
Citation: Hu, Y.; Zhang, L.; Jiang, Y.;

Peng, K.; Jin, Z. A Hybrid Method for

Performance Degradation Probability

Prediction of Proton Exchange

Membrane Fuel Cell. Membranes 2023,

13, 426. https://doi.org/10.3390/

membranes13040426

Academic Editors: Wen-Yao Huang,

Tung-Li Hsieh and Hsin-Yi Wen

Received: 13 March 2023

Revised: 8 April 2023

Accepted: 10 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Article

A Hybrid Method for Performance Degradation Probability
Prediction of Proton Exchange Membrane Fuel Cell
Yanyan Hu 1,2,*, Li Zhang 1 , Yunpeng Jiang 3, Kaixiang Peng 4 and Zengwang Jin 5,6

1 School of Intelligence Science and Technology, University of Science and Technology Beijing,
Beijing 100083, China

2 Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China
3 SPIC Digital Technology Co., Ltd., Beijing 100080, China
4 School of Automation and Electrical Engineering, University of Science and Technology Beijing,

Beijing 100083, China
5 School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, China
6 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology,

Northwestern Polytechnical University, Xi’an 710072, China
* Correspondence: huyanyan@ustb.edu.cn

Abstract: The proton exchange membrane fuel cell (PEMFC) is a promising power source, but
the short lifespan and high maintenance cost restrict its development and widespread application.
Performance degradation prediction is an effective technique to extend the lifespan and reduce
the maintenance cost of PEMFC. This paper proposed a novel hybrid method for the performance
degradation prediction of PEMFC. Firstly, considering the randomness of PEMFC degradation, a
Wiener process model is established to describe the degradation of the aging factor. Secondly, the
unscented Kalman filter algorithm is used to estimate the degradation state of the aging factor from
monitoring voltage. Then, in order to predict the degradation state of PEMFC, the transformer
structure is used to capture the data characteristics and fluctuations of the aging factor. To quantify
the uncertainty of the predicted results, we also add the Monte Carlo dropout technology to the
transformer to obtain the confidence interval of the predicted result. Finally, the effectiveness and
superiority of the proposed method are verified on the experimental datasets.

Keywords: degradation prediction; proton exchange membrane fuel cell; Wiener process; trans-
former; Monte Carlo dropout

1. Introduction

The proton exchange membrane fuel cell (PEMFC) has many excellent properties: re-
newable, no pollution, high energy conversion rate, fast start-up speed, and low operating
temperature [1,2]. It is regarded as a promising power conversion device, widely used in the
military, vehicle transportation, portable power supply and many other fields [3–5]. Never-
theless, the short lifespan is one of the key barriers to its large-scale commercialization [6].
Performance degradation prediction has the ability to predict the future performance
degradation trend and the failure time of PEMFC. Based on the prediction result of per-
formance degradation, appropriate maintenance measures could be taken in advance to
extend the lifetime. Consequently, performance degradation prediction is an effective
way to guarantee the safe and reliable operation of PEMFC, and also directly promotes its
commercial application.

The performance degradation prediction of PEMFC has yielded many fruitful results.
The existing PEMFC prediction methods can be generally divided into three categories:
model-based methods, data-driven methods and model and data hybrid-driven methods.

The model-based methods considered from the inside of the system usually establish
mechanism models or empirical models according to the degradation mechanisms of the
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equipment or the degradation trends of the monitoring data, and describe the changes
in the inside of the systems with specific mathematical expressions in order to predict
the failure time. Such mechanism models can complete the degradation prediction task
without a large amount of online data, such as the method based on particle filter (PF) in [7].
However, due to the complexity of the internal structures of the systems, it is often difficult
to establish such mechanism models of the systems. Later, scholars generally improved
physical models as empirical models, where model parameters were processed through
fuzzy or estimated online based on monitoring data. In [8], the unscented Kalman filter
(UKF) algorithm was combined with three empirical models, including linear, logarithmic
and exponential models, to approximate the aging process and thus predict the performance
degradation trend. Model-based methods have the advantage of requiring less data and
being able to generate analytical predictions for remaining useful life (RUL). Nevertheless,
the majority of machines undergo a gradual degradation process leading up to failure,
which can pose a challenge for model-based methods to accurately predict due to the
intricate degradation mechanisms involved. In addition, these methods can only obtain
the general trend of PEMFC degradation and cannot capture the local characteristics of
degradation information well.

Different from model-based methods, data-driven methods do not need an in-depth
analysis of the mechanism and law of equipment degradation but can directly predict the
degradation trend of PEMFC by machine learning methods based on monitoring data,
such as relevance vector machine (RVM) [9,10], echo state network (ESN) [11,12], extreme
learning machine (ELM) [13,14], etc. In recent years, with the continuous development
of deep learning theory, neural network models have been gradually introduced into
the prediction of the degradation trend of equipment, for example, convolutional neural
network (CNN) [15], long- and short-term memory (LSTM) [16–18], gated recurrent unit
(GRU) [19], etc. With the continuous enhancement of the data mining ability of deep
learning models, these kinds of methods gradually give up the dependence on expert
knowledge, and can directly extract health indicators from the original data as the input
of the neural network to learn the degradation law of the equipment and realize the
degradation prediction. Although these methods can use the abundant monitoring data
obtained by sensors and quickly mine the degradation information of the equipment health
status, it can only obtain the point prediction result, and the uncertainty in the prediction
process is often ignored.

To deal with the aforementioned constraints and integrate the strengths of both model-
based and data-driven prediction methods, some scholars have proposed hybrid prediction
approaches. Cheng et al. [20] proposed a hybrid prediction method combining least square
support vector (LSSVM) and regularized particle filter (RPF). Liu et al. [21] used adaptive
neuro-fuzzy inference system (ANFIS) to predict the long-term degradation trend of stack
voltage, and then estimated the aging state of PEMFC based on the predicted results using
an adaptive unscented Kalman filter (AUKF) algorithm, ultimately determining the RUL.
Xie et al. [22] proposed a fusion prognostic method based on PF and LSTM; PF and LSTM
independently realize the prediction of RUL, and then fuse under the given fusion principle
to obtain more accurate prediction results. Ma et al. [23] integrated the extended Kalman
filter (EKF) with LSTM algorithms to improve the accuracy of prediction result. EKF
was used to estimate the system state to further obtain the estimated voltage, while the
voltage result predicted by LSTM was used as the new observations for EKF to continue to
estimate the system state. In [24], a decomposition prediction framework was proposed
with consideration of the voltage recovery phenomenon. The EKF algorithm was used to
predict the overall trend of voltage degradation, and LSTM was used to predict the local
recovery information of voltage. Most of the existing prediction methods usually adopt the
LSTM to learn the degradation trend of PEMFC. As a particular kind of recurrent neural
network (RNN), LSTM has obvious superiority in time series processing and is therefore
widely used in the field of degradation prediction of PEMFC. When processing time series
problems, the training of LSTM is iterative. The output of LSTM at the next moment
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depends on the output of the previous moment. This mode operates in a sequential manner,
which will significantly impede the computational efficiency of the model. Additionally,
LSTM relies on recurrent connections; it is prone to the issue of gradient vanishing, which
causes the network to forget important information and become less effective at capturing
long-term dependencies. The ability of the model to retain and utilize previous information
may deteriorate over time, leading to suboptimal performance on lengthy input sequences.

Transformer [25] is a recently proposed network based on self-attention mechanism.
This model can not only deal with the change of long-term dependence relationship
over time effectively but also improve the operation efficiency through parallel computing.
Compared to RNN, transformer breaks the limitation that RNN models cannot be computed
in parallel. Compared with CNN, transformer can capture remote features since its field of
view is not limited by the size of convolution kernel when processing temporal features.
The transformer network has been widely used in computer vision (CV) and natural
language processing (NLP), but it is rarely used in PEMFC degradation prediction. In view
of the above problem, this paper proposes the prediction model based on transformer as the
data-driven method to predict the degradation trend of PEMFC. In addition, the attention
mechanism of transformer makes the neural network more focused on important time steps
and has better characteristics in global information capture and long-term dependence.

With regard to the performance degradation prediction problem, as we all known
that the aging process of the PEMFC is affected by many uncertain factors due to the
comprehensive effect of internal structure and external environment, such as the temporal
variability, measurement variability, and unit-to-unit variability. So it is more reasonable to
use a stochastic process model to model the degradation of PEMFC. The Wiener process
can model the non-monotone degradation process and has a clear physical explanation,
which is widely used in bearing, turbofan engine and other fields. Therefore, in order to
describe the uncertainty of the whole degradation process, a Wiener process model is built
in this paper.

Another problem with performance degradation prediction is that although data-
driven methods can accurately predict the degradation trend, the uncertainty quantifi-
cation and reliability of degradation prediction are mostly ignored, and only the point
prediction result can be obtained. Point prediction is only a deterministic value, which is
difficult to provide sufficient guidance for equipment maintenance in practice. At present,
the methods of quantitative uncertainty prediction mainly include Bayesian estimation,
Gaussian process and hidden Markov method. The Bayesian neural network introduces
the probability distribution to network parameters and trains the model by approximating
the posterior distribution based on variational inference technique. Although this method
can obtain the uncertainty of the network model, it needs to optimize the mean and stan-
dard error of the probability distribution at the same time. Many extra parameters are
introduced that increase the training time [26]. Applying dropout to neural networks is
equivalent to Bayesian variational inference, and an approximate uncertainty representa-
tion similar to Bayesian variational inference can be obtained by sampling techniques [27].
Therefore, the uncertainty of prediction result is quantified using the Monte Carlo dropout
(MC-dropout) technique in this paper.

According to the above descriptions, a hybrid driven method for performance degra-
dation prediction of PEMFC is proposed in this paper. Firstly, a linear Wiener process
considering multiple variability sources is constructed to adaptively estimate the degra-
dation states based on the UKF algorithm and expectation maximization (EM) algorithm.
Secondly, the transformer network is used to learn the degradation characteristics and pre-
dict the long-term degradation trend of PEMFC. The MC-dropout technology is added to
the network to quantify the uncertainty of the predicted results and obtain a 95% confidence
interval. Finally, the proposed method is verified on experimental datasets under both
static and dynamic conditions and compared with the classic LSTM method. Experimental
results show that the proposed method can achieve satisfactory prediction performance un-
der both scenarios and has fewer prediction errors compared with LSTM, which illustrates
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the effectiveness and superiority of the proposed method. The main contributions of this
paper are summarized as follows:

(1) With consideration of the uncertainties in the degradation process, a Wiener process
model is established to describe the overall degradation trend of PEMFC and multiple
kinds of variability sources are adequately considered in the model.

(2) To overcome the disadvantage of LSTM in parallel processing, a degradation predic-
tion model is established by transformer, which is used to predict the degradation
trend and capture the local fluctuation information.

(3) The MC-dropout is added in transformer network to quantify the uncertainty of the
prediction results in order to provide more effective decision support for practical
engineering applications.

The organization of this paper is as follows. The Wiener process model is established
in Section 2. In Section 3, the degradation state estimation and model parameter estimation
methods are introduced. Section 4 introduces the transformer network with MC-dropout
technology. Section 5 provides the experimental results to demonstrate the proposed
method. Section 6 concludes this paper.

2. Degradation Modeling of PEMFC

The voltage of PEMFC is one of the quantities that can be easily measured during its
long-term operation and a semi-empirical voltage model [28] of PEMFC can be expressed as

Vst=ncell(E0 − iR− AT ln(
i
i0
)− BT ln(1− i

iL
)) (1)

where Vst is the output stack voltage, ncell is the cell number, A is the Tafel constant and B
is the concentration constant, respectively. The stack current i and operating temperature
T can be measured by sensors during the operation of PEMFC. The open circuit voltage
E0 and the exchange current i0 can be identified by genetic algorithm [29] and Levenberg–
Marquardt method [30].

It is demonstrated in [30,31] that the resistance R and the current density iL are the
only two parameters which have significant changes during the degradation of PEMFC,
no matter whether the load is constant or dynamic. E0 and i0 can be considered constant
without obvious changes. In addition, studies have found that the variations of R and iL
are quite similar and highly correlated with each other [28]. In this paper, a single variable
α is adopted to describe the change trend of aging parameters R and iL:

R(t) = R0(1 + α(t)) (2)

iL(t) = iL0(1− α(t)) (3)

where R0 and iL0 are initial values. α represents the change of aging parameters, which can
reflect the inner degradation state of PEMFC. The larger the value of α, the more severe the
degradation of PEMFC.

Considering that the degradation of PEMFC is stochastic, we use a Wiener process to
model the degradation trend of aging factor α:

α(t) = α(0) + θt + σB(t) (4)

where θ is the drift coefficient denoting the degradation rate of α, σ > 0 is the diffusion
coefficient. Standard Brownian motion {B(t), t > 0} describes the stochastic dynamics of
degradation process and the temporal variability of degradation process with time. α(0)
is the initial degradation state. Here, θ is taken as a stochastic variable to describe the
unit-to-unit variability of the degradation process with θ ∼ N(µθ , δθ

2), where µθ is the
averaged degradation rate with δθ

2 as its variance. In order to describe the change of drift
coefficient over time, its updating mechanism over time is established as follows:
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θ(t) = θ(t− 1) + vt (5)

where vt ∼ N(0, v2).

3. State of Health Estimation and Parameter Estimation

Based on the above description, the aging state estimation of PEMFC can be expressed
as a non-linear system: {

Xk = AXk−1 + Wk
Vk = h(Xk) + Γk

(6)

Xk=

[
αk
θk

]
, A =

[
1 tk − tk−1
0 1

]
,

Wk=

[
σ[B(tk)− B(tk−1)]

vk

]
, Φk=

[
σ2(tk − tk−1) 0

0 υ2

]
.

h(Xk) = ncell(E0 − ikR0(1 + αk)− AT ln(
ik
i0
)− BT ln(1− ik

iL0(1− αk)
)) (7)

where Xk represents the aging state of PEMFC, Vk represents the stack voltage, Wk repre-
sents the process noise with the variances of Φk, and Γk represents the measurement noise
with the variances of R that can reflect the measurement variability.

UKF is a non-linear filtering algorithm [32]. According to the symmetric sampling rule,
UKF obtains a set of sigma points with different weights by using unscented transform
to approximate the probability density function of the Gaussian distribution state, which
reflects the probability density distribution of the transformation state of the system. UKF
avoids the process of finding the inverse matrix. Compared with EKF, it improves the
estimation accuracy and reduces the calculation time. According to (6), the degradation
state of PEMFC is estimated by UKF algorithm in this paper. The procedures of the UKF
algorithm are shown in Algorithm 1.

Algorithm 1 The procedures of the UKF algorithm
1. Initialization (k = 0) :
X̂0 = E(X0), P0 = E[(X0 − X̂0)(X0 − X̂0)

T ]
2. Time update:
X̂k|k−1 = AX̂k−1|k−1, Pk|k−1 = APk−1|k−1AT + Φ
3. Sigma points and weights calculation:
(1) {X(0)

k|k−1 = X̂k|k−1, i = 0; X(i)
k|k−1 = X̂k|k−1 + (

√
(n + λ)P)i, i = 1 . . . n; X(i)

k|k−1 = X̂k|k−1 −
(
√
(n + λ)P)i, i = n + 1 . . . 2n

where (P)T(P) = P, (P)i is the ith column of the square root of the matrix P.
(2) w(0)

m = λ/n + λ; w(0)
c = λ/n + λ + (1− τ2 + β); w(i)

m = w(i)
c = λ/2(n + λ), i = 1 . . . 2n,

where λ = τ2(n + κ) is the scaling parameter, and the other parameters are generally set to
τ2 = 0.01, β = 0, (n + λ)P = 3
4. Measurement update
V(i)

k|k−1 = h[X(i)
k|k−1]

V̄k|k−1 = ∑2n
i=0 w(i)

m V(i)
k|k−1

PVkVk = ∑2n
i=0 w(i)

c [V(i)
k|k−1 − V̄k|k−1][V

(i)
k|k−1 − V̄k|k−1]

T + R

PXkVk = ∑2n
i=0 w(i)

c [X(i)
k|k−1 − X̂k|k−1][V

(i)
k|k−1 − V̄k|k−1]

T

Kk = PXkVk P−1
VkVk

X̂k|k = X̂k|k−1 + Kk[Vk − V̄k]

Pk|k = Pk|k−1 − PVkVk KkKT
k
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The degradation model is initialized after model parameter µθ , δ2
θ , σ2, v2, R are

estimated. Aiming at the problem of unknown parameter estimation in the adaptive
state space model based on UKF, the EM algorithm is used to estimate these parameters
by using the voltage data from the initial time to the current time. The parameters are
denoted by Θ = (µθ , δ2

θ , σ2, v2, R). It should be noted that the essence of the EM algorithm
is to approximate the maximum likelihood parameters estimation by maximizing the
joint likelihood function under the premise of the posterior probability. The unknown
parameters of the model can be estimated by referring to the method in reference [33].

4. Method of Degradation Prediction
4.1. Problem Description

The degradation of PEMFC is a long-term time accumulation process, so it is necessary
to extract the long-term dependence of degradation data to predict the performance degra-
dation trend of PEMFC. The transformer network solves the problem of long-term RNN
dependency and can handle long sequences of inputs. In order to predict the degradation
trend of PEMFC, we directly use the aging factor α filtered by UKF as a health index and
predict it to evaluate the degradation degree.

The performance degradation prediction problem can be formally defined as follows.
The input is αt ∈ <k, t = (1, 2, . . . , T), where T is the length of α. The output is the label Yt
for each time step prediction. The purpose is to establish a mapping relationship between
input data α and label Yt to predict a real-time label, which can be expressed as

Yt = f (αt) (8)

where f represents the mapping function, and Yt represents the real-time label predicted
by f . In this paper, we use the transformer structure to establish the mapping.

4.2. The Transformer Structure

The network structure of transformer is composed of the attention mechanism. Instead
of the sequential input of RNN, transformer feeds all of a sequence of data into the network
at once for calculation, which brings good parallelism to the network model. Therefore,
considering this advantage of transformer, we try to realize the performance degradation
prediction based on the transformer network. The network structure is shown in Figure 1.
The network consists of input, encoder, decoder and output.

Figure 1. The structure of transformer network.
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4.2.1. Data Input

Since transformer abandons the RNN structure and cannot adequately capture the
sequential information of the feature sequences, position encoding is added before input.
Therefore, the relative position information is added to the feature sequence by the position
encoding technique and then is sent to an encoder to learn how the data points relate to
each other and how important each time step is, resulting in more global characteristics.
This paper adopts the most commonly used position encoding methods in transformers,
namely sine position encoding and cosine position encoding [25]:

P(t, 2i) = sin t

10,000
2i
d

,

P(t, 2i + 1) = cos t

10,000
2i
d

(9)

4.2.2. Encoder

The encoder module consists of N encoders. Each encoder consists of three parts, in-
cluding multi-head attention mechanism, feedforward neural network, residual connection
and normalization layer.

The encoder is responsible for projecting the input feature sequence into a vector
space that contains information about the input features through an embedding layer.
The core of encoder is the self-attention mechanism. The self-attention mechanism learns
the correlation between each sample in the input sequence and all other samples in the
sequence, and calculates the similarity between vectors to capture internal dependencies,
thus solving the problem of capturing long-term dependencies. The purpose of the self-
attention mechanism is to screen out important information from the input feature sequence
and assign greater weight to indicate the importance of capturing information, allowing
the model to focus on more important information and improve the quality of output.

The self-attention mechanism uses the scaled dot product attention to calculate the
attention value of the feature matrix. The query matrix and the key matrix are dotted with
scaling and softmax normalization to calculate the weight of each value matrix, and the
output attention is a weighted summation of the value matrix:

Attention(Q, K, V) = so f t(
QKT
√

d
)V (10)


Q = αtWQ
K = αtWK
V = αtWV

(11)

where the Q is query matrix, K is the key matrix, and V is the value matrix. They are
obtained by multiplying the input characteristic matrix αt with the corresponding weight
matrix WQ, WK and WV respectively, and d is the dimension of Q, K and V.

The self-attention mechanism can enable the network model to focus more on impor-
tant feature information in the input sequence, while a single attention mechanism can only
learn related information in one subspace. The multi-head self-attention mechanism can
learn and focus on information from multiple subspaces, thereby obtaining richer features
and information contained in the input sequence. The multi-head self-attention mechanism
consists of several parallel and independent self-attention mechanisms. By concatenating
and linearly transforming multiple attention values, the final attention value can be ob-
tained, achieving multi-level and multi-perspective capture of the input sequence features.
Figure 2 visualizes multihead self-attention, which can be expressed as

MultiHead(Q, K, V) = concat(head1, head2, . . . , headh)W (12)

headi = Attention(αtW
Q
i , αtWK

i , αtWV
i ) (13)
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where WQ
i , WK

i , WV
i are the weight matrix of the ith self-attention head, h is the number of

heads of self-attention, and the contact function is used to concatenate the output value of
each head’s attention calculated.

The feedforward neural network reduces the effect of long time sequence on the fitting
degree of attention mechanism. The addition of residual structure can be used to prevent
network degradation. Adding layerNorm can make the input of neurons in each layer have
the same mean and variance, accelerate convergence and improve running speed.

(a) Scaled dot-product self-attention mechanism (b) Multihead self-attention mechanism

Figure 2. Process of multihead self-attention.

4.2.3. Decoder

The decoder is responsible for mapping the intermediate vector output by the en-
coder into an output sequence. The decoder module also consists of N decoders, each of
which should include the mask multi-head self-attention mechanism, multi-head attention
mechanism, feedforward neural network, residual connection and normalization layer.
Unlike machine translation tasks, time series prediction does not require a layer of masked
multiple attention, so the decoder layer is changed to a fully connected layer.

4.2.4. Output

Since the input is numerical data, there is no need for a softmax function. After, the
decoder directly outputs the prediction result.

4.3. The Method of MC-Dropout

The method based on deep learning can only provide the point estimation of degra-
dation prediction as the prediction result, and cannot provide the confidence interval.
The neural network will give a good prediction result in most cases after training, but will
occasionally give a poor result. This kind of point estimate cannot quantify the deviation
between the predicted value and the real value, which is of little significance to the applica-
tion of PEMFC in practical engineering and has limited support for maintenance decisions.
Therefore, it is not enough to calculate only the point estimation results of the degradation
prediction, so it is necessary to obtain the probability interval of the prediction results.

There are two uncertainties in deep learning algorithms, cognitive uncertainty and
accidental uncertainty. Cognitive uncertainty refers to the inability to obtain accurate
models due to limited observations in practical applications. Accidental uncertainty usually
refers to the uncertainty of the sensor measurement. With the consideration of these
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uncertainty sources, MC-dropout was proposed by Gal et al. [27]. The method of MC-
dropout means that if the dropout is turned on during the test, the uncertain prediction
results can be obtained by using the method of multiple Monte Carlo sampling. The number
of neurons will be randomly discarded or adjusted according to the weight parameter, and
the prediction results of each time will be different, so the probability distribution of the
predicted results can be obtained.

Specifically, the Bayesian neural network is approximated by the dropout, and the
probability distribution is approximated by Monte Carlo sampling to establish the uncer-
tainty of prediction. During the training process, the data of α are selected to train the
transformer network, and the dropout is turned on to effectively avoid the occurrence of
the over-fitting phenomenon. Turn on the dropout during the prediction process, and the
neurons in the hidden layer are temporarily dropped from the network according to a
certain probability, making the predicted results different each time. A number of different
point prediction results can be obtained by Monte Carlo sampling. The neural network
model trained with dropout is iterated n times to obtain the mean and standard error of
the predicted results n times. By utilizing the mean and variance, an approximation of the
probability distribution for the uncertainty in degradation prediction can be obtained.

4.4. The Hybrid Prediction Method for Performance Degradation

The hybrid method for the performance degradation prediction of PEMFC are shown
in Figure 3. It includes three parts: data acquisition, degradation modeling based on the
model-based method and degradation prediction based on the data-driven method. Firstly,
the data monitored by the sensor are processed to obtain the voltage data. Then, a Wiener
process model for aging factor α is established to characterize the degradation of PEMFC.
The degradation state of PEMFC is estimated by the UKF algorithm and EM algorithm,
and the estimation results of the unknown parameters of the model are obtained. Finally,
the aging factor α obtained after filtering is divided into the training set and test set, and the
degradation trend of PEMFC is predicted in the long term through the transformer network.

Figure 3. The hybrid method for degradation of PEMFC.
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On the premise of knowing the voltage failure threshold of PEMFC, the failure thresh-
old of the aging factor corresponding to the failure time can be determined, and the current
health state of the PEMFC can be evaluated based on the prediction results of the neural
network. The RUL also can be estimated by evaluating the time until the aging factor
reaches the failure threshold. According to the estimated RUL, the appropriate maintenance
measures can be taken in advance to reduce operating and maintenance costs and extend
the lifespan of the PEMFC. At the same time, the RUL prediction results can serve as an
important reference for system design and optimization.

5. Experimental Study
5.1. Experimental Dataset

The experimental datasets are obtained from the IEEE PHM Data Challenge 2014
provided by the French Federation for Fuel Cell Research FCLAB [34]. The data consist of
two parts: FC1 and FC2, which are obtained under static and dynamic operating conditions,
respectively. In order to ensure the stability of PEMFC operation, the flow rate of hydrogen
and oxygen inlet and outlet are monitored in real time during testing, in order to avoid
the instability of the output caused by too low or too high flow rates. The polarization
curve test and electrochemical impedance spectroscopy (EIS) test of FC1 and FC2 are also
conducted weekly to evaluate the performance status and ensure the stable operation
of FC1 and FC2. More detailed information can be found in the description file of this
dataset [34].

The proposed method is applied to the above experimental data, both the static dataset
FC1 and the dynamic dataset FC2. The parameters of the transformer network are listed in
Table 1.

Table 1. Parameters of transformer.

Parameters Setting Value

Window length 10
Batch size 50

Epochs 50
Dropout 0.1

Multi-Head 10
Learning rate 0.001

5.2. State Estimation

The initial values of the state X0, covariance matrix P0, process error covariance matrix
Φ, and measurement error covariance matrix R are set as follows: X0 = [0.1, 0.002]T ,
P0 = [10(−4), 0; 0, 10(−4)], Φ = [10(−8), 0; 0, 10(−8)], R = 10(−3). The estimated results of
aging factor α and drift rate θ of FC1 and FC2 are shown in the sub-figures in Figure 4a,b,
respectively. The parameter α represents the degradation state, and a higher value means a
more serious degradation degree of PEMFC. The parameter θ represents the degradation
rate of PEMFC, and a larger value means a faster degradation rate. It can be seen that the
aging factor α increases with time, and the drift rate θ fluctuates slightly.

Figure 5 shows the voltage fitting results after taking the aging factor α filtered by
UKF into the semi-empirical aging model. The fitting voltage curves can accurately track
the voltage degradation trend of PEMFC.
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Figure 4. The results of state estimation.
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Figure 5. The fitting voltage curves.

5.3. Performance Degradation Prediction Results

After estimating the aging state of PEMFC, the performance degradation prediction
can be carried out by transformer with MC-dropout. To evaluate the efficacy of the MC-
dropout approach, evaluation metrics, such as mean absolute percentage error (MAPE),
root mean square error (RMSE), and mean absolute error (MAE) are used:

MAPE =
1
k

k

∑
1

|Yt − Ŷt|
|Yt|

(14)

RMSE =

√
∑k

1(Yt − Ŷt)2

k
(15)

MAE =
∑k

1 |Yt − Ŷt|
k

(16)

Figure 6 shows the degradation prediction results of FC1 with different training set
sizes (40%, 50%, and 60%). The output predicted value is the average of 100 iterations of
the MC-dropout method in the optimal model after 50 epochs training. At the same time,
the confidence interval made by the standard error obtained from MC-dropout is given.
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Figure 7 and Table 2 show the prediction performance of FC1 under different training set
sizes. It can be seen from the figure that with the increase in training set data, the prediction
performance gradually becomes better, and the three performance evaluation indexes
MAPE, MAE and RMSE also decrease gradually. Since the prediction network can extract
more information from more training data, it helps the subsequent network prediction task.

Figure 6. The degradation prediction of FC1 with different training set sizes.
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Figure 7. Error of FC1 for degradation prediction with different training set sizes.

Table 2. Prediction performance with different training set sizes for FC1.

Training Set MAPE (%) RMSE (%) MAE (%)

40% 4.0261 1.0416 0.9380
50% 1.5429 0.4826 0.3630
60% 1.2410 0.3845 0.2923

The prediction results of FC2 under dynamic conditions are shown in Figure 8. Figure 9
and Table 3 give three evaluation indexes under different training set sizes. The predicted
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mean also fits the real value fairly well. It turns out that the average of all predictions
provides a reliable estimate of the final prediction, whereas the standard error can serve as
an indicator of the uncertainty of the model with respect to the input data.

Figure 8. The degradation prediction of FC2 with different training set sizes.
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Figure 9. Error of FC2 for degradation prediction with different training set sizes.

Table 3. Prediction performance with different training set sizes for FC2.

Training Set MAPE (%) RMSE (%) MAE (%)

40% 2.9276 0.9675 0.7665
50% 1.1153 0.4408 0.2851
60% 0.9896 0.4117 0.2515

5.4. Verification with LSTM

The LSTM network is a classical method in time series data processing. In order to
prove the superiority of the model proposed in this paper, LSTM model is also established
to predict degradation trend. LSTM network uses two hidden layers, and the number
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of neurons in the first layer and the second layer is set to 100. The other parameters are
the same as the transformer settings, and the training set size is 60%. The comparison
results of FC1 and FC2 are shown in Figure 10. When 50 epochs are trained, it can be
roughly estimated from the figure that the prediction error of LSTM is larger than that of
transformer. When the transformer training is complete, the LSTM network structure has
not been trained to its best. This is because transformer can process time series data in
parallel and can quickly extract global information, whereas LSTM training is iterative.
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Figure 10. The result of PEMFC for degradation prediction with proposed method and LSTM.

6. Conclusions

In this work, a hybrid prediction framework is developed for the real-time performance
degradation prediction of PEMFC, in which MC-dropout, combined with the transformer
network, predicts the long-term degradation trend, and an adaptive Wiener process model
with multi kinds of variability sources is established to model the degradation of PEMFC.
The effectiveness and advantages of the framework are illustrated by experimental veri-
fication. While transformer network have advantages in the parallel processing of input
data, the timing characteristics of time series are ignored when dealing with time series
problems. Transformer only uses position encoding to determine the order of input data,
whereas LSTM regards position information as the sequential input. Transformer does not
fully achieve the effect of the sequential structure of LSTM in this respect. In the future, we
will further consider combining these two network structures to improve the effectiveness
of RUL prediction.
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