in the GC molecules and the hydroxyl
in the PVA molecular chains. It resulted in the loss of -OH groups in the PVA matrix and
reduced the membrane hydrophilicity eventually. Hence, crosslinking of the GC molecules
had two-way effects on both the WCA and the SD of the membrane. On the contrary, the
added MXene nanosheets promoted the membrane hydrophilicity. Moreover, when the
addition amount of the MXene reached 3 g, the influence of the MXene on the membrane
hydrophilicity was limited.

Table 3. Hansen’s solubility parameters for the PVA and MXene (Ti3C2Tx) and distance parameter
(Ra) and RED calculated according Equations (7) and (8).

δd (MPa0.5) δp (MPa0.5) δh (MPa0.5) R0 (MPa0.5) Ra RED

PVA 17.0 9.0 18.0 4.0 25.46 6.37
Ti3C2Tx 18.7 15.4 14.5 11.0 28.53 2.59
Water 15.5 16.0 42.3 - - -

Mechanical properties of the composite membranes were also measured. As shown in
Figure 9, additions of the PG and MXene nanosheets were beneficial to the improvement of
the tensile strength but detrimental to the enhancement of the elongation at break. Tensile
strength of the PVA composite membranes had positive correlation with the crosslinking of
the PVA polymeric matrix. However, increasing the strength of the PVA polymer matrix
caused a decrease in the ductility of the composite membranes, resulting the decline in the
elongation at break.
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On the whole, both the GC and MXene could improve the crosslinking of the PVA
membranes, thereby enhancing the membrane thermal stability and mechanical strength.
However, adding GC consumed the hydroxyl group in the PVA matrix and reduced the
hydrophilicity of the PVA membranes. Meanwhile, MXene supplied the oxygen-containing
functional groups to the PVA membrane matrix and improved the hydrophilicity of the
PVA membrane. Nevertheless, adding excessive MXene intrigued agglomerate in the PVA
matrix, leading the anti-swelling property and hydrophilicity of the membrane worsen.
Therefore, the PGM-0 with appropriate loadings of the GC (5.0 g) and MXene (1.0 g) has the
best thermal stability, anti-swelling, hydrophilicity, and mechanical properties in this study.

3.3. Pervaporation Experiment

As shown in Figure 10, the pure PVA membrane had low PV performance; its wa-
ter flux and separation factor were only 0.26 kg·m2·h−1 and 125.4, respectively. After
crosslinking with the GC, the crosslinked PVA network was constructed. Free volume of
the membrane matrix and the hydrophilicity decreased. It led to the fall in the water flux
but increase in the separation factor. When the MXene nanosheets were incorporated in the
PVA matrix, both its water flux and separation factor were increased to 1.21 kg·m2·h−1 and
1126.8 simultaneously.

According to the solution-diffusion model [50–52], water and ethanol molecules were
all dissolved in the membrane top-surface first, then diffused to the permeation side of
the PVA MMMs under the concentration gradient. Due to the better affinity of the water
molecules with PVA MMMs than that of the ethanol molecules, water molecules were
preferentially dissolved into the membrane top-surface and diffused to the permeation
side, which resulted in the ethanol dehydration in the feed side. The incorporation of
the MXene nanosheets in the PVA matrix improved hydrophilicity of the MMMs and
enhanced the affinity for the water molecules (shown in Table 2) [27], resulting in the
preferential dissolution of water molecules in the membrane top-surface and eventually
promoted the selectivity (separation factors). Meanwhile, uniformly dispersed MXene
nanosheets in the PVA membrane matrix formed phase interfaces with the PVA matrix.
It constructed hydrophilic permeate channels for water molecules, and accelerated their
diffusion speed [28]. All of these properties significantly improved the water flux of the
membrane. More importantly, ultrasonic spraying preparation in Figure 10 promoted the
fabrication of the thin and homogenous separation layer on the PTFE support. The method
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had great advantages in homogeneity and industrial application than other preparation
methods such as tape-casting and spin coating.
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The influences of the addition amount of the PVA, GC and MXene on the membrane’s
PV performances were also investigated in Figure 11 and Table S1.
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the (a) PVA, (b) GC and (c) MXene, (d) long-term stability of the PGM-0 composite membrane. 
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was higher than 30 g, the PV performance of the PGM MMMs were decreased instead, 
which was ascribed to the increasing membrane thickness and the decreasing membrane 
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the PV process. However, the overloaded MXene nanosheets agglomerated in the mem-
brane matrix, resulting in a decrease in the water flux and separation factor. Hence, in 
Figure 11c, water flux and separation factor both declined when the MXene loading was 
over 1.0 g. After careful analysis of Figure 11a–c, it was concluded that the most popular 
MMM was PGM-0 composite membrane. As a result, long-term PV test was conducted 
for the PGM-0. In Figure 11d, water flux and separation factor, that kept stable in 300 h of 
the PV test, were 1.2 kg·m2·h−1 and 1120, respectively, indicating that the fabricated PGM-
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(a) PVA, (b) GC and (c) MXene, (d) long-term stability of the PGM-0 composite membrane.
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As shown in Figure 11a, water flux and separation factor of the PGM series MMMs
were all increased, then decreased as the PVA addition amount increasing. When the PVA
addition was 10 g (PGM-1), the GC amount was excessive, leading to the over-crosslink
of the PVA molecular chains. Hence the PV performance was limited. When the PVA
content was higher than 30 g, the PV performance of the PGM MMMs were decreased
instead, which was ascribed to the increasing membrane thickness and the decreasing
membrane crosslinking degree. Low GC content led to low crosslinking degree of the PVA
membrane matrix, while high GC content caused over-crosslink of the PVA membrane
matrix, as shown in Figure 11b. Therefore, the best PVA content and GC addition amount
were 30 g and 5 g in this study. As for the MXene, the nanosheets greatly improved the
hydrophilicity of the PVA-based membrane matrix, inducing the performance enhancement
during the PV process. However, the overloaded MXene nanosheets agglomerated in the
membrane matrix, resulting in a decrease in the water flux and separation factor. Hence, in
Figure 11c, water flux and separation factor both declined when the MXene loading was
over 1.0 g. After careful analysis of Figure 11a–c, it was concluded that the most popular
MMM was PGM-0 composite membrane. As a result, long-term PV test was conducted
for the PGM-0. In Figure 11d, water flux and separation factor, that kept stable in 300 h
of the PV test, were 1.2 kg·m2·h−1 and 1120, respectively, indicating that the fabricated
PGM-0 composite membranes by the ultrasonic spraying method had a stable structure
without breaks and/or defects generation during the long-term operation. Furthermore,
compared to the PVA MMMs reported in the other literature in Figure 12 [47,53–62], the
PGM-0 membranes had better water flux than others.
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Although the separation factor of the PGM-0 was not the best in Figure 12, the reported
high separation factor was mainly attributed to the additions of the nano-size molecular
sieving materials in Table S2. Both nanomaterials (the MXene and molecular sieve) have
different advantages according to their own properties. Further research is necessary
in their PV process. In this study, considering several factors such as PV performance,
long-term operation stability and the advancement of the preparation method (ultrasonic
spraying), the PGM-0 composite membrane has broad application prospects in the field of
the ethanol dehydration.

4. Conclusions

In this work, PVA-mixed matrix composite membrane for the PV process of ethanol
dehydration was prepared by the homemade ultrasonic spraying equipment for the first
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time. A thin, homogenous, and defect-free PVA-based separation layer was perfectly coated
on the PTFE support by an ultrasonic nozzle, and rolls of the PVA composite membranes
were fabricated by the following process of drying and thermal crosslinking. The prepared
PVA composite membranes were investigated systematically. Both the crosslinking agent
(glycerol, GC) and the MXene nanosheets could improve the mechanical strength and the
crosslinking degree of the membrane. However, GC consumed the hydroxyl functional
groups in the PVA matrix, thus reducing the hydrophilicity and pervaporation perfor-
mance of the membrane. The MXene nanosheets supplemented the hydroxyl functional
groups in the PVA matrix, enhancing the hydrophilicity of the membrane instead. The
PV performance of the membrane was significantly improved by increasing the solubil-
ity and diffusion rate of the membrane to the water molecules through the hydrophilic
channels constructed by the MXene nanosheets in the membrane matrix. The water flux
and separation factor of the prepared PGM-0 mixed matrix composite membranes was
dramatically increased to 1.21 kg·m−2·h−1 and 1126.8, which had advantages over other
reported PVA-based MMMs in the references. Moreover, with the high values of ten-
sile strength (70.6 Mpa), elongation at break (4.1%), and anti-swelling property (the SD,
43%), the PGM-0 membrane had a strong capability of maintaining permeation perfor-
mance and membrane structure stability during a 300 h PV test. Generally, the prepared
PGM-0 composite membrane had broad industrial application prospects in the field of the
ethanol dehydration.

Supplementary Materials: The following supporting ‘information can be downloaded at: https://
www.mdpi.com/article/10.3390/membranes13040430/s1, Figure S1: photograph of the homemade
PV device; Figure S2: two different types of gas dynamic spray nozzles, (a) WA-101 and (b) TOF-30-
1.5 (Anest-Iwata. Co. Japan), were tried in our spraying processes. (c) ultrasonic spraying nozzle
(FSW-6001-L, Funsonic Co. Ltd. China) used in the preparation of the membranes. (d), (e) and (f)
were the sprayed fine droplets of the PVA-based solutions on the glass plates after the solutions
were puffed out from the WA-101, TOF-30-1.5 and FSW-6001-L, respectively; Figure S3: (a) and (e)
SEM images, EDX mapping images of (b) and (f) C element, (c) and (g) O element, (d) and (h) Ti
element in the PVA and PGM-0 membranes’ top-surface, respectively; Table S1: the PV data for all
the prepared composite membranes in this work; Table S2. comparison of the PV performance in this
work with others.
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Abbreviations

AAO Anodic aluminum oxide
AR Analytical reagent
COFs Covalent organic frameworks
CS Chitosan
2D Two-dimensional
DI Deionized
DSC Differential scanning calorimetry
EDX Energy dispersive X-ray detector
FESEM Field emission surface scanning electron microscope
FTIR Fourier transform infrared spectroscopy
GC Glycerol
GO Graphene oxide
MMMs Mixed matrix membranes
MOFs Metal organic frameworks
PTFE Poly(tetrafluoroethylene)
PV Pervaporation
PVA Polyvinyl alcohol
SA Sodium alginate
SD Swelling degree
SEM Scanning electron microscope
TG Thermogravimetry
UTM Universal testing machine
WCA Water contact angle
XRD X-ray diffraction
XPS X-ray photoelectron spectroscopy
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