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Abstract: Recent experiments have indicated that at least a part of the osmotic pressure across the
giant unilamellar vesicle (GUV) membrane was balanced by the rapid formation of the monodisperse
daughter vesicles inside the GUVs through an endocytosis-like process. Therefore, we investigated a
possible osmotic role played by these daughter vesicles for the maintenance of osmotic regulation
in the GUVs and, by extension, in living cells. We highlighted a mechanism whereby the daughter
vesicles acted as osmotically active solutes (osmoticants), contributing an extra vestigial osmotic
pressure component across the membrane of the parent vesicle, and we showed that the consequences
were consistent with experimental observations. Our results highlight the significance of osmotic
regulation in cellular processes, such as fission/fusion, endocytosis, and exocytosis.
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1. Introduction

In osmotic-stress experiments on lipid multilayers [1], where the osmotic pressure
was regulated by dissolved PEG osmoticant and the inter-bilayer separation was measured
by small-angle X-ray scattering (SAXS) [2], it was found that, in general, the samples
exhibited smaller bilayer separations in a completely unstressed state, which was defined
by the vanishing of the osmotic pressure P = 0, than at the smallest finite osmotic stresses
applied by the PEG osmoticant. It was proposed that unilamellar vesicles could peel off
during sample preparation and could constitute another osmotically active component of
the solution. The osmotic pressure exhibited by the peeled-off vesicles was dubbed the
vestigial osmotic pressure and added to the osmotically active dissolved PEG. The total
osmotic pressure would then be governed by the sum of the direct PEG-related osmotic
pressure, under full experimental controls, and the vestigial osmotic pressure, which was
contingent upon the method of sample preparation.

In a recent experiment, DOPC giant unilamellar vesicles (GUVs) were prepared in
pure water without any buffer or solutes, which allowed for in situ observations directly
after changing the bathing solution and adding glucose to the solution [3]. In this case, the
sugar molecules could induce spontaneous curvatures, and the GUVs rapidly deformed to
a prolate shape at an osmotic pressure of up to 0.3 atm while remaining stable for several
hours under these solution conditions. At even higher osmotic pressures, from 0.2 atm
to 0.4 atm, subsequent rinsing resulted in the formation of internal “daughter” vesicles,
which were fully disconnected from the parent lipid bilayer, with an interior solution
originating from the bulk liquid and having an approximate radii of a factor of 5 smaller
than the original GUVs. At a lower osmotic pressure of 0.1 atm, no such changes were
discernible. While similar results had been reported previously [4,5], the observation of the
disconnected progeny inside the parent vesicle was unique.

In the following article, we describe a simple model for the osmotic action of the
“daughter” vesicles inside giant DOPC unilamellar vesicles (GUVs). The daughter vesicles
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were assumed to be completely disconnected from each other as well as from the parent
vesicle and, thus, represented a different topological state. The model was based on the
curvature-free energy that also included a Gaussian curvature term because the formation
process of the daughter vesicles involved topological changes. The osmotic actions of the
daughter vesicles were approximated at the lowest order by the simplest Van’t Hoff osmotic
pressure. Though more detailed calculations could be performed, we showed that even at
the simplest level, the results yielded reasonable values for relevant observations.

2. Osmotic Pressure Equilibrium

In our model, we assumed and analyzed two states of a single-component lipid bilayer
GUV and disregarded the effect of thermal fluctuations [6]. The parent state (designated as
“0”, as shown in Figure 1a) was devoid of any spontaneous curvature and its curvature-free
energy was described by its Helfrich ansatz in the form:

F0 = 1
2 KC

∮
A0

(2H)2 dA + KG

∮
A0

K dA + γ0

∮
A0

dA + P0

∫
V0

dV, (1)

where KC is the bending modulus. We specifically included the Gaussian curvature term
with the corresponding modulus, KG, as the emergence of the daughter vesicles involved a
topological change, to which this term was sensitive.

Figure 1. (a) A schematic depiction of the “parent”, a single spherical vesicle with the fixed radius
R0, area A0, and volume V0 (the parent state), converting to (b) the “progeny” spherical vesicle with
the fixed radius R1, area A1, and volume V1, including n daughter spherical vesicles with the fixed
radius Rd, area Ad, and volume Vd (the progeny state).

Two Lagrangian mutipliers, γ0 and P0, were chosen to fix the area A0 and the volume
V0 of the vesicle [7]. For the spherical shape characterized by the radius R, we used the
simplified forms of the mean curvature and the Gaussian curvature as:

H = 1
2 (C1 + C2) =

1
R

and K = C1C2 =
1

R2 . (2)

The shape equation was obtained from the first variation of the Helfrich free energy
and was determined as the solution of the Euler-Lagrange equation:

P0 − 2γ0H + 2KC H
(

2H2 − 2K
)
+ 2Kc∆sH = 0, (3)

where ∆s is the surface Laplace-Beltrami operator [8–10]. After delimiting the spherical
vesicle shapes, the terms involving the surface Laplacian vanished.
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In our model, the progeny state with internal daughter vesicles (designated as “1”, as
shown in Figure 1b) described the system after the introduction of glucose molecules into
the bathing solution. We presumed that the only effect of adding the glucose molecules
was to induce spontaneous curvature by interacting with the lipid bilayer [7,11]. This was
also confirmed at lower osmotic pressures when the addition of sugar induced a prolate
shape, while at higher osmotic pressure, it resulted in the formation of internal daughter
vesicles [3]. Therefore, we assumed that the progeny state would be characterized by a
finite, if small, spontaneous curvature. In this state, the Helfrich free energy could be
written in the form:

F1 = 1
2 KC

∮
A0

(2H + C0)
2 dA + KG

∮
A0

K dA + γ1

∮
A0

dA + P1

∫
V1

dV, (4)

since the total area was conserved, i.e., A0 = A1, but the volume was not. The sign of
C0 was consistent with the experiment where the spontaneous curvature appeared to be
negative.

The Euler-Lagrange equation for the shape then was expressed, as follows:

P1 − 2γ1H + KC(2H + C0)
(

2H2 − C0H − 2K
)
+ 2KC∆s H = 0. (5)

Once again, the last term vanished if we assumed that the state ”1“ consisted exclu-
sively of spherical vesicle shapes, whether they were the parent or the daughter vesicles.
The conservation of the total area in the system undergoing the change from State 0 →
State 1 could then be written as:

A0 = A1 + nAd or R2
0 = R2

1 + nR2
d, (6)

where n is the number of disconnected daughter vesicles in the formation state and Rd is
their radius, which was assumed to be the same for all.

The Helfrich free energies for the parent and progeny states of spherical vesicles with
constant curvatures could then be written as follows. In the initial state of a spherical parent
vesicle, the elastic free energy is:

F0 = 8πKC + 4πKG + γ0 A0 + P0V0 (7)

While in the final state, the interior of the shrunken parent vesicle contained a progeny
of small, spherical daughter vesicles, well separated from one another. The elastic energy
in this scenario was expressed by the following:

F1 = 8πKC(1 + C0R1/2)2 + 8πnKC(1 + C0Rd/2)2 + 4π(n + 1)KG + γ1 A0 + P1V1. (8)

Based on the above, we obtained A0 = 4πR2
0, V0 = 4

3 πR3
0 and V1 = 4

3 πR3
1. The

spontaneous curvature C0 originated from the interaction of the glucose molecules with
the bilayer. We expressed the differences in the Helfrich energy between the parent and
progeny states as:

∆F = F1 −F0 = 8πnKC + 8πKCC0(R1 + nRd) + 2πKCC2
0 R2

0

+ 4πnKG + γsp A0 + P1V1 − P0V0, (9)

where the difference γ1 − γ0 is the glucose-induced spontaneous tension [12].

γ1 − γ0 = γsp. (10)

The expression γsp = KCC2
0/2 was recently reported in [12], in which the spontaneous

curvature was one half of C0 in their work due to different free-energy coefficients. However,
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the above ansatz did not contain any details of the energies involved in the vesicle formation,
apart from the curvature energy.

In general, the difference in free energies can be of either sign. However, in a thermal
equilibrium, a spontaneous generation of a progeny state with n 6= 0 could only occur if
the difference in the free energies was negative, i.e., ∆F ≤ 0, with the critical isotherm
corresponding to ∆F = 0. Next, we analyzed this critical isotherm.

The connection between the two osmotic pressures of the parent and progeny states, P0
and P1, respectively, and the radii of the vesicles in the two states was obtained according to
Euler-Lagrange equations. Furthermore, it was straightforward to deduce from the shape
calculation in of Equation (3) that:

P0 −
2γ0

R0
= 0, (11)

In addition, based on the shape calculation in Equation (5), we could assume con-
versely that:

P1 −
2γ1

R1
−

KCC2
0

R1
+

2KcC0

R2
1

= 0. (12)

According to these definitions, we associated the differences between the osmotic
pressures P0 and P1 with the vestigial osmotic pressure differences. We assumed that it was
a consequence of the osmotic action of the freely mobile n daughter vesicles in the progeny
state, and we disregarded any other contributions to the osmotic pressure. Formally, the
vestigial osmotic pressure differences of the n daughter vesicles could be written as:

δP = P1 − P0 =
n
V1

(kBT)φ
(

n
V1

)
(13)

where φ
(

n
V1

)
is the osmotic coefficient as a function of the density of the daughter vesicles,

and n
V1
(kBT) is the Van’t Hoff ideal osmotic pressure. In a recent experimental work, the

daughter vesicles were well separated in the parent vesicle [3], and we assumed that
the interactions between them were negligible. Next, we set φ

(
n

V1

)
= 1; however, more

sophisticated models have considered that this scenario could be classified as a small
system [13], and these could be used to account for various effects that we disregarded in
this study.

3. Results and Discussion

We solved the above equations for the critical isotherm, defined specifically as ∆F = 0
for R1 and n as functions of the original radius R0, all based on experiments. The stable
transition occurred for ∆F ≤ 0, and the critical isotherm delimited the region where the
progeny formed inside the parent vesicle.

Since we wanted to compare the most recent experiments on DOPC GUVs [3], all the nu-
merical values were used as the DOPC bilayer measurements, namely as Kc = 20kBT [14–16],
KG = −15kBT [15,16], γ0 = 0.01 mN/m [17], γsp = 7.05× 10−6 mN/m, which corre-
sponded to C0 = 0.206 µm−1 falling within the range in [7], T = 300 K (room temperature).
Based on the experiment in [3], the statistically average radius of a daughter vesicle was
Rd ∼ 1.5 µm.

The equations derived for R1 = R1(R0), n = n(R0), and δP = δP(R0) could be
solved numerically, and the results are presented in Figures 2–4. The light yellow color
indicates a stable regime for ∆F < 0. The blue solid line, the red dashed line, and the
green dash-dotted line corresponds to the spontaneous tension γsp = 7.05× 10−6 mN/m,
7.01× 10−6 mN/m, and 6.97× 10−6 mN/m, respectively, which were in the spontaneous
tension range in Table 1 of [7]. We found that a smaller spontaneous tension softened the
membrane of the parent vesicle to generate more daughter vesicles, as shown in Figure 3,
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and resulted in smaller daughter vesicles, as shown in Figure 2. More daughter vesicles, by
necessity, also created more osmotic pressure, as shown in Figure 4. In the experiments, the
value of the spontaneous tension was measured via the spontaneous curvature [18], which
controlled membrane curvature and stabilized the multi-sphere morphologies [19].

Figure 2. The final vesicle size R1 as a function of the initial size R0. The light yellow color indicates
a stable regime for ∆F < 0. The blue solid line, the red dashed line, and the green dash-dotted line
corresponds to γsp = 7.05× 10−6 mN/m, 7.01× 10−6 mN/m, and 6.97× 10−6 mN/m, respectively,
within the spontaneous tension range in Table 1 of [7].

Figure 3. The number of daughter vesicles as a function of the initial size R0. The black dots with
the error bars are calculated from the experimental data of [3]. The light yellow color indicates the
stable regime for ∆F < 0. The blue solid line, the red dashed line, and the green dash-dotted line
corresponds to γsp = 7.05× 10−6 mN/m, 7.01× 10−6 mN/m, and 6.97× 10−6 mN/m, respectively,
within the spontaneous tension range in Table 1 of [7].
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Figure 4. Vestigial osmotic pressure as a function of the initial size R0. The vestigial osmotic pressure,
according to the experiments in [2], was estimated to be 0.4 mPa, which is marked by a magenta
arrow. The light yellow color indicates a stable regime for ∆F < 0. The blue solid line, the red dashed
line, and the green dash-dotted line corresponds to γsp = 7.05× 10−6 mN/m, 7.01× 10−6 mN/m,
and 6.97× 10−6 mN/m, respectively, within the spontaneous tension range in Table 1 of [7].

An approximate scaling form of the solution was obtained by considering C0R0 � 1,
yielding the leading order dependence ∼ 1/R1 in Equation (12) and P1 ∼ 1/R1, according
to P1V1 ∼ R2

1 in Equation (9) and similarly, P0V0 ∼ R2
0 in Equation (9). Considering the

critical isotherm ∆F = 0 in Equation (9), which was, once again, at the lowest order, we
found the relation R1 ∼ R0. However, to maintain the leading-order terms R2

1 and R2
0 in

Equation (9), we could easily confirm the quadratic relation n ∼ R2
0. By substituting this

quadratic relation into Equation (12), we found the vestigial osmotic pressure δP ∼ 1/R0,
since n/V1 ∼ 1/R1. Therefore, the behaviors of the three numerically obtained curves
approximately followed linear, quadratic, and inversely linear relations, respectively.

4. Conclusions

The osmotic pressure plays an important role in shape change and budding [20,21]. In
this study, we explored the concept of additional vestigial osmotic pressure [2] stemming
from osmotically active daughter vesicles, which were fully disconnected from the lipid
bilayer of the parent vesicle, and acting upon the GUV lipid membrane. This work was
motivated by the recent experiments of Liu et al. [3]. After calculating the simple Helfrich
elastic free energies of the initial and final states, we derived the critical isotherm that
corresponded to the onset of the progeny formation inside the parent vesicle and showed
that the consequences were consistent with experimental observations in [3]. While our
theoretical model was simplified and could be further expanded at various levels, it did
quantify the concept of the vestigial osmotic pressure and its role in the osmotic equilibrium
of budding vesicles.

Our work formalized the essential concept that disconnected daughter vesicles could
act as osmoticants, i.e., osmotically active solutes, and contribute additional vestigial
osmotic pressure across the membrane of the parent vesicle, despite not being directly
connected with other osmotically active components. While we used a simple Van’t Hoff
formula for this component of osmotic pressure, it could be directly generalized, for
example, to consider the interactions between the daughter vesicles confined inside the
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progeny vesicle, as well as to theoretically estimate osmotic pressures of various colloidal
dispersions based on different models of electrostatic interactions [22].

The results presented in this work highlighted the significance of non-conventional
sources of (vestigial) osmotic pressure, such as osmotically active exfoliated unilamellar
vesicles [2] and osmotically active fully disconnected daughter vesicles [3]. These effects
on the mechanism of osmotic regulation in cellular processes, such as fission/fusion,
endocytosis, exocytosis, and nanoparticle-wrapping [23] should not be ignored.
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