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Abstract: In this paper, the removal effect of reverse osmosis (RO) on three common pharmaceuticals
and personal care products (PPCPs), including ibuprofen (IBU), carbamazepine (CBZ), and triclosan
(TCS), were compared under different process conditions, and the removal rate of PPCPs, membrane
flux, and PPCPs membrane adsorption capacity were analyzed. The removal rate increased with
the increase of the influent concentration and pre-membrane pressure, while pH influenced the
removal effect of different PPCPs by affecting the electrostatic interaction between pollutants and
membranes. It was also found that the dynamic adsorption of PPCPs on RO membranes under
different conditions complied with the pseudo-first-order reaction kinetic adsorption model. The
maximum stable adsorption capacity and the adsorption rate of PPCPs on membranes under various
conditions were simulated based on the model. Moreover, through factorial design, the removal
rates of RO on IBU, CBZ, and TCS could reach 98.93%, 97.47%, and 99.01%, respectively, under the
optimal conditions (with an influent concentration of 500 µg/L, pre-membrane pressure of 16 bar and
pH = 10). By optimizing the process of removing PPCPs with the RO membrane method, the optimal
process conditions of removing IBU, CBZ, and TCS with the RO membrane method were obtained,
which provided reference conditions and data support for the practical application of removing
PPCPs with the RO membrane method.

Keywords: reverse osmosis membrane process; PPCPs; removal efficiency; adsorption model;
factorial design

1. Introduction

PPCPs are organic pollutants that are more commonly found in water bodies, and
related research shows that traditional water treatment methods have a limited capacity
to remove PPCPs [1–3]. Reverse osmosis has been widely employed in treating many
water bodies due to its efficiency and high selectivity advantages, particularly the effective
removal of small molecule micropollutants [4–8]. However, when using RO membranes
to remove organic trace pollutants such as low-concentration PPCPs in water bodies, the
removal effect usually fails to satisfy the expectations [9,10]. RO membrane rejection
mechanisms on PPCPs are relatively complex and closely related to the physical and
chemical properties of membranes and pollutants and membrane system operation. In
addition, existing research mainly focuses on the influence factors and removal efficiency
of the removal of PPCPs by RO membranes [5,11], while there is only a little research
regarding process optimization. Therefore, in order to improve the water treatment effect
of RO membranes, it is necessary to clarify the rejection effect of RO membranes on PPCPs
and optimize the treatment process conditions.

At present, size repulsion, electrostatic repulsion, and adsorption are the primary
mechanisms by which RO membranes reject organic micropollutants. It was found that the
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molecular weight index could not accurately measure the removal efficiency of substances
during size repulsion [12,13] due to the differences in molecular length and shape [14,15];
using Stokes molecular radius as the size parameter can only slightly improve the correction
of removal rate [16]. The rejection effect of size repulsion on pollutants can be explained
more accurately only by understanding pollutant molecules’ spatial shape and membrane
pore structure. In addition, the charge of the membrane surface and the substance can be
changed by pH, and the rejection performance of pollutants can be affected through the elec-
trostatic interaction of different intensities [17,18]. Additionally, pH can affect the filtration
performance of membranes by changing the extended chain structure formed by charged
groups in membrane pores [19] or result in hydrolysis of chemical bonds and reduce the
degree of crosslinking [20]. Moreover, membrane material has an adsorption effect on
some organic micropollutants [21,22], with hydrogen bonding, π-π bonding, hydrophobic
interaction, and electrostatic interaction being the main adsorption mechanism of pollutants
and membranes [23–25]. Membrane adsorption happens on the membrane surface and
throughout the entire structural layer. It is influenced by the membrane filtration pressure,
membrane material, and pollutant’s physical and chemical properties [26].

With respect to the study, both the removal process of RO membranes on three common
PPCPs and the influence factors of RO membranes on PPCPs removal during the rejection
were studied. The impacts of influent PPCP concentrations, pre-membrane pressure, and
influent pH on the removal of PPCPs were investigated through dynamic experiments.
The law of adsorption of PPCPs on RO membranes under different control conditions
was analyzed through adsorption experiments. Finally, the factorial design was used to
optimize the process and find the optimum operating conditions for PPCP removals by
reverse osmosis, to improve the removal effect of common PPCPs.

2. Materials and Methods
2.1. Experimental Device
2.1.1. Target Pollutants

In the study, three common PPCPs, including ibuprofen (IBU), carbamazepine (CBZ),
and triclosan (TCS), were selected as target pollutants. The stock solutions for these
three drugs were prepared using chromatographic grade methanol and stored at 4 ◦C in
brown reagent bottles. Three standard substances of target pollutants were purchased
from Macklin (Shanghai, China) and Alfa Aesar (Shanghai, China), and the purity of each
standard substance was over 98%. The methanol and acetonitrile used for experiments
were purchased from Thermo Fisher (Shanghai, China), with HPLC grade or above.

2.1.2. RO Device

The RO membrane used in the study was Dow BW30 reverse osmosis membrane from
Dow Chemical Company (Midland, MI, USA). The high-pressure flat membrane equipment
was used for the membrane filtration experiment (Figure 1), and the area of the membrane
cell of the device was 24 cm2. Besides, multiple types of diaphragms could be configured,
and the range of system filtration pressure was 1–60 bar, with a temperature range of
0–80 ◦C and a filtration capacity of 0–1 L/Hr. Moreover, the water inlet temperature was
controlled through the thermostatic water tank, and the penetrating fluid was collected.
The effluent characteristics were continuously collected by the electronic scale to calculate
the permeation flux. The concentrated water flowed back to the feed water reservoir.
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Figure 1. Flow diagram of the reverse osmosis device system.

Before starting the experiment, the RO membranes used were soaked in ultrapure
water for at least 24 h, cut into the appropriate size, and put into the filter membrane
cell. Under a certain pressure and temperature of 25 ◦C, the ultrapure water was run in
the system for 6 h until the water flux reached a stable level to eliminate the impact of
membranes in the process of compaction.

2.2. Experimental Process Design
2.2.1. PPCP Removal Experiment

A certain quantity of 100 mg/L PPCPs mixed standard solution was added to bring
the experimental solution to the set concentration, and the background ion concentration
was controlled by adding NaCl solution. The pH was adjusted by 1 M HCl and NaOH.
In addition, the computer was connected to the electronic scale under the permeation
collection bottle, and the effluent change was recorded at a time interval of 1 min in real
time to obtain the water flux data. The recovery rate of penetrating fluid in the reverse
osmosis experiment was 70%. The raw water in the feed water reservoir was sampled
before the experiment. The penetrating fluid and residual water in the feed water reservoir
were collected after the experiment, and the concentration of PPCPs in three water bodies
was measured to analyze the change in PPCP concentrations.

The impact of PPCP concentrations of inlet water (50 µg/L, 100 µg/L, 500 µg/L, and
1000 µg/L), pre-membrane pressure (8 bar, 12 bar, 16 bar, and 20 bar), and pH of inlet
water (3, 5, 7, 9, and 11) on the removal rate of PPCPs in reverse osmosis experiment were
studied respectively.

2.2.2. PPCPs Dynamic Adsorption Experiment

The same experimental devices were used in the dynamic adsorption experiment,
with the exception that effluent penetrating fluid recirculated back the feed water reservoir
for the continuous experiment in the reverse osmosis experiment. In addition, the set
runtime was 6 h, and the feed water reservoir was sampled every 30 min in the first 3 h
and 1 h in the last 3 h. The samples were collected in brown liquid sample bottles for
measurement after being filtered by a 0.22 µm filter membrane. Moreover, the change in
PPCP concentrations of inlet water was measured during the experiment to analyze the
law of adsorption of RO membranes on PPCPs.

The impact of PPCP concentrations of inlet water (50 µg/L, 100 µg/L, 500 µg/L, and
1000 µg/L), pre-membrane pressure (8 bar, 12 bar, 16 bar, and 20 bar), and pH of inlet water
(3, 5, 7, 9, and 11) on the adsorption of PPCPs on membranes in reverse osmosis experiment
were studied respectively.
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2.3. Analysis and Determination Method
2.3.1. PPCPs Concentration Determination

Raw water, osmotic solution, and residual water were collected and filtered by a
0.45 µm filter membrane to remove suspended particles. An HLB column was used for
SPE water sample pretreatment. The samples were determined by Agilent 1260 high-
performance liquid chromatography (Santa Clara, CA, USA). The chromatographic column
was ZORBAX Eclipse XDB-C18. The mobile phase consisted of acetonitrile and ultra-pure
water with a pH of 3 regulated by phosphoric acid.

2.3.2. Calculation of Permeation Flux and PPCPs Dynamic Adsorption Amount

In this experiment, an electronic scale was used to record the effluent characteristics,
and the flux data of the RO membrane was represented by the mass change. In order to
eliminate the influence of different diaphragms and other factors in each experiment, the
ratio (J/J0) of experimental solution flux data (J) and real-time stable flux data of ultra-pure
water pressure (J0) were selected as analysis objects.

The adsorption amount Q (µg/cm2) of PPCPs on the membrane is calculated based
on the following formula:

Q = ((C0 − Ce)·V)/A, (1)

C0 and Ce are the concentration of PPCPs (µg/L) in the feed water reservoir at initial and
stable adsorption equilibrium, respectively. V indicates the volume of the solution (L), and
A represents the effective membrane area (cm2).

Assuming that the active centers on the membrane surface are limited and the adsorp-
tion can reach an equilibrium state over time, the first-order kinetic model shown below
can be used to indicate the adsorption [27]:

Q = Qe(1 − e−kt), (2)

Qe is the maximum adsorption mass (µg/cm2) at adsorption equilibrium, and k is the rate
constant.

2.4. Experiment Design and Optimization

To analyze the removal effect of reverse osmosis on common PPCPs, factorial analysis
was used to reduce the number of experiments and obtain parameter optimization [28]
of influent PPCP concentrations, pre-membrane pressure, and pH value, and analyze the
influence of each factor on the reaction as well as interactions between all factors [28,29].
The secondary factor design of Design Expert 8 was used to predict the results. Table 1
shows the factor encoding and the scope of variables.

Table 1. Experimental range and level of factors in a factorial experiment.

Factor Name Units Type Minimum Maximum Coded Low Coded High

A Concentration µg/L Numeric 50 1000 −1↔ 50 +1↔ 1000
B Pressure bar Numeric 8 20 −1↔ 8 +1↔ 20
C pH / Numeric 3 11 −1↔ 3 +1↔ 11

3. Results and Discussion
3.1. Influence of Different Conditions on the Removal Rate and Permeation Flux of PPCPs
3.1.1. PPCP Removal Rates

As seen in Figure 2, the removal rates of the three PPCPs were all greater than 94%
under different concentrations. The highest removal rate was 98.90% when the initial IBU
concentration was 1000 g/L; the lowest rate was 96.93% when the initial IBU concentration
was 100 µg/L. The removal rate of CBZ increased and varied between 94.42% and 98.13%
when the initial concentration increased. The removal rate of TCS exceeded 98%. In
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different concentration ranges, the removal rate of IBU and TCS varied within 2%, and
the removal rate of CBZ further varied within 4%. It was preliminarily suggested that
the removal rate of IBU and TCS was less affected by the influent concentration at µg-
level concentration, and the removal rate of CBZ varied more obviously with the initial
concentration. Under different pre-membrane pressure conditions, the removal rate of the
three PPCPs was the lowest at 8 bar. The removal rate of IBU and CBZ gradually increased
as the pressure rose from 8 to 16 bar and slightly decreased when the pressure was 20 bar.
TCS removal rate was higher than 99% under different pressure conditions. The lowest
removal rate was 96.41% when IBU was at 8 bar, and the removal rate was greater than
98% when the pressure was higher than 12 bar, with less than a 1% difference. The removal
rate of CBZ was 93.86%−98.07%. When the pH = 3–11, the removal rate of PPCPs with
RO membrane varied from 2% to 4%. The removal rate of TCS at different pH values was
greater than 99%, and that of IBU and CBZ decreased first and then increased when the
pH = 3–11.
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Among the three PPCPs, the molecular weight (289.54) and Stokes molecular radius
(0.415) of TCS were the largest, which maintained a high removal rate in reverse osmosis
interception that was dominated by size repulsion and was unaffected by pH variation.
The removal variation of IBU and CBZ indicated that, in addition to the size repulsion,
certain electrostatic repulsions existed during reverse osmosis interception of PPCPs. The
pKa value of IBU was 4.5. When pH > pKa, IBU was ionized into anions, which enhanced
the repulsion with a negatively charged membrane and increased the removal rate. The
pH was the main factor affecting the zeta potential of the membrane [30]. When the pH is
above the isoelectric point, the membrane is negatively charged. Otherwise, it is positively
charged. Studies have shown that negatively charged organic matter has a significantly
higher removal rate than uncharged organic matter [12], regardless of differences in the
physicochemical properties of the membrane or physicochemical properties of organic
matter. It is mainly because negatively charged organic matter can be subject to electrostatic
repulsion with the membrane. After changing the pH of water, the charge on the membrane
surface can be effectively changed, affecting the existence form of the organic matter.
The removal rate of organic matter can then be affected by the interaction between the
membrane and the organic matter [31]. For dense RO membranes, size repulsion is the
main mechanism of PPCP removals. Electrostatic repulsion can affect the removal rate by
influencing the interaction between PPCPs and the membrane, and the final retention effect
is the result of size repulsion and electrostatic repulsion.

3.1.2. Permeation Flux

As seen in Figure 3, membrane flux basically remained stable under different PPCP
concentrations, but the stable permeation flux was different. The permeation flux was
relatively close when the initial concentrations were 50 µg/L and 100 µg/L, respectively.
When the initial concentration was increased to 500 µg/L, the permeation flux decreased
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by 23.6%; when the initial concentration was 1000 µg/L, the permeation flux decreased by
37.2%. The decrease in membrane flux enhanced the interception effect of PPCPs, and the
removal rate of PPCPs increased along with the initial concentration. The pre-membrane
pressure and permeation flux remained stable, but the effluent operation time with a fixed
recovery rate (70%) differed (8 h−24 h). The stable permeation flux increased as pressure
was added. Compared with p = 8 bar, the stable permeation flux when p = 20 bar increased
by 22.2%. Under different pH conditions, the permeation flux gradually declined over
time during the experiment. The continuous increase in the concentration of PPCPs in
raw water led to a decrease in permeation flux. The stable permeation flux decreased as
the pH increased, possibly because the BW30 membrane is made of polyamide. When the
pH increased, electrostatic repulsion between carboxyl groups prolonged the chain, thus
reducing the effective pore size of the membrane and the stable permeation flux of the RO
membrane [32]. Electrostatic interaction caused by pH variation affected the stable flux.
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3.2. Influence of Different Conditions on the Adsorption of PPCPs on the Membrane

In the dynamic adsorption experiment (as shown in Figure 4), the concentration of the
three PPCPs decreased exponentially based on preliminary analysis. As the decrease tended
to be stable over time, adsorption equilibrium between membrane and PPCPs was reached.
The three PPCPs had different amounts of adsorption on the membrane. The kinetic pa-
rameters of the pseudo-first-order reaction model of dynamic adsorption were calculated.
The correlation coefficients were relevantly high (Tables A1–A3 in the Appendix A), indi-
cating that the first-order reaction model could well explain the adsorption of PPCPs on
the membrane.

The adsorption of the three PPCPs on the membrane increased as the initial concentra-
tion rose. The adsorption rates of the three PPCPs on the membrane were IBU > TCS > CBZ,
with the difference in adsorption rate unaffected by the concentration. Under different
pressure conditions, the stable adsorption amount of the three PPCPs follows the rules
of TCS ≈ IBU > CBZ, and the stable adsorption amount of the three PPCPs decreased as
pre-membrane pressure increased. The adsorption rate of CBZ and TCS increased as the
pressure went up. The adsorption rate of IBU at low pressure (8 and 12 bar) is higher than
that at high pressure (16 and 20 bar). As the pH value increased, the adsorption amount
of IBU and TCS decreased significantly, while the adsorption amount of CBZ showed an
overall increasing trend, while the variation was not significant. The adsorption amounts
follow the rules of TCS > IBU > CBZ.

The hydrophobic adsorption between hydrophobic PPCPs and the membrane can facil-
itate the retention of PPCPs to a certain extent before the adsorption equilibrium is reached.
The adsorption is not only related to the hydrophobicity of PPCPs but also in connection
with the physicochemical properties of PPCPs (such as molecular size and selectivity)
and membrane characteristics (pore size, charge, and roughness). CBZ (logKow = 2.45)
performs worst in hydrophobicity, while BW30 reverse osmosis membrane tends to be
hydrophobic. As the adsorption process of PPCPs is lower with relatively weak hydropho-
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bicity, it takes longer for CBZ to reach adsorption equilibrium on the membrane. The
logKow values of the three PPCPs followed the rules of TCS (4.8) > IBU (3.97) > CBZ (2.45).
The results showed that PPCP adsorptions were driven by the hydrophobic affinity between
PPCPs and the membrane surface. However, the adsorption amount of IBU and TCS was
lower than that at a low pH value when pH > pKa. Because the pKa of CBZ was larger
(13.9), and the adsorption amount was less affected by pH variation, this indicated that the
electrostatic repulsion between the membrane and PPCPs also influences the adsorption
effect of PPCPs on the membrane surface [33]. Studies suggested that although estradiol
has a high hydrophobicity, its adsorption effect with the membrane is lower than expected
due to electrostatic repulsion [34]. The adsorption amount is also related to the surface
roughness of the membrane. For example, the adsorption amount of a relatively smooth
membrane for salicylic acid is 81%, compared to 94% of a rough membrane [34]. When
analyzing the adsorption of PPCPs and membranes, multiple factors should be considered
comprehensively.
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3.3. Reverse Osmosis Process Optimization
3.3.1. Factorial Design Experiment

Based on a 2k factorial design, sixteen experimental operations (including two repli-
cates per experiment) were optimized. Table 2 shows the actual percentage of three types
of PPCP removals. Randomized experiments were conducted to determine the effects of
each factor on the response.
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Table 2. Factorial design matrix of three variables and the experimental response of PPCP removals.

Run Factor1 A Factor2 B Factor3 C IBU Removal CBZ Removal TCS Removal

1 1000 20 3 99.98 96.51 99.58
2 50 8 11 97.52 95.31 98.10
3 50 8 11 96.89 93.54 98.05
4 1000 20 11 99.76 99.60 99.55
5 1000 8 3 97.90 95.90 99.26
6 50 20 3 99.01 95.81 98.95
7 50 20 3 99.63 97.53 98.99
8 1000 8 11 98.49 98.98 99.23
9 1000 20 3 99.79 98.28 99.63
10 50 20 11 99.60 98.89 98.92
11 50 8 3 97.57 93.90 98.17
12 50 20 11 98.95 97.21 98.87
13 1000 8 11 97.88 97.27 99.19
14 1000 8 3 98.56 97.61 99.30
15 1000 20 11 99.95 97.89 99.51
16 50 8 3 96.91 92.19 98.12

3.3.2. Analysis of Variance (ANOVA)

Analysis of variance was adopted to observe the main and interaction factors affecting
PPCP removals. Table 3 shows the variance analysis results for the three responses. The
importance of each factor is quantified by the sum of squares (SS), and its importance in
the influence also increases as the SS value increases. A p-value less than 0.05 was adopted
to determine the potential meaning of each main and interaction effect [35].

Table 3. ANOVA results of PPCPs reverse osmosis removal.

Source Sum of
Squares df Mean Square f -Value p-Value

IBU removal

Model 16.64 7 2.38 15.04 0.0005 significant
A-Concentration 2.43 1 2.43 15.40 0.0044

B-pressure 14.03 1 14.03 88.79 <0.0001
C-pH 0.01 1 0.01 0.04 0.8547

AB 0.17 1 0.17 1.07 0.3303
AC 0.00 1 0.00 0.00 0.9961
BC 0.00 1 0.00 0.00 0.9922

ABC 0.00 1 0.00 0.00 0.9786
Pure Error 1.26 8 0.16
Cor Total 17.91 15
Std. dev. 0.40 R2 0.9294

Mean 98.65 Adjusted R2 0.8676

CBZ removal

Model 54.09 7 7.73 5.20 0.0168 significant
A-Concentration 19.50 1 19.50 13.14 0.0067

B-pressure 18.12 1 18.12 12.20 0.0082
C-pH 7.51 1 7.51 5.06 0.0546

AB 8.95 1 8.95 6.03 0.0396
AC 0.00 1 0.00 0.00 0.9864
BC 0.00 1 0.00 0.00 0.9953

ABC 0.00 1 0.00 0.00 0.9921
Pure Error 11.88 8 1.48
Cor Total 65.97 15
Std. dev. 1.22 R2 0.8199

Mean 96.65 Adjusted R2 0.6624

TCS removal

Model 4.73 7 0.68 726.45 <0.0001 significant
A-Concentration 3.15 1 3.15 3383.12 <0.0001

B-pressure 1.31 1 1.31 1409.87 <0.0001
C-pH 0.02 1 0.02 22.94 0.0014

AB 0.25 1 0.25 269.23 <0.0001
AC 0.00 1 0.00 0.00 0.9932
BC 0.00 1 0.00 0.00 0.9971

ABC 0.00 1 0.00 0.00 0.9937
Pure Error 0.01 8 0.00
Cor Total 4.74 15
Std. dev. 0.03 R2 0.9984

Mean 98.96 Adjusted R2 0.9971
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3.3.3. Main and Interaction Effect

When using the coefficient of determination (R2) to measure the proportion of the
total variability explained by the model, the f - and p-values were adopted to calculate
the significance of each coefficient, and the coefficient of determination should be at least
0.8 [36]. Table 3 shows that the R2 value in the IBU removal experiment was close to
1(0.9294). The model explains the variability of 92.94% in the data, and the f- and p-values of
the model are 15.04 and 0.0005, respectively. Besides, it shows that the model fully describes
the experimental data. A (influent IBU concentration) and B (pre-membrane pressure) were
the biggest factors affecting the removal of IBU. A (influent CBZ concentration) and B (pre-
membrane pressure) were the main factors affecting the removal of CBZ. The secondary
factor affecting the removal of CBZ was the interaction effect of A and B and C (pH). The f -
and p-values of the model were 5.20 and 0.0168, respectively, and the R2 of the model was
0.8199, which meets the requirement of data description. R2 of the TCS removal experiment
was 0.9984, which explains 99.84% of the variability in the data, with f- and p-values of
726.45 and below 0.0001, respectively. Thereof, the A (influent TCS concentration), B
(pre-membrane pressure), and interaction of A and B were the main factors affecting TCS
removal, followed by C (pH). Figure 5 shows the effects of A, B, and C on the three PPCPs,
and after discarding unimportant factors, the coded equation can be obtained as follows:

IBU removal (%) = 98.65 + 0.39 × A + 0.94 × B − 0.019 × C − 0.10 × A × B, (3)

CBZ removal (%) = 96.65 + 1.10 × A + 1.06 × B + 0.69 × C − 0.75 × A × B, (4)

TCS removal (%) = 98.96 + 0.44 × A + 0.29 × B − 0.037 × C − 0.13 × A × B, (5)
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Figure 5 shows the response surface diagram of the removal rate of three PPCPs: IBU,
CBZ, and TCS, and the three variables of concentration, pressure, and pH. It can be seen
from the figure that concentration and pre-membrane pressure are the most significant
factors affecting the removal rate of PPCPs. The effect of pH on the removal rate is relatively
minor. This result is consistent with the conclusion of the variance analysis.
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3.3.4. Operation Condition Optimization

The removal effect of the three PPCPs is optimized by multiple response methods
of expected (D) functions, including the optimization of process parameters for influent
PPCP concentrations, pre-membrane pressure, and pH. The optimal level of the three
PPCP removals was found. To achieve the maximum results, considering the actual
operating conditions of reverse osmosis, the influent PPCP concentrations range was set
to 50–500 µg/L, and the pre-membrane pressure range was set to 8–16 bar, with the pH
range set to 4–10. The removal rates of the three PPCPs were set to the maximum (with
the removal importance level 5/5 for IBU, 5/5 for CBZ, and 3/5 for TCS). Figure 6 shows
the generated numerical optimization diagram: When the initial concentration of PPCPs
was 500 µg/L, pre-membrane pressure was 16 bar, with the pH of 10, the three PPCPs,
including IBU, CBZ, and TCS had the best removal rates, which were 98.93%, 97.47%, and
99.01%, respectively, and the expected value was 0.667.
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4. Conclusions

The paper studied the removal effect of reverse osmosis membranes on three common
PPCPs under different process conditions. The factorial design (FD) method was adopted
to determine the main parameter conditions to study the interaction effect of each condition,
and the reverse osmosis process conditions relating to the removal of IBU, CBZ, and TCS
were optimized. Analysis of Variance (ANOVA) and F-test were adopted to determine the
most important variable conditions.

As shown in the preliminary experiment, the removal rate of PPCPs increased with
the increase of the initial influent concentration and the pre-membrane pressure. The pH
affected the removal effect of different PPCPs by influencing the electrostatic effect between
the pollutants and the membrane, and the final removal effect of PPCPs was the result of the
combined action of size repulsion and electrostatic repulsion. Under different conditions,
the dynamic adsorption of PPCPs by the RO membrane all met the pseudo-first-order
reaction kinetic adsorption model. Through model fitting, it was found that the adsorption
capacity of PPCPs on the membrane increased with the increase of initial concentration and
decreased with the increase of pressure before the membrane. The hydrophobic affinity
between PPCPs and the membrane surface drove the adsorption. However, electrostatic
repulsion also affects the adsorption effect of PPCPs on the membrane surface.

When the process was optimized by the factorial design method, it was found that
the removal rates of IBU, CBZ, and TCS under the best conditions (with an influent
concentration of 500 µg/L, pre-membrane pressure of 16 bar, and pH of 10) were 98.93%,
97.47%, and 99.01%, respectively.
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Appendix A

Table A1. Kinetic parameters of pseudo-first-order reaction model (Concentration).

C0 (µg/L) Qe (µg/cm2) K (h−1) R2

IBU
500 4.45 3.78 0.994

1000 7.77 2.35 0.953

CBZ
500 3.71 0.50 0.977

1000 4.48 1.44 0.952

TCS
500 2.25 1.05 0.899

1000 2.81 1.24 0.887

Table A2. Kinetic parameters of pseudo-first-order reaction model (Pre-membrane pressure).

P (bar) Qe (µg/cm2) K (h−1) R2

IBU

8 5.32 3.37 0.939
12 4.45 3.78 0.995
16 3.69 1.01 0.901
20 2.69 1.14 0.989

CBZ

8 3.71 0.50 0.977
12 2.50 1.24 0.954
16 1.86 2.26 0.928
20 1.75 3.03 0.965

TCS

8 4.63 0.57 0.844
12 3.95 0.60 0.812
16 2.80 2.58 0.915
20 2.25 1.05 0.899

Table A3. Kinetic parameters of pseudo-first-order reaction model (pH).

pH Qe (µg/cm2) K (h−1) R2

IBU

3 17.51 1.65 0.982
5 4.93 0.27 0.967
7 3.74 3.58 0.972
9 2.39 0.26 0.969

11 1.82 4.26 0.983

CBZ

3 1.64 2.22 0.975
5 1.80 1.83 0.975
7 1.93 1.53 0.897
9 1.76 3.39 0.939

11 2.12 2.29 0.950

TCS

3 4.34 3.22 0.897
5 3.18 0.60 0.981
7 3.09 0.94 0.931
9 2.98 0.34 0.971

11 2.27 0.40 0.857
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