# A Hybrid Method for Performance Degradation Probability Prediction of Proton Exchange Membrane Fuel Cell

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

- (1)
- With consideration of the uncertainties in the degradation process, a Wiener process model is established to describe the overall degradation trend of PEMFC and multiple kinds of variability sources are adequately considered in the model.
- (2)
- To overcome the disadvantage of LSTM in parallel processing, a degradation prediction model is established by transformer, which is used to predict the degradation trend and capture the local fluctuation information.
- (3)
- The MC-dropout is added in transformer network to quantify the uncertainty of the prediction results in order to provide more effective decision support for practical engineering applications.

## 2. Degradation Modeling of PEMFC

## 3. State of Health Estimation and Parameter Estimation

Algorithm 1 The procedures of the UKF algorithm |

1. Initialization (k = 0):${\widehat{\mathbf{X}}}_{0}=\mathbf{E}({\mathbf{X}}_{\mathbf{0}})$, ${\mathbf{P}}_{0}=\mathbf{E}\left[({\mathbf{X}}_{0}-{\widehat{\mathbf{X}}}_{0}){({\mathbf{X}}_{0}-{\widehat{\mathbf{X}}}_{0})}^{T}\right]$ 2. Time update:${\widehat{\mathbf{X}}}_{k|k-1}=\mathbf{A}{\widehat{\mathbf{X}}}_{k-1|k-1}$, ${\mathbf{P}}_{k|k-1}=\mathbf{A}{\mathbf{P}}_{k-1|k-1}{\mathbf{A}}^{T}+\mathbf{\Phi}$ 3. Sigma points and weights calculation:(1) $\{{\mathbf{X}}_{k|k-1}^{(0)}={\widehat{\mathbf{X}}}_{k|k-1},\text{}i=0$; ${\mathbf{X}}_{k|k-1}^{(i)}={\widehat{\mathbf{X}}}_{k|k-1}+(\sqrt{{(n+\lambda )\mathbf{P})}_{i}},\text{}i=1\dots n$; ${\mathbf{X}}_{k|k-1}^{(i)}={\widehat{\mathbf{X}}}_{k|k-1}-(\sqrt{{(n+\lambda )\mathbf{P})}_{i}},\text{}i=n+1\dots 2n$ where ${(\mathbf{P})}^{T}(\mathbf{P})=\mathbf{P}$, ${(\mathbf{P})}_{i}$ is the ith column of the square root of the matrix $\mathbf{P}$. (2) ${w}_{m}^{(0)}=\lambda /n+\lambda $; ${w}_{c}^{(0)}=\lambda /n+\lambda +(1-{\tau}^{2}+\beta )$; ${w}_{m}^{(i)}={w}_{c}^{(i)}=\lambda /2(n+\lambda ),\text{}i=1\dots 2n$, where $\lambda ={\tau}^{2}(n+\kappa )$ is the scaling parameter, and the other parameters are generally set to ${\tau}^{2}=0.01,\text{}\beta =0,\text{}(n+\lambda )\mathbf{P}$ = 3 4. Measurement update${V}_{k|k-1}^{(i)}=h\left[{\mathbf{X}}_{k|k-1}^{(i)}\right]$ ${\overline{V}}_{k|k-1}={\sum}_{i=0}^{2n}{w}_{m}^{(i)}{V}_{k|k-1}^{(i)}$ ${P}_{{V}_{k}{V}_{k}}={\sum}_{i=0}^{2n}{w}_{c}^{(i)}[{V}_{k|k-1}^{(i)}-{\overline{V}}_{k|k-1}]{[{V}_{k|k-1}^{(i)}-{\overline{V}}_{k|k-1}]}^{T}+R$ ${\mathbf{P}}_{{\mathbf{X}}_{k}{V}_{k}}={\sum}_{i=0}^{2n}{w}_{c}^{(i)}[{\mathbf{X}}_{k|k-1}^{(i)}-{\widehat{\mathbf{X}}}_{k|k-1}]{[{V}_{k|k-1}^{(i)}-{\overline{V}}_{k|k-1}]}^{T}$ ${\mathbf{K}}_{k}={\mathbf{P}}_{{\mathbf{X}}_{k}{V}_{k}}{P}_{{V}_{k}{V}_{k}}^{-1}$ ${\widehat{\mathbf{X}}}_{k|k}={\widehat{\mathbf{X}}}_{k|k-1}+{\mathbf{K}}_{k}[{V}_{k}-{\overline{V}}_{k}]$ ${\mathbf{P}}_{k|k}={\mathbf{P}}_{k|k-1}-{P}_{{V}_{k}{V}_{k}}{\mathbf{K}}_{k}{\mathbf{K}}_{k}^{T}$ |

## 4. Method of Degradation Prediction

#### 4.1. Problem Description

#### 4.2. The Transformer Structure

#### 4.2.1. Data Input

#### 4.2.2. Encoder

#### 4.2.3. Decoder

#### 4.2.4. Output

#### 4.3. The Method of MC-Dropout

#### 4.4. The Hybrid Prediction Method for Performance Degradation

## 5. Experimental Study

#### 5.1. Experimental Dataset

#### 5.2. State Estimation

#### 5.3. Performance Degradation Prediction Results

#### 5.4. Verification with LSTM

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Zhou, S.; Zhang, G.; Fan, L.; Gao, J.H.; Pei, F.L. Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems. Appl. Energy
**2022**, 308, 118328. [Google Scholar] [CrossRef] - Hua, Z.G.; Zheng, Z.X.; Pahon, E.; Pera, M.C.; Gao, F. Remaining useful life prediction of PEMFC systems under dynamic operating conditions. Energy Convers. Manag.
**2021**, 231, 113825. [Google Scholar] [CrossRef] - Wang, F.K.; Huang, C.Y.; Mamo, T.; Cheng, X.B. Ensemble model for the degradation prediction of proton exchange membrane fuel cell stacks. Qual. Reliab. Eng. Int.
**2021**, 37, 34–46. [Google Scholar] [CrossRef] - Li, Q.; Yang, W.Y.; Yin, L.Z.; Chen, W.R. Real-time implementation of maximum net power strategy based on sliding mode variable structure control for proton-exchange membrane fuel cell system. IEEE Trans. Transp. Electrif.
**2020**, 6, 288–297. [Google Scholar] [CrossRef] - Manohar, M.; Kim, D. Advantageous of hybrid fuel cell operation under self-humidification for energy efficient bipolar membrane. Acs Sustain. Chem. Eng.
**2019**, 7, 16493–16500. [Google Scholar] [CrossRef] - Hua, Z.G.; Zheng, Z.X.; Pera, M.C.; Gao, F. Remaining useful life prediction of PEMFC systems based on the multi-input echo state network. Appl. Energy
**2020**, 265, 114791. [Google Scholar] [CrossRef] - Zhou, D.M.; Wu, Y.M.; Gao, F.; Breaz, E.; Ravey, A.; Miraoui, A. Degradation prediction of PEM fuel cell stack based on multiphysical aging model with particle filter approach. IEEE Trans. Ind. Appl.
**2017**, 53, 4041–4052. [Google Scholar] [CrossRef] - Chen, K.; Laghrouche, S.; Djerdir, A. Fuel cell health prognosis using Unscented Kalman Filter: Postal fuel cell electric vehicles case study. Int. J. Hydrogen Energy
**2019**, 44, 1930–1939. [Google Scholar] [CrossRef] - Wu, Y.M.; Breaz, E.; Gao, F.; Miraoui, A. A modified relevance vector machine for PEM fuel-cell stack aging prediction. IEEE Trans. Ind. Appl.
**2016**, 52, 2573–2581. [Google Scholar] [CrossRef] - Wu, Y.M.; Breaz, E.; Gao, F.; Paire, D.; Miraoui, A. Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine. IEEE Trans. Energy Convers.
**2016**, 31, 1570–1582. [Google Scholar] [CrossRef] - Hua, Z.G.; Zheng, Z.X.; Pera, M.C.; Gao, F. Data-driven prognostics for PEMFC systems by different echo state network prediction structures. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020. [Google Scholar]
- Mezzi, R.; Yousfi-Steiner, N.; Pera, M.C.; Hissel, D.; Larger, L. An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile. Appl. Energy
**2021**, 283, 116297. [Google Scholar] [CrossRef] - Zhang, X.X.; Yu, Z.X.; Chen, W.R. Life prediction based on D-S ELM for PEMFC. Energies
**2019**, 12, 3752. [Google Scholar] [CrossRef][Green Version] - Chen, K.; Laghrouche, S.; Djerdir, A. Degradation model of proton exchange membrane fuel cell based on a novel hybrid method. Appl. Energy
**2019**, 252, 113439. [Google Scholar] [CrossRef] - Peng, Y.L.; Chen, T.; Xiao, F.; Zhang, S.J. Remaining useful lifetime prediction methods of proton exchange membrane fuel cell based on convolutional neural network-long short-term memory and convolutional neural network-bidirectional long short-term memory. Fuel Cells
**2022**, 23, 75–87. [Google Scholar] [CrossRef] - Ma, R.; Yang, T.; Breaz, E.; Li, Z.; Briois, P.; Gao, F. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Appl. Energy
**2018**, 231, 102–115. [Google Scholar] [CrossRef] - Ma, R.; Breaz, E.; Liu, C.; Bai, H.; Briois, P.; Gao, F. Data-driven prognostics for pem fuel cell degradation by long short-term memory network. In Proceedings of the 2018 IEEE Transportation and Electrification Conference and Expo(ITEC), Long Beach, CA, USA, 13–15 June 2018. [Google Scholar]
- Liu, J.W.; Li, Q.; Chen, W.R.; Yan, Y.; Qiu, Y.B.; Gao, T.Q. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks. Int. J. Hydrogen Energy
**2019**, 44, 5470–5480. [Google Scholar] [CrossRef] - Zhang, R.F.; Chen, T.; Xiao, F.; Luo, J.L. Bi-directional gated recurrent unit recurrent neural networks for failure prognosis of proton exchange membrane fuel cells. Int. J. Hydrogen Energy
**2022**, 47, 33027–33038. [Google Scholar] [CrossRef] - Cheng, Y.J.; Zerhouni, N.; Lu, C. A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell. Int. J. Hydrogen Energy
**2018**, 43, 12314–12327. [Google Scholar] [CrossRef] - Liu, H.; Chen, J.; Hissel, D.; Su, H. Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method. Appl. Energy
**2019**, 237, 910–919. [Google Scholar] [CrossRef] - Xie, R.Y.; Ma, R.; Pu, S.C.; Xu, L.C.; Zhao, D.D.; Huangfu, Y.G. Prognostic for fuel cell based on particle filter and recurrent neural network fusion structure. Energy AI
**2020**, 2, 100017. [Google Scholar] [CrossRef] - Ma, R.; Xie, R.Y.; Xu, L.C.; Huangfu, Y.G.; Li, Y.R. A hybrid prognostic method for PEMFC with aging parameter prediction. IEEE Trans. Transp. Electrif.
**2021**, 7, 2318–2331. [Google Scholar] [CrossRef] - Xia, Z.T.; Wang, Y.N.; Ma, L.H.; Zhu, Y.; Li, Y.J.; Tao, J.L.; Tian, G.Z. A hybrid prognostic method for proton-exchange- membrane fuel cell with decomposition forecasting framework based on AEKF and LSTM. Sensors
**2023**, 23, 166. [Google Scholar] [CrossRef] [PubMed] - Ashish, V.; Noam, S.; Niki, P.; Jakob, U.; Llion, J.; Aidan, N.G.; Lukasz, K.; Illia, P. Attention is all you need. Adv. Neural Inf. Process. Syst.
**2017**, 30, 5998–6008. [Google Scholar] - Wei, M.; Gu, H.R.; Ye, M.; Wang, Q.; Xu, X.X.; Wu, C.G. Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and gated recurrent unit. Energy Rep.
**2021**, 7, 2862–2871. [Google Scholar] [CrossRef] - Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; John Wiley and Sons: Chichester, UK, 2003. [Google Scholar]
- Pan, R.; Yang, D.; Wang, Y.J.; Chen, Z.H. Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach. Int. J. Hydrogen Energy
**2020**, 45, 30994–31008. [Google Scholar] [CrossRef] - Jha, M.S.; Bressel, M.; Ould-Bouamama, B.; Dauphin-Tanguy, G. Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework. Comput. Chem. Eng.
**2016**, 95, 216–230. [Google Scholar] [CrossRef] - Bressel, M.; Hilairet, M.; Hissel, D.; Bouamama, B.O. Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell. Appl. Energy
**2016**, 164, 220–227. [Google Scholar] [CrossRef] - Julier, S.J.; Uhlmann, J.K.; Durrant-Whyte, H.F. A new approach for filtering nonlinear systems. In Proceedings of the 1995 American Control Conference—ACC’95, Seattle, WA, USA, 21–23 June 1955. [Google Scholar]
- Zhang, J.S.; Jiang, Y.C.; Li, X.; Huo, M.Y.; Luo, H.; Yin, S. An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty. Reliab. Eng. Syst. Saf.
**2022**, 222, 108357. [Google Scholar] [CrossRef] - FCLAB Research. IEEE PHM 2014 Data Challenge. 2014. Available online: http://eng.fclab.fr/ieeephm-2014-data-challenge/ (accessed on 16 May 2014).

Parameters Setting | Value |
---|---|

Window length | 10 |

Batch size | 50 |

Epochs | 50 |

Dropout | 0.1 |

Multi-Head | 10 |

Learning rate | 0.001 |

Training Set | MAPE (%) | RMSE (%) | MAE (%) |
---|---|---|---|

40% | 4.0261 | 1.0416 | 0.9380 |

50% | 1.5429 | 0.4826 | 0.3630 |

60% | 1.2410 | 0.3845 | 0.2923 |

Training Set | MAPE (%) | RMSE (%) | MAE (%) |
---|---|---|---|

40% | 2.9276 | 0.9675 | 0.7665 |

50% | 1.1153 | 0.4408 | 0.2851 |

60% | 0.9896 | 0.4117 | 0.2515 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hu, Y.; Zhang, L.; Jiang, Y.; Peng, K.; Jin, Z.
A Hybrid Method for Performance Degradation Probability Prediction of Proton Exchange Membrane Fuel Cell. *Membranes* **2023**, *13*, 426.
https://doi.org/10.3390/membranes13040426

**AMA Style**

Hu Y, Zhang L, Jiang Y, Peng K, Jin Z.
A Hybrid Method for Performance Degradation Probability Prediction of Proton Exchange Membrane Fuel Cell. *Membranes*. 2023; 13(4):426.
https://doi.org/10.3390/membranes13040426

**Chicago/Turabian Style**

Hu, Yanyan, Li Zhang, Yunpeng Jiang, Kaixiang Peng, and Zengwang Jin.
2023. "A Hybrid Method for Performance Degradation Probability Prediction of Proton Exchange Membrane Fuel Cell" *Membranes* 13, no. 4: 426.
https://doi.org/10.3390/membranes13040426