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Abstract: Membrane application is widespread in water filtration to remove natural organic matter
(NOM), especially humic acid. However, there is a significant concern in membrane filtration, which
is fouling, which will cause a reduction in the membrane life span, a high energy requirement, and
a loss in product quality. Therefore, the effect of a TiO2/PES mixed matrix membrane on differ-
ent concentrations of TiO2 photocatalyst and different durations of UV irradiation was studied in
removing humic acid to determine the anti-fouling and self-cleaning effects. The TiO2 photocata-
lyst and TiO2/PES mixed matrix membrane synthesised were characterised using attenuated total
reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray powder diffraction (XRD),
scanning electron microscope (SEM), contact angle, and porosity. The performances of TiO2/PES
membranes of 0 wt.%, 1 wt.%, 3 wt.%, and 5 wt.% were evaluated via a cross-flow filtration system
regarding anti-fouling and self-cleaning effects. After that, all the membranes were irradiated under
UV for either 2, 10, or 20 min. A TiO2/PES mixed matrix membrane of 3 wt.% was proved to have
the best anti-fouling and self-cleaning effect with improved hydrophilicity. The optimum duration
for UV irradiation of the TiO2/PES mixed matrix membrane was 20 min. Furthermore, the fouling
behaviour of mixed matrix membranes was fitted to the intermediate blocking model. Adding TiO2

photocatalyst into the PES membrane enhanced the anti-fouling and self-cleaning properties.

Keywords: photocatalytic; membrane fouling; antifouling; self-cleaning membrane

1. Introduction

Fresh and clean water resources are vital for daily human activity and social develop-
ment. However, the dramatic growth of population and industry causes severe pollution,
resulting in a shortage of clean water in certain places [1]. Humic acid is a natural or-
ganic matter from the soil and a primary contaminant in water [2]. Humic acid causes
water to become yellowish or brownish, react with disinfectants and form disinfectant
by-products and the intensification of microbial re-growth in water distribution networks
and destruction of microbiological, physical (unpleasant taste and odor) and chemical
quality of water [3–5].

There are a few methods for removing humid acid: coagulation, adsorption, membrane
filtration, the advanced oxidation process, and biological degradation [6]. A combined
approach, a photocatalytic membrane, has a high efficiency in removing humic acid. How-
ever, a significant problem in membrane filtration is membrane fouling [7–9]. Therefore, a
photocatalyst is chosen to be added to the membrane system. Membrane coupling photo-
catalytic processes can be divided into two main groups: (i) systems with the photocatalyst
in suspension (slurry conditions) and (ii) systems with the photocatalyst immobilised
on the membrane surface and within its pores (mixed matrix membrane) [10]. However,
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studies by Espindola et al. [11] show that the immobilisation of the TiO2-P25 minimised
flux decline on the membrane due to pollutant oxidation on the surface and within the
pores when compared to experiments on photocatalyst slurry dosage in a photocatalytic
membrane reactor system. Other advantages are that to minimise photocatalyst loss, the
post-treatment process for photocatalyst separation can be removed, and these photocat-
alysts will act as a barrier for more significant microorganisms and molecules, such as
bacteria or organic matter [12]. When the photocatalyst is immobilised in the membrane,
it provides a self-cleaning effect that will expand the membrane’s life. Among the photo-
catalysts used, TiO2 possesses excellent physical and chemical properties, including being
highly hydrophilic, having anti-fouling abilities, and having photocatalytic activity [13].

TiO2 can degrade organic compounds into harmless substances by absorbing proper
light energy. When TiO2 is irradiated with UV light, that has the same or more than the
band gap energy. The electrons from the filled valence band (VB) are promoted to the empty
conduction band (CB). Therefore, electron-hole (e−/h+) pairs are formed. The electron-hole
pairs will move and undergo a redox reaction. The h+ reacts with hydroxide ions and water
to form hydroxyl radicals. Meanwhile, the e− reacts with oxygen, forming superoxide
radical anions. Then, later, it will degrade foulants and perform a self-cleaning ability.
In a mixed-matrix membrane, the photocatalytic activity is affected by the photocatalyst
dosage. A high concentration of photocatalyst will encourage agglomeration and void for-
mation, which will decrease the membrane’s performance. However, a low concentration
of photocatalyst in the membrane delivers limited sites for the photodegradation reac-
tion [14]. Therefore, it is important to have the correct amount of photocatalyst embedded
in the membrane.

Determining membrane fouling can be performed by studying its fouling behaviour.
Four membrane fouling models exist, including standard blocking, cake filtration, inter-
mediate blocking, and complete blocking. A total blockade is assumed to mean that the
pore entrances have been sealed off and the flow has been prevented, while intermediate
blocking is about the same as complete blocking, but the pores are assumed to be sealed off
partly and the rest of the particles will accumulate on top of other deposited particles. Cake
filtration happens when the surface of a membrane is accumulated with particles, which
will slowly increase in thickness and raise the resistance to flow. For standard blocking,
the wall of straight cylindrical pores inside the membrane is deposited with particles. The
membrane’s pores become constricted, and the membrane’s permeability reduces when
the particles are deposited [15].

In this study, mixed matrix membranes were fabricated using polyethersulfone (PES)
with TiO2 as a photocatalyst. The membrane performances were evaluated, and photocat-
alytic studies were performed on the assessed self-cleaning membrane under UV irradiation.
The best performance membrane data were tested in a single fouling mechanism model.

2. Experimental
2.1. Chemicals and Materials

All chemicals were used as obtained, without further modification. To synthesise
the membrane, the Ultrason E6020P PES polymer with a MW of 58 kDa was supplied by
BASF (Ludwigshafen, Germany), while the solvent used to dissolve the polymer, N-methyl-
2-pyrrolidone (NMP), was purchased from Merck (Darmstadt, Hessen, Germany). In this
study, humic acid (HA) was obtained from Sigma-Aldrich (St. Louis, MO, USA) and was
used as the organic foulant. Hydrochloric acid (HCl) (1 M) and 1 M of sodium hydroxide
(NaOH) supplied by Merck (Darmstadt, Hessen, Germany) were prepared for the HA
pH adjustment. Titanium dioxide (TiO2) was used as a photocatalyst provided by Sigma
Aldrich with a purity of 99.5%.

2.2. Synthesis of PES Membrane

The PES polymer was placed in the oven at 40 ◦C to remove moisture. After that,
the dried PES polymer was added to N-methyl-2-pyrrolidone (NMP) solvent in a beaker



Membranes 2023, 13, 373 3 of 21

containing the immersion of the sensor tip of the thermometer. The mixture was sealed
instantly with parafilm before being subjected to heating to 70 ◦C for 60 min, followed
by 4 h at room temperature at a constant stirring rate of 700 rpm. A PES of 13 wt.% was
used for each run. A 200 µm thickness of the mixture was cast onto a flat glass plate and
dipped into a distilled water coagulation bath for 24 h. This process accomplishes the wet
phase-inversion process and removes the residual solvent. The synthesised membrane was
kept in a plastic bag for further processing.

2.3. Synthesis of TiO2/PES Mixed Matrix Membrane

The pure TiO2 in different concentrations (1, 3, and 5 wt.%) was added to the mix-
ture under intensive sonication and formed the TiO2/PES solution. A 200 µm-thick
TiO2/PES solution was cast onto a flat glass plate. To complete the phase-inversion process,
which is to induce further wet phase inversion and the residual solvent removal, the flat
glass plate with casted TiO2/PES solution was dipped immediately into a water bath for
24 h. The synthesised TiO2/PES mixed matrix membrane was kept in a zipper bag for
further processing.

2.4. Characterization of TiO2 and TiO2/PES Mixed Matrix Membranes
2.4.1. ATR-FTIR Analysis

Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was
performed to determine the functional groups on the membrane surface. Fourier trans-
form infrared spectroscopy with attenuated total reflection, ATR-FTIR (PerkinElmer Inc.,
Waltham, MA, USA), was employed for this purpose. All samples were scanned over the
wavenumber range from 500 to 4000 cm−1.

2.4.2. XRD Analysis

The diffraction pattern of TiO2 photocatalyst was investigated by an X-ray diffrac-
tometer (XRD) (Bruker D2 Phaser, Billerica, MA, USA), equipped with a copper (Cu) X-ray
tube at 10mA and 30 kV.) equipped with monochromatic Cu Ka radiation (l = 0.154 nm)
and operated at 40 mA and 40 kV from 5◦ to 80◦.

2.4.3. Membrane Morphology Observation

A scanning electron microscope (Hitachi TM3000, Tokyo, Japan) examined the mor-
phology of the surface of the membrane. Image magnifications were 3000× for sur-
face views. All specimens were freeze-dried and coated with a thin layer of platinum
before observation.

2.4.4. Contact Angle Analysis

The surface hydrophilicity of the membrane was characterised by the contact angle.
The contact angle was determined using a contact angle meter based on the sessile droplet
method (Rame-Hart, USA). The membrane was cut into small pieces. A live picture of
a probe liquid dropped on the membrane surface was captured using a charge-coupled
device (CCD) camera, and the software detected the contact angle directly during the
measurement process. This measurement of contact angle was carried out at 25 ◦C. The
liquid droplet was dripped on different membrane sites to get accurate results.

2.4.5. Porosity Calculation

The porosity of the membrane was calculated using Equation (1):

P =
Va − Ve

Va
× 100% (1)

where P is the membrane porosity, Va is the apparent volume, and Ve is the existence volume.
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2.5. Preparation of Feed Solution (Humic Acid)

To prepare a 20 ppm feed solution, four pellets of NaOH were dissolved in 60 mL of
deionised water. The deionised water was topped up to 800 mL, with 0.04 g of humic acid.
The solution was stirred with a magnetic stirrer until the humic acid dissolved. The pH of
the solution was adjusted to 8.5 using NaOH and HCl. The solution was poured into a 2 L
volumetric flask, and deionised water was added until the calibration mark.

2.6. Determination of Humic Acid Concentration

A calibration curve was obtained using different concentrations of HA. The absorbance
of HA was determined at the end of cross-flow filtration via a UV-vis spectrophotometer
(UV 1800 Shimadzu, Kyoto, Japan) at a wavelength of 254 nm. The calibration curve of
absorbance against HA was plotted, and the humic acid concentration was determined.

2.7. Membrane Performance Evaluation

The performance of the membrane was tested by using a cross-flow filtration system
that have been used in previous study [16]. Figure 1 shows the schematic diagram of the
cross-flow filtration system. The effective membrane area was 4.1 cm2, and the filtration
experiment was carried out in an in-house-fabricated cross-flow filtration cell. This filtration
process comprised an electronic balance with a data acquisition system to measure the
accumulated permeate mass and membrane crossflow filtration cell. The pressure in
this process was maintained at 10 psi, generated by a booster pump, and controlled by
a needle valve. The flow rate was maintained at 250 mL min−1. The pure water flux (J) was
measured as a function of time until a quasi-steady flux was reached for 30 min at 10 psi.
The feed solution was substituted with an HA solution with 20 mg L−1 and conducted
under 10 psi. The accumulated permeate mass was measured using a computer-recorded
electronic balance. The accumulated permeate mass was used to calculate the filtration flux
(J) for up to two hours of filtration time.

After achieving a steady flux, the membrane was rinsed with pure water to remove
loosely bound humic acid. The purified water flux was recorded. After that, the membrane
was put under UV irradiation in a black box containing a pen-ray photochemical quartz
lamp (90-0049-06 UVP, Jena, Germany) with a UV light source at a wavelength of 254 nm.
The membrane was rinsed with pure water using a cross-flow filtration unit to remove the
UV-degraded humic acid. The purified water flux was recorded. The flux recovery ratio
(FRR) was calculated based on Equation (2).

FRR =
Jw1
Jw0

× 100% (2)

where FRR is the flux recovery ratio (%), Jw1 is the pure water flux at any predetermined
time (L/m2 h) and cleaning condition, and Jw0 is the initial pure water flux (L/m2 h).
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Figure 1. Schematic diagram of a cross-flow filtration system.

3. Results and Discussions
3.1. XRD Analysis of TiO2 Photocatalyst

Figure 2a,b are the XRD databases for the anatase and rutile phases of the TiO2
photocatalyst, while Figure 2c is the XRD experimental pattern of the TiO2 photocatalyst.
By comparing Figure 2a,c, the dominant peak at 2θ of 25.24◦, 25.29◦, 36.89◦, 37.74◦, 47.98◦,
53.89◦, 55◦, 62.07◦, 62.67◦, 68.82◦, 70.12◦, 70.31◦, and 75.05◦ was referred to the anatase phase
of TiO2 photocatalyst. In addition, the rutile phase of TiO2 photocatalyst was indicated by
the dominant peaks at 2θ of 27.37◦, 36.05◦, 41.17◦, and 54.26◦ by comparing Figure 2b,c. The
TiO2 photocatalyst comprised 83.7% of the anatase phase, while the rutile phase was only
16.3%. Such an observation showed that the TiO2 photocatalyst was suitable to be added to
a self-cleaning membrane because the anatase phase of TiO2 showed higher photocatalytic
activity than the rutile phase of TiO2.
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Figure 2. XRD patterns for TiO2 photocatalysts (a) TiO2 anatase-phase database. (b) TiO2 rutile phase
database. (c) XRD experimental pattern of TiO2 photocatalyst.

3.2. Characterisation of TiO2/PES Mixed Matrix Membrane
3.2.1. Functionalisation Determination of Neat and TiO2/PES Membranes

Figure 3a is the ATR-FTIR spectrum for the TiO2 photocatalyst, Figure 3b is for the neat
PES membrane, and Figure 3c is the ATR-FTIR spectrum for the TiO2/PES mixed matrix
membrane. Numerous peaks in wavelength were observed in the spectrum of the neat
PES membrane. The peak wavelength of 3436 cm−1 was due to the presence of the -OH
functional group [17]. In addition, the peak at 1580 cm−1 is assigned to the C6H6 ring stretch
in PES polymer [18]. The typical aromatic C=C band was 1490 cm−1 [17]. Furthermore, the
wavelength peaks at 1400 cm−1 and 1250 cm−1 corresponded to the bending of C-H [17].
Chakraborty et al. [17] reported that the wavelength peak of 1325 cm−1 was due to the
S=O bond. Homaeigohara et al. [19] reflected that the peak at 1300 cm−1 belonged to
the asymmetrical vibrations of the sulfone group. Moreover, the characteristic band at
1230 cm−1 was related to a C-O-C vibration stretching bond in PES polymer. The absorption
band at 1150 cm−1 is attributed to the symmetrical vibrations of the sulfone group based on
the research of Homaeigohara et al. [19]. The peak at a wavelength of 1110 cm−1 was due to
the asymmetric stretching of C-O [18]. In addition, the wavelength peaks at 1090 cm−1 and
1010 cm−1 corresponded to the C–C stretching of the polymer backbone [17]. The aromatic
ring vibration was found at 795 cm−1 [18], while the peaks at 625 cm−1 and 695 cm−1 were
assigned to the C-Cl bond [17]. The presence of the benzene ring, ether bond, and sulfone
group confirmed the chemical structure of PES.
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Figure 3. ATR-FTIR spectra of (a) TiO2 photocatalyst; (b) a neat PES membrane; and (c) a TiO2/PES
mixed matrix membrane.

Figure 3c shows the ATR-FTIR spectrum of the TiO2/PES mixed matrix membrane.
By comparing the spectra of the neat PES membrane and the TiO2/PES mixed membrane,
the only difference found was that the peak at 3436 cm−1 had a greater intensity for the
TiO2/PES mixed matrix membrane. The peak of 3436 cm−1 was attributed to the -OH
group. This discovery was due to the addition of a TiO2 photocatalyst, which made the
membrane more hydrophilic and improved the membrane’s anti-fouling properties [20].

There was no apparent difference between the ATR-FTIR spectra of the neat PES
membrane and the TiO2/PES mixed matrix membrane. Such similarity may be due to the
overlap of the TiO2 band with the PES polymer band [17].

3.2.2. Morphology Surface of the Membrane

Figure 4a shows the top plan view of the SEM image of a neat PES membrane, while
Figure 4b demonstrates the top plan view of the SEM image of the TiO2/PES mixed matrix
membrane.

Membranes 2023, 13, x FOR PEER REVIEW 7 of 20 
 

 

assigned to the C-Cl bond [17]. The presence of the benzene ring, ether bond, and sulfone 

group confirmed the chemical structure of PES. 

Figure 3c shows the ATR-FTIR spectrum of the TiO2/PES mixed matrix membrane. 

By comparing the spectra of the neat PES membrane and the TiO2/PES mixed membrane, 

the only difference found was that the peak at 3436 cm−1 had a greater intensity for the 

TiO2/PES mixed matrix membrane. The peak of 3436 cm−1 was attributed to the -OH group. 

This discovery was due to the addition of a TiO2 photocatalyst, which made the membrane 

more hydrophilic and improved the membrane’s anti-fouling properties [20]. 

There was no apparent difference between the ATR-FTIR spectra of the neat PES 

membrane and the TiO2/PES mixed matrix membrane. Such similarity may be due to the 

overlap of the TiO2 band with the PES polymer band [17]. 

 

Figure 3. ATR-FTIR spectra of (a) TiO2 photocatalyst; (b) a neat PES membrane; and (c) a TiO2/PES 

mixed matrix membrane. 

3.2.2. Morphology Surface of the Membrane 

Figure 4a shows the top plan view of the SEM image of a neat PES membrane, while 

Figure 4b demonstrates the top plan view of the SEM image of the TiO2/PES mixed matrix 

membrane. 

 

(a) 

 

Figure 4. Cont.



Membranes 2023, 13, 373 8 of 21

Membranes 2023, 13, x FOR PEER REVIEW 8 of 20 
 

 

 

(b) 

Figure 4. (a) Top view SEM images of a neat PES membrane; and (b) top view SEM images of the 

TiO2/PES mixed matrix membrane. 

Figure 4a indicated that the neat PES membrane had a highly porous surface. The 

TiO2/PES mixed matrix membrane also has a highly porous membrane surface with nu-

merous white spots (see Figure 4b). Some small cracks were observed on the membrane 

surface, which formed during the drying process of the membrane. 

Figure 5a is the EDX spectrum for a neat PES membrane, while Figure 5b is the EDX 

spectrum for a TiO2/PES mixed matrix membrane. Figure 5a shows the EDX spectrum of 

the neat PES membrane. The characteristic peaks at C, O, and S belonged to the PES pol-

ymer. For Figure 5b, a new characteristic peak existed for Ti, indicating that titanium (Ti) 

elements were present in the mixed matrix membrane. 

 

(a) 

 

Figure 4. (a) Top view SEM images of a neat PES membrane; and (b) top view SEM images of the
TiO2/PES mixed matrix membrane.

Figure 4a indicated that the neat PES membrane had a highly porous surface. The
TiO2/PES mixed matrix membrane also has a highly porous membrane surface with
numerous white spots (see Figure 4b). Some small cracks were observed on the membrane
surface, which formed during the drying process of the membrane.

Figure 5a is the EDX spectrum for a neat PES membrane, while Figure 5b is the EDX
spectrum for a TiO2/PES mixed matrix membrane. Figure 5a shows the EDX spectrum
of the neat PES membrane. The characteristic peaks at C, O, and S belonged to the PES
polymer. For Figure 5b, a new characteristic peak existed for Ti, indicating that titanium
(Ti) elements were present in the mixed matrix membrane.
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Figure 5. (a) EDX spectrum of a neat PES membrane; and (b) EDX spectrum of the TiO2/PES mixed
matrix membrane.

3.2.3. Hydrophilicity of the Membrane

Based on Table 1, the contact angle of the neat PES membrane was 88.01◦, while the
contact angle of the TiO2/PES mixed matrix membrane was 80.53◦. The addition of TiO2
photocatalysts lowers the water contact angle of the membrane. The water contact angle
showed an inverse relationship with hydrophilicity [21]. Therefore, the addition of TiO2
photocatalysts made the membrane more hydrophilic. Such a result was due to the presence
of a hydroxyl group and an amino group in the TiO2 photocatalyst, which caused it to
have a high affinity to water and thus improved the hydrophilicity of the membrane [22].
The hydrophilic TiO2 photocatalyst reduced the interface energy and moved the TiO2
photocatalysts to the membrane’s surface, thus reducing the water contact angle [23].

Table 1. Contact angle measurement for neat a PES membrane and the TiO2/PES mixed matrix membrane.

Type of Membrane Contact Angle (◦)

Neat PES membrane 88.01 ± 0.77
TiO2/PES mixed matrix membrane 80.5 ± 30.89

3.2.4. Membrane Porosity

The results of porosity for a neat PES and the TiO2/PES mixed matrix membrane are
presented in Table 2. The porosity of the TiO2/PES membrane was higher than the neat PES
membrane by 5.84%. The porosity of the membrane was affected by the thermodynamics
and viscosity of the dope solution [20]. Therefore, the addition of a TiO2 photocatalyst
made the dope solution viscous, and thus, the membrane became more porous [24].

Table 2. The porosity of a neat PES membrane and the TiO2/PES mixed matrix membrane.

Membrane Porosity (%)

Neat PES membrane 80.5 ± 0.81
TiO2/PES mixed matrix membrane 86.34 ± 0.87
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3.3. Membrane Filtration Performance
3.3.1. Effect of Different Concentrations of TiO2 Photocatalysts in the Membrane

Figure 6 presents the rejection of humic acid for each of the TiO2/PES mixed matrix
membrane concentrations. The humic acid rejection of the membrane showed an inverse
relationship to the initial pure water flux for different TiO2/PES mixed matrix membrane
concentrations. The initial pure water flux declined with the increasing TiO2/PES mixed
matrix membrane concentration. The initial reduction of pure water permeate flux was
mainly due to the partial blocking of membrane pores by the TiO2 photocatalyst [21]. Such
partial blocking made passing water through the membrane pores difficult.
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Figure 6. Humic acid rejection and initial pure water flux for each TiO2/PES mixed matrix membrane
concentration.

The rejection of humic acid shows an increasing trend with the addition of a TiO2
photocatalyst. The rejection of humic acid was improved by plugging the TiO2 photocat-
alyst into membrane pores, thus preventing the humic acid from fouling the membrane
pores [21]. Therefore, the increase in TiO2/PES mixed matrix membrane concentration is
expected to improve the anti-fouling properties.

Figure 7 shows the graph of normalised flux versus time for different TiO2/PES
mixed matrix membrane concentrations to study the anti-fouling performance and self-
cleaning effect. In the first 30 min (section A), the normalised flux for 0 wt.%, 1 wt.%,
3 wt.%, and 5 wt.% of TiO2/PES mixed matrix membrane was mostly maintained at 1.
This observation was made because the membrane was only passed through with distilled
water to determine pure water flux, and thus no fouling occurred.

In the following 120 min (section B), the distilled water was replaced with a humic acid
solution, which ran under 10 psi and 250 mL/min. From Figure 8, all the mixed matrices
experienced a reduction in normalised flux due to the fouling of humic acid. However,
the normalised flux of the mixed/matrix membrane was increased with increasing con-
centration of TiO2 photocatalyst in the membrane, similar to the finding of Wu et al. [22].
A TiO2/PES mixed membrane of 0 wt.% had the lowest normalised flux compared to the
other mixed matrix membranes.
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Hence, a TiO2/PES mixed membrane of 0 wt.% had the greatest fouling because of
the high hydrophobicity of the PES membrane, which was liable to humic acid deposition.
A TiO2/PES mixed matrix membrane of 1 wt.%, 3 wt.%, and 5 wt.% had a higher normalised
flux than the 0 wt.% TiO2/PES mixed matrix membrane. Such an observation was made
because the addition of a TiO2 photocatalyst improved the hydrophilicity of the membrane,
as proved by the result of the contact angle, thus prompting the formation of a hydrophilic
water layer that resisted the deposition of humic acid [20,25]. Therefore, the addition of
a TiO2 photocatalyst enhanced the anti-fouling properties, and the anti-fouling properties
can also be further proved by comparing the flux recovery ratio among each TiO2/PES
mixed matrix membrane concentration.

After 150 min (section C), the humic acid solution was replaced with distilled water
to clean the membrane for 10 min to remove loosely bound humic acid on the membrane.
Then, the membrane was irradiated with UV light for 20 min for the degradation of the
foulant. In Section D, the pure water flux after UV irradiation was tested with distilled
water for 10 min. The results for sections C and D for the flux recovery ratio (FRR) at the
beginning of the experiment, after the water cleaning process, and after the UV irradiation
are shown in Figure 8 for different TiO2/PES mixed concentration matrix membranes to
evaluate the anti-fouling properties.

Based on Figure 8, the FRR at the beginning of the experiment was mainly the same
for a TiO2/PES mixed matrix membrane of 0 wt.%, 1 wt.%, 3 wt.%, and 5 wt.%, which are
101.91%, 99.78%, 105.41%, and 99.14%, respectively. For FRR after water cleaning, the FRR
for the mixed matrix membrane was higher than a neat PES membrane. The FRR increased
from 78% to 110.42% for a TiO2/PES mixed matrix membrane, from 0 wt.% to 3 wt.%. The
low FRR of a TiO2/PES mixed matrix membrane from 0 wt.% to 3 wt.% was due to the neat
PES membrane being influenced by the adsorbed humic acid, which cannot be segregated
by simple hydraulic washing [13].

Furthermore, the mixed matrix membrane from 0 wt.% to 3 wt.% had better hy-
drophilicity by adding TiO2, which enhanced the flux recovery [13]. The result from
ATR-FTIR analysis proved the hypothesis, which consists of the -OH group at 3436 cm−1.
Therefore, a TiO2/PES mixed matrix membrane of 3 wt.% had the best anti-fouling proper-
ties because it was easy to clean compared to the other mixed matrix membranes. After
that, the FRR was reduced to 94.44% for the TiO2/PES of 5 wt.% mixed matrix membrane.
A high concentration of TiO2 photocatalyst blocked the membrane pores and obstructed
the interaction of PES and solvent molecules [21].

After UV irradiation for 20 min, the FRR gradually increased from 80.42% to 111.83%
for the TiO2/PES mixed matrix membrane of 0 wt.% to the TiO2/PES mixed matrix mem-
brane of 3 wt.% and then dropped to 108.2% for a TiO2/PES mixed matrix membrane of
5 wt.%. The FRR value after UV irradiation of a TiO2/PES mixed matrix membrane of
0 wt.% was almost similar to the FRR value after water cleaning because there was an
absence of a TiO2 photocatalyst to perform the degradation of humic acid. The high FRR for
the mixed matrix membrane was mainly due to the TiO2 photocatalyst, a semi-conductor
that can be activated by UV-irradiation with rays equal to or greater than the band gap
energy, which leads to the transfer of an electron from the capacity band to the conduction
band. The oxygen molecules in the environment reacted with the photo-generated electrons
and formed superoxide radical anions (O2

−).
Conversely, the photo-generated holes reacted with the water molecules in the envi-

ronment and formed OH radicals. The superoxide radical anions and OH radicals were
strong oxidant reagents that could decompose the foulant deposited on the membrane [21].
Therefore, a TiO2/PES mixed matrix membrane of 3 wt.% showed the best self-cleaning
effect in decomposing humic acid.

3.3.2. Effect of Duration of UV Irradiation

A TiO2/PES mixed matrix membrane of 3 wt.% had the best anti-fouling performance,
so it was used to determine the effective duration for UV irradiation. Figure 9 demonstrates
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the flux recovery ratio (FRR) graph at the beginning of the experiment and after UV
irradiation versus the duration of UV irradiation.
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Figure 9. Comparison of FRR among different durations of UV irradiation at the beginning of the
experiment and after UV irradiation for a TiO2/PES mixed matrix membrane of 3 wt.%.

From Figure 9, the FRR after UV irradiation showed an increasing trend with longer
UV irradiation duration. A neat PES membrane had the lowest FRR after irradiation
of 81.23%, because of the absence of a TiO2 photocatalyst. For a TiO2/PES mixed matrix
membrane of 3 wt.%, the FRR after irradiation increased with the duration of UV irradiation
(from 2 to 20 min) from 93.18% to 111.18%. The FRR after irradiation for 2 and 10 min
of UV irradiation was 93.18% and 95.64%, respectively. The observed trend was due to
insufficient energy to transfer the electron to the conduction band. The highest FRR after
irradiation of a TiO2/PES mixed matrix membrane of 3 wt.% was during the first 20 min
of UV irradiation. These results showed that 20 min of UV irradiation was enough to
transfer an electron from the capacity band to the conduction band and thus produce
superoxide radical anions (O2

−) and OH radicals for photocatalytic degradation of humic
acid deposited on the membrane [21].

3.4. Membrane Fouling Behaviour Models

The membrane’s fouling behaviour in a cross-flow filtration system can be determined
using the most widely recognised model, Hermia’s model. Some researchers have also
applied Hermia’s models to analyse membrane fouling behaviour. Rayess et al. [9] reported
using Hermia’s models for analysing membrane fouling in cross-flow microfiltration of
wine, while Kazemi et al. [26] reported using the same models for cross-flow microfiltration
of ceramic membrane fouling. Thus, it can be concluded that these mathematical models
are considered popular in detecting the fouling mechanism of membranes. An important
assumption is made by applying Hermia’s models to a cross-flow filtration system. It
is assumed that the flow in the cross-flow filtration system is in a quasi-steady-state
condition as the permeate flux is almost constant with time for a prolonged duration and
reduces gradually [27]. According to Iritani and Katagiri [28], there are four different
fouling behaviours regarding the deposition of particles on the membranes: the complete
blocking model, the standard blocking model, the intermediate blocking model, and the
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cake filtration model. The simplified general fouling model’s equation developed by
Hermia is shown in Equation (3) [26].

d2t
dV2 = K

(
dt
dV

)n
(3)

where t is the filtration duration, V is the cumulated filtrate volume, K is the proportionality
constant, and n is a constant represented by different numbers according to other models.
Based on Equation (3), the linearised equation derived for all the models at continuous
pressure filtration, along with their graphical approaches, schematic diagrams, and model
descriptions, is presented in detail in Table 3. These membrane fouling models can be used
individually or combined to explain membrane fouling behaviour [29]. Table 3 shows the
membrane fouling model: cake filtration, standard blocking, intermediate blocking, and
complete pore blocking.
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Table 3. Hermia’s models for constant pressure filtration [26,27].

Model Linearized Equation Graphical Approaches Schematic Diagram Description

Cake filtration
(n = 0)

t
V = Kc

2 V + 1
J0
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Table 3. Cont.

Model Linearized Equation Graphical Approaches Schematic Diagram Description

Complete blocking
(n = 2) V = J0

Kb

(
1 − e−Kb J)
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In this study, a TiO2/PES mixed matrix membrane of 3 wt.% was used to investigate
the fouling model of a TiO2/PES mixed matrix membrane. The result from permeate
flux was used to plot a graph representing four different fouling models, and the plotted
graph was compared with the theoretical model by indicating the R2 value as shown in
Figure 10a–d. Based on Figure 10d, the intermediate blocking model showed the highest
R2 value, which was 0.986, followed by the complete blocking fouling model (Figure 10a
with an R2 equal to 0.9687). The cake filtration model (Figure 10b) had an R2 value of
0.514, while the standard blocking model (Figure 10c) had the lowest R2 value of 0.4711.
Therefore, the intermediate blocking model is the best prediction model, as the R2 value
from a linearised graph was nearest to 1.
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Figure 10. (a). Linearised graph representing complete blocking; (b) linearised graph represent-
ing cake filtration; (c) linearised graph representing standard blocking; and (d) linearised graph
representing intermediate blocking.

In this case, the intermediate pore-blocking mechanism best describes the fouling
behaviour of a TiO2/PES mixed matrix membrane of 3 wt%. However, it is interesting
that only the complete and intermediate pore-blocking models yielded a higher R2 value
than the others. Such a finding is mainly because both complete and intermediate pore-
blocking models were occasionally known as the precursors of cake filtration and were
responsible for the initial stage of pore-blocking [15]. In this study, the intermediate pore-
blocking mechanism can explain the membrane more appropriately than the complete
pore-blocking mechanism, as the membrane did not separate the permeate, which can be
proven by the permeate rejection of roughly 89.9%, as shown in Figure 6. This result makes
the intermediate pore-blocking mechanism a better predictor of the membrane’s fouling
behaviour [30].

Intermediate pore blocking is often associated with the particles being deposited or
adsorbed on the surface of the membrane or the particles themselves [8]. Generally, this
phenomenon occurs whenever the particle’s size is similar to the membrane pore size [31].
However, this mechanism seems to only happen at the early stages of membrane fouling
and will eventually lead to cake filtration [32]. The result specifies that a TiO2/PES mixed
matrix membrane of 3 wt% has most likely prolonged the phase for intermediate pore
blocking. The benefit of a POM/PES mixed matrix membrane of 3 wt% is that it can
maintain the high permeate flux for a long time during the intermediate pore-blocking
phase, as once the cake is formed, the permeate flux would be much lower. Moreover,
the intermediate pore blocking due to the accumulated foulants on the top surface of the
membrane allows the membrane pores to have reversible fouling [33].

4. Conclusions

A TiO2/PES mixed matrix membrane of 3 wt% was observed to have the best anti-
fouling and self-cleaning effect with improved hydrophilicity. The optimum duration for
UV irradiation of a TiO2/PES mixed matrix membrane was 20 min. Furthermore, the
fouling behaviour of a mixed matrix membrane was fitted to the intermediate blocking
model. The prolonged intermediate pore blocking and its later phase, cake filtration,
are said to be beneficial to membrane fouling as most of the fouling that occurs would
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be reversible. This indicates that the TiO2/PES mixed matrix membrane is capable of
providing a longer membrane lifespan. Furthermore, adding TiO2 to the PES membrane
enhances its anti-fouling and self-cleaning properties.
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