# Experimental Study and Modeling of Beer Dealcoholization via Reverse Osmosis

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

^{2}surface was used. The flux values were measured during the separations. The ethanol content, extract content, bitterness, color, pH, turbidity, and dynamic viscosity of beer and permeate samples were measured. The initial flux values were determined using linear regression. The initial ethanol flux (${J}_{EtOH0}$) values were calculated from the initial flux values and the ethanol content values. A 2

^{P}full factorial experimental design was applied, and the factors were as follows: transmembrane pressure (TMP): 10, 20, 30 bar; retentate flow rate (Q): 120, 180, 240 L/h; ${J}_{EtOH0}$ was considered as the response. The effect sizes of the significant parameters were calculated. The global maximum of the objective function was found using a self-developed Grid Search code. The changes in the analytical parameters were appropriate. The TMP had a significant effect, while the Q had no significant effect on the ${J}_{EtOH0}$. The effect size of the TMP was 1.20. The optimal value of the factor amounted to TMP = 30 bar. The predicted ${J}_{EtOH0}$ under the above conditions was 121.965 g/m

^{2}h.

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Beers

#### 2.2. Beer Dealcoholization via Reverse Osmosis

^{2}active surface was used for the dealcoholization processes. Dealcoholization experiments were performed according to the experimental design (Table 3) discussed in Section 2.9. The two factors were the transmembrane pressure (TMP) and the retentate flow rate (Q). Generally, in the case of RO processes, the retentate flow rate (Q) is lower than the feed flow rate by the permeate flow rate (flow drop) [23]. In this study, the permeate flow rates were less than 0.4% of the feed flow rates, and thus, the flow drops were negligible.

#### 2.3. Membrane Cleaning

#### 2.4. Analytical Parameters

#### 2.5. Separation Characteristics Parameters

_{i}is the retention (%) of the component i, ${C}_{{p}_{i}}$ (g/L) is the permeate concentration of the component i, and ${C}_{{b}_{i}}$ (g/L) is the bulk concentration of the component i.

#### 2.6. Hydrodynamic Parameters

^{2}h) is the flux, $V$ (L) is the permeate volume, ${A}_{m}$ (m

^{2}) is the membrane active surface area, and ${t}_{i}$ (h) is the time interval.

^{2}h) is the mass flux, and $m$ (g) is the permeate mass.

^{2}h) is the ethanol flux, ${m}_{EtOH}$ (g) is the mass of the ethanol in the permeate, ${c}_{EtOH}$ (% (w/w)) is the ethanol content in the permeate, and ${\rho}_{EtOH}$ (g/L) is the ethanol density at the given temperature.

^{2}h) is the flux at any time (BDA permeate), ${J}_{0}$ (L/m

^{2}h) is the initial flux (BDA permeate), $K$ (1/h) is the flux decline coefficient (BDA permeate), and $t$ (h) is the time.

^{2}h) is the water flux before separation, ${\mu}_{w}$ (Pas) is the dynamic viscosity of the water at the given temperature, and ${R}_{m}$ (1/m) is the intrinsic resistance of the clean membrane.

#### 2.7. Evaluation of Cleaning Efficiency

^{2}h) is the water flux after the membrane cleaning, and ${R}_{n}$ (1/m) is the intrinsic resistance of the membrane after the membrane cleaning.

#### 2.8. Linear Regression

#### 2.9. Modeling

#### 2.10. Assumptions

## 3. Results and Discussion

**Analytical parameters**of beer and permeate samples,**Separation characteristic parameters**of BDA processes,**Hydrodynamic parameters**of BDA processes,- Results of the
**linear regression**of BDA processes, - Results of
**modeling,** - Results of
**membrane cleaning efficiency,** - Research
**limitations.**

#### 3.1. Analytical Parameters

^{−3}Pas).

#### 3.2. Separation Characteristics Parameters

#### 3.3. Hydrodynamic Parameters

#### 3.4. Linear Regression

#### 3.5. Modeling

^{2}h. Therefore, the highest ${J}_{EtOH0}$ could be achieved with the highest TMP.

#### 3.6. Membrane Cleaning Efficiency

#### 3.7. Limitations

## 4. Conclusions

^{2}h in our experiments) could be achieved with the highest TMP (TMP = 30 bar in our experiments). Thus, commercial breweries should set the TMP at the highest possible level, considering the energy consumption.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Wunderlich, S.; Back, W. Overview of Manufacturing Beer: Ingredients, Processes, and Quality Criteria. In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2008; pp. 3–16. [Google Scholar]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Soy Sauce, A.; Zhao, H. Non-Alcoholic and Craft Beer Production and Challenges. Processes
**2020**, 8, 1382. [Google Scholar] [CrossRef] - Sohrabvandi, S.; Mousavi, S.M.; Razavi, S.H.; Mortazavian, A.M.; Rezaei, K. Alcohol-Free Beer: Methods of Production, Sensorial Defects, and Healthful Effects. Food Rev. Int.
**2010**, 26, 335–352. [Google Scholar] [CrossRef] - Ministry of Agriculture of Hungary. Beer; Ministry of Agriculture of Hungary: Budapest, Hungary, 2013; Volume 2, p. 3.
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; Almeida E Silva, J.B. A Review of Methods of Low Alcohol and Alcohol-Free Beer Production. J. Food Eng.
**2012**, 108, 493–506. [Google Scholar] [CrossRef] - Conidi, C.; Castro-Muñoz, R.; Cassano, A. Chapter 18—Nanofiltration in Beverage Industry. In Nanotechnology in the Beverage Industry; Amrane, A., Rajendran, S., Nguyen, T.A., Assadi, A.A., Sharoba, A.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 525–548. ISBN 978-0-12-819941-1. [Google Scholar]
- De Francesco, G.; Marconi, O.; Sileoni, V.; Freeman, G.; Lee, E.G.; Floridi, S.; Perretti, G. Influence of the Dealcoholisation by Osmotic Distillation on the Sensory Properties of Different Beer Types. J Food Sci Technol
**2020**, 58, 1488–1498. [Google Scholar] [CrossRef] [PubMed] - Purwasasmita, M.; Kurnia, D.; Mandias, F.C.; Khoiruddin; Wenten, I.G. Beer Dealcoholization Using Non-Porous Membrane Distillation. Food Bioprod. Process.
**2015**, 94, 180–186. [Google Scholar] [CrossRef] - Ambrosi, A.; Cardozo, N.S.M.; Tessaro, I.C. Membrane Separation Processes for the Beer Industry: A Review and State of the Art. Food Bioprocess Technol.
**2014**, 7, 921–936. [Google Scholar] [CrossRef] - Muller, C.; Neves, L.E.; Gomes, L.; Guimarães, M.; Ghesti, G. Processes for Alcohol-Free Beer Production: A Review. Food Sci. Technol.
**2019**, 40, 273–281. [Google Scholar] [CrossRef][Green Version] - Catarino, M.; Mendes, A.; Madeira, L.M.; Ferreira, A. Alcohol Removal From Beer by Reverse Osmosis. Sep. Sci. Technol.
**2007**, 42, 3011–3027. [Google Scholar] [CrossRef] - Alcantara, B.M.; Marques, D.R.; Chinellato, M.M.; Marchi, L.B.; da Costa, S.C.; Monteiro, A.R.G. Assessment of Quality and Production Process of a Non-Alcoholic Stout Beer Using Reverse Osmosis. J. Inst. Brew.
**2016**, 122, 714–718. [Google Scholar] [CrossRef] - Ramsey, I.; Yang, Q.; Fisk, I.; Ayed, C.; Ford, R. Assessing the Sensory and Physicochemical Impact of Reverse Osmosis Membrane Technology to Dealcoholize Two Different Beer Styles. Food Chem. X
**2021**, 10, 100121. [Google Scholar] [CrossRef] [PubMed] - Jastrembska, K.; Jirankova, H.; Mikulasek, P. Dealcoholisation of Standard Solutions by Reverse Osmosis and Diafiltration. Desalin. Water Treat.
**2017**, 75, 357–362. [Google Scholar] [CrossRef] - Halama, R.; Brož, P.; Izák, P.; Kačírková, M.; Dientsbier, M.; Olšovská, J. Beer Dealcoholization Using Pervaporation. KP
**2019**, 65, 65–71. [Google Scholar] [CrossRef] - Liguori, L.; De Francesco, G.; Russo, P.; Perretti, G.; Albanese, D.; Di Matteo, M. Production and Characterization of Alcohol-Free Beer by Membrane Process. Food Bioprod. Process.
**2015**, 94, 158–168. [Google Scholar] [CrossRef] - Russo, P.; Liguori, L.; Albanese, D.; Crescitelli, A.; Di Matteo, M. Investigation of Osmotic Distillation Technique for Beer Dealcoholization. Chem. Eng. Trans.
**2013**, 32, 1735–1740. [Google Scholar] [CrossRef] - Azizi Namaghi, H.; Mousavi, S.M. Factorial Experimental Design for Treatment of an Industrial Wastewater Using Micellar-Enhanced Ultrafiltration. Desalination Water Treat.
**2016**, 57, 5416–5424. [Google Scholar] [CrossRef] - Banvolgyi, S.; Bahceci, K.S.; Vatai, G.; Bekassy, S.; Bekassy-Molnar, E. Partial Dealcoholization of Red Wine by Nanofiltration and Its Effect on Anthocyanin and Resveratrol Levels. Food Sci. Technol. Int.
**2016**, 22, 677–687. [Google Scholar] [CrossRef] - Habibi, A.; Aroujalian, A.; Raisi, A.; Zokaee, F. Influence of Operating Parameters on Clarification of Carrot Juice by Microfiltration Process. J. Food Process Eng.
**2011**, 34, 860–877. [Google Scholar] [CrossRef] - Nor, M.Z.M.; Ramchandran, L.; Duke, M.; Vasiljevic, T. Integrated Ultrafiltration Process for the Recovery of Bromelain from Pineapple Waste Mixture. J. Food Process Eng.
**2017**, 40, e12492. [Google Scholar] [CrossRef] - Hamdi, L.; Boumehdi Toumi, L.; Salem, Z.; Allia, K. Full Factorial Experimental Design Applied to Methylene Blue Adsorption onto Alfa Stems. Desalination Water Treat.
**2016**, 57, 6098–6105. [Google Scholar] [CrossRef] - Salamon, E.; Goda, Z.; Berek, T. Analysis of Reverse Osmosis Filter Permeability. Pollack Period.
**2018**, 13, 221–230. [Google Scholar] [CrossRef] - Analytica EBC | Beer | 9.8—Bitterness of Beer (IM). Available online: https://brewup.eu/ebc-analytica/beer/bitterness-of-beer-im/9.8 (accessed on 31 August 2021).
- Analytica EBC | Beer | 9.6—Colour of Beer: Spectrophotometric Method (IM). Available online: https://brewup.eu/ebc-analytica/beer/colour-of-beer-spectrophotometric-method-im/9.6 (accessed on 31 August 2021).
- Cimini, A.; Moresi, M. Beer Clarification Using Ceramic Tubular Membranes. Food Bioprocess. Technol.
**2014**, 7, 2694–2710. [Google Scholar] [CrossRef] - Mezger, T.G. Model functions for flow curves including a yield point. In The Rheology Handbook; Vincentz Network: Hannover, Germany, 2006; p. 57. [Google Scholar]
- Basu, S.; Balakrishnan, M. Polyamide Thin Film Composite Membranes Containing ZIF-8 for the Separation of Pharmaceutical Compounds from Aqueous Streams. Sep. Purif. Technol.
**2017**, 179, 118–125. [Google Scholar] [CrossRef] - Gáspár, I.; Koris, A.; Bertalan, Z.; Vatai, G. Comparison of Ceramic Capillary Membrane and Ceramic Tubular Membrane with Inserted Static Mixer. Chem. Pap.
**2011**, 65, 596–602. [Google Scholar] [CrossRef] - Gnus, M.; Dudek, G.; Turczyn, R. The Influence of Filler Type on the Separation Properties of Mixed-Matrix Membranes. Chem. Pap.
**2018**, 72, 1095–1105. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ben Hassan, I.; Ennouri, M.; Lafforgue, C.; Schmitz, P.; Ayadi, A. Experimental Study of Membrane Fouling during Crossflow Microfiltration of Yeast and Bacteria Suspensions: Towards an Analysis at the Microscopic Level. Membranes
**2013**, 3, 44–68. [Google Scholar] [CrossRef] [PubMed][Green Version] - Blanpain-Avet, P.; Migdal, J.F.; Bénézech, T. The Effect of Multiple Fouling and Cleaning Cycles on a Tubular Ceramic Microfiltration Membrane Fouled with a Whey Protein Concentrate. Membrane Performance and Cleaning Efficiency. Food Bioprod. Process.
**2004**, 82, 231–243. [Google Scholar] [CrossRef] - Tabachnick, B.G.; Fidell, L.S. Cleaning Up Your Act: Screening Data Prior to Analysis. In Using Multivariate Statistics; Pearson: London, UK, 2013; p. 79. [Google Scholar]
- Kemény, S. 2
_{p}típusú teljes faktoriális kísérleti tervek. In Kísérletek Tervezése És Értékelése; Tankönyvkiadó Vállalat: Budapest, Hungary, 1985; pp. 137–142. 2p. [Google Scholar] - Akcal Comoglu, B.; Filik Iscen, C.; Ilhan, S. The Anaerobic Treatment of Pharmaceutical Industry Wastewater in an Anaerobic Batch and Upflow Packed-Bed Reactor. Desalination Water Treat.
**2016**, 57, 6278–6289. [Google Scholar] [CrossRef] - G.-Tóth, B.; Tűz, C. Globális Optimalizálás. Available online: http://math.bme.hu/~tuzcsaba/doc/globopt_hun.pdf (accessed on 31 August 2021).
- Parkhomenko, A. Grid Search in MATLAB. Available online: https://www.andrii-parkhomenko.net/files/Grid%20Search%20in%20Matlab.pdf (accessed on 13 July 2021).
- Popescu, V.; Soceanu, A.; Dobrinas, S.; Stanciu, G. A Study of Beer Bitterness Loss during the Various Stages of the Romanian Beer Production Process. J. Inst. Brew.
**2013**, 119, 111–115. [Google Scholar] [CrossRef] - Fărcaş, A.; Tofana, M.; Socaci, S.; Scrob, S.; Salanta, L.-C.; Andrei, B. Preliminary Study on Antioxidant Activity and Polyphenols Content in Discharged Waste from Beer Production. J. Agroal. Proc. Technol.
**2013**, 19, 319–324. [Google Scholar] - Stopka, J.; Schlosser, Š.; Dömény, Z.; Šmogrovičová, D. Flux Decline in Microfiltration of Beer and Related Solutions of Model Foulants through Ceramic Membranes. Pol. J. Environ. Stud.
**2000**, 9, 65–69. [Google Scholar] - Steiner, E.; Arendt, E.K.; Gastl, M.; Becker, T. Influence of the Malting Parameters on the Haze Formation of Beer after Filtration. Eur. Food Res. Technol.
**2011**, 233, 587–597. [Google Scholar] [CrossRef] - Bamforth, C.W. The Foaming Properties of Beer. J. Inst. Brew.
**1985**, 91, 370–383. [Google Scholar] [CrossRef] - Chang, I.-S.; Lee, C.-H. Membrane Filtration Characteristics in Membrane-Coupled Activated Sludge System—The Effect of Physiological States of Activated Sludge on Membrane Fouling. Desalination
**1998**, 120, 221–233. [Google Scholar] [CrossRef] - Kaneda, H.; Takashio, M.; Tamaki, T.; Osawa, T. Influence of PH on Flavour Staling during Beer Storage. J. Inst. Brew.
**1997**, 103, 21–23. [Google Scholar] [CrossRef] - Khattab, I.S.; Bandarkar, F.; Fakhree, M.A.A.; Jouyban, A. Density, Viscosity, and Surface Tension of Water+ethanol Mixtures from 293 to 323K. Korean J. Chem. Eng.
**2012**, 29, 812–817. [Google Scholar] [CrossRef] - Severa, L.; Los, J. On the Influence of Temperature on Dynamic Viscosity of Dark Beer. Acta Univ. Agric. Et Silvic. Mendel. Brun.
**2008**, 56, 303–307. [Google Scholar] [CrossRef][Green Version] - Li, M. Reducing Specific Energy Consumption in Reverse Osmosis (RO) Water Desalination: An Analysis from First Principles. Desalination
**2011**, 276, 128–135. [Google Scholar] [CrossRef]

**Figure 2.**Schematic flow diagram of crossflow reverse osmosis (CFRO) equipment. 1—feed tank, 2—pump, 3—reverse osmosis membrane module, 4—valve, 5—heat exchanger (cooler/heater), 6—manometer, 7—measuring cylinder, 8—flowmeter, 9—thermometer.

**Figure 3.**Hydrodynamic parameters of the separations: (

**a**) initial flux (log); (

**b**) initial ethanol flux (log).

**Figure 4.**Two-dimensional response plot of the effect of significant parameter (transmembrane pressure–${x}_{TMP}$) for initial ethanol flux (${J}_{EtOH0}$).

**Table 1.**Comparison of installation cost, operating cost, and quality of final beer of low-alcohol beer (LAB) and alcohol-free beer (AFB) production methods (based on [10]).

Method | Installation Cost | Operating Cost | Beer Quality |
---|---|---|---|

Evaporation | ** | * | * |

Rectification | ** | * | ** |

Stripping | ** | ** | ** |

Dialysis | *** | * | * |

Nanofiltration | ** | ** | *** |

Osmotic distillation | ** | *** | ** |

Pervaporation | * | ** | *** |

Reverse osmosis | ** | * | ** |

Changed mashing | * | *** | * |

Arrested/limited fermentation | * | *** | * |

Cold contact process | ** | ** | * |

Special yeast | ** | ** | * |

Continuous fermentation | * | ** | * |

Factor | Abbreviation | Code | Unit | Factor Levels | ||
---|---|---|---|---|---|---|

Low (−1) | Central (0) | High (+1) | ||||

Transmembrane pressure | TMP | x_{TMP} | bar | 10 | 20 | 30 |

Retentate flow rate | Q | x_{Q} | L/h | 120 | 180 | 240 |

**Table 3.**The design matrix of the ${2}^{p}$ full factorial experimental design of BDA via RO experiments.

Standard Order Number | Actual Value | Coded Value | ||
---|---|---|---|---|

TMP (bar) | Q (L/h) | x_{TMP} | x_{Q} | |

1 | 10 | 120 | −1 | −1 |

2 | 10 | 240 | −1 | +1 |

3 | 30 | 240 | +1 | +1 |

4 | 30 | 120 | +1 | −1 |

5 (C) | 20 | 180 | 0 | 0 |

6 (C) | 20 | 180 | 0 | 0 |

7 (C) | 20 | 180 | 0 | 0 |

**Table 4.**Aspects and comments on Grid Search optimization method applied for response objective function.

Method | Comments | Conclusion |
---|---|---|

Response method | The objective function is continuous. | Using Grid Search optimization for the response objective function can provide an optimal parameter set that can be directly applied in the membrane separation process. |

Analytical optimization of the objective function results in a parameter set that does not necessarily fit to the parameter settings available for membrane separation process. | ||

Grid Search optimization method | It is a numerical method with brute force (exhaustive) search (global optimization method on a grid). | |

It does not become stuck at a local optimum. | ||

The set of optimization grid points can be adjusted to the resolution of the parameter ranges available for the membrane process. |

Name of Parameter | Beer (Feed) |
---|---|

Alcohol content (v/v%) | 4.34 |

Original real extract (w/w%) | 10.28 |

Final real extract (w/w%) | 3.63 |

Final apparent extract (w/w%) | 2.04 |

Bitterness (IBU) | 12 |

Color (EBC) | 8.89 |

pH | 4.23 |

Turbidity at 20 °C (EBC) | 0.5 |

Dynamic viscosity at 20 °C (mPas) | 5.48 |

Sample | Dynamic Viscosity at 15 °C (mPas) | |
---|---|---|

Beer (feed) | 5.85 ± 0.03 | |

Standard order number (permeate) | 1 | 5.50 ± 0.03 |

2 | 5.43 ± 0.01 | |

3 | 5.07 ± 0.04 | |

4 | 5.04 ± 0.03 | |

5 | 5.37 ± 0.03 | |

6 | 5.14 ± 0.02 | |

7 | 5.13 ± 0.02 |

Sample | Ethanol Content at 20 °C (% (v/v)) | |
---|---|---|

Beer (feed) | 4.34 ± 0.02 | |

Standard order number (permeate) | 1 | 2.56 ± 0.02 |

2 | 2.75 ± 0.01 | |

3 | 1.45 ± 0.01 | |

4 | 1.82 ± 0.01 | |

5 | 1.92 ± 0.01 | |

6 | 2.10 ± 0.01 | |

7 | 2.07 ± 0.05 |

**Table 8.**Parameter estimates of the significant parameters, and effect size estimate of the significant parameter of the objective function.

Coefficient | Effect Size | ||||||||
---|---|---|---|---|---|---|---|---|---|

Term | Estimate | Standard Error | $\mathit{t}$ | $\mathit{P}\mathit{r}(>\left|\mathit{t}\right|)$ | Parameter | Estimate | Standard Error | $\mathit{t}$ | $\mathit{P}\mathit{r}(>\left|\mathit{t}\right|)$ |

${b}_{0}$ | 80.871 | 2.597 | 31.14 | *** | - | - | - | - | - |

${b}_{TMP}$ | 41.094 | 3.435 | 11.96 | *** | TMP | 1.20389 | 0.09187 | 13.1 | *** |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Varga, Á.; Bihari-Lucena, E.; Ladányi, M.; Szabó-Nótin, B.; Galambos, I.; Koris, A.
Experimental Study and Modeling of Beer Dealcoholization via Reverse Osmosis. *Membranes* **2023**, *13*, 329.
https://doi.org/10.3390/membranes13030329

**AMA Style**

Varga Á, Bihari-Lucena E, Ladányi M, Szabó-Nótin B, Galambos I, Koris A.
Experimental Study and Modeling of Beer Dealcoholization via Reverse Osmosis. *Membranes*. 2023; 13(3):329.
https://doi.org/10.3390/membranes13030329

**Chicago/Turabian Style**

Varga, Áron, Eszter Bihari-Lucena, Márta Ladányi, Beatrix Szabó-Nótin, Ildikó Galambos, and András Koris.
2023. "Experimental Study and Modeling of Beer Dealcoholization via Reverse Osmosis" *Membranes* 13, no. 3: 329.
https://doi.org/10.3390/membranes13030329