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Abstract: As technology develops at a rapid pace, electromagnetic and radiation pollution have
become significant issues. These forms of pollution can cause many important environmental issues.
If they are not properly managed and addressed, they will be everywhere in the global biosphere, and
they will have devastating impacts on human health. In addition to minimizing sources of electromag-
netic radiation, the development of lightweight composite shielding materials to address interference
from radiation has become an important area of research. A suitable shielding material can effectively
reduce the harm caused by electromagnetic interference/radiation. However, membrane shielding
materials with general functions cannot effectively exert their shielding performance in all fields, and
membrane shielding materials used in different fields must have specific functions under their use
conditions. The aim of this review was to provide a comprehensive review of these issues. Firstly,
the causes of electromagnetic/radiation pollution were briefly introduced and comprehensively
identified and analyzed. Secondly, the strategic solutions offered by membrane shielding materials to
address electromagnetic/radiation problems were discussed. Then, the design concept, technical
innovation, and related mechanisms of the existing membrane shielding materials were expounded,
the treatment methods adopted by scholars to study the environment and performance change laws
were introduced, and the main difficulties encountered in this area of research were summarized.
Finally, on the basis of a comprehensive analysis of the protection provided by membrane shielding
materials against electromagnetic/radiation pollution, the action mechanism of membrane shielding
materials was expounded in detail, and the research progress, structural design and performance
characterization techniques for these materials were summarized. In addition, the future challenges
were prospected. This review will help universities, research institutes, as well as scientific and tech-
nological enterprises engaged in related fields to fully understand the design concept and research
progress of electromagnetic/radiation-contaminated membrane shielding materials. In addition, it is
hoped that this review will facilitate efforts to accelerate the research and development of membrane
shielding materials and offer potential applications in areas such as electronics, nuclear medicine,
agriculture, and other areas of industry.

Keywords: electromagnetic radiation; radiation; membrane shielding materials; shielding mechanisms;
composite materials

1. Introduction

With the advent of the 5G era, the number of electronic devices has grown exponen-
tially (Figure 1) [1]. However, mobile phones, computers, and radar systems generate
electromagnetic pollution, which can seriously interfere with people’s lives and the use
of other electronic products and can even pose serious threats to human health while also
disrupting the normal operation of devices [2–6]. In addition, as governments seek to
find reliable energy sources, the application of nuclear energy is becoming increasingly
common (Figure 2) [7]. The radiation generated during the operation of high-end scientific
and technological equipment causes various forms of radiation pollution such as medical
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radiation [8], nuclear reactor radiation [9], scientific research radiation [10] and industrial
radiation [11], which are harmful to human health and the environment similar to water
pollution and air pollution in modern life. Therefore, it is imperative to find a reasonable
and effective method to solve the above problems [12–16].
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Figure 1. Forecasted numbers of 5G subscribers in China from 2020 to 2030 [1].
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Figure 2. Share of global energy consumed and the change in global primary energy consumption [7].

The use of membrane shielding material is a very effective electromagnetic/radiation
protection method, which can reduce the radiation by reflection or absorption, especially
when the distance and time are limited [17–19]. In order to obtain a good shielding effect,
appropriate shielding materials should be selected that are appropriate for the given
application. Therefore, it is necessary to study the performance characteristics of membrane
shielding materials with potential electromagnetic/radiation pollution. In order to handle
the environmental pollution caused by electromagnetic/radiation, different membrane
shielding materials have been produced to protect human beings and their environment
from the destructive effects of electromagnetic/radiation [20–22]. When looking for suitable
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membrane shielding materials, the weight, space, and cost of membrane shielding materials
are the primary problems faced by researchers. More importantly, lightweight, non-toxic,
and flexible membrane shielding materials with robust mechanical properties and good
shielding effects are the common goal pursued by researchers.

For many years, researchers have studied numerous kinds of membrane shielding
materials to deal with radiation pollution caused by electromagnetic/radiation, such as
metal-based [23–25], polymer-based [26–28], concrete-based [9,29,30], lead-based [31–33],
boron-based [34] materials, as well as other examples of widely used membrane shielding
materials. However, with the rapid pace of technological development, the above-mentioned
membrane shielding materials can no longer meet the problem of electromagnetic/radiation
pollution caused by many types of modern technological devices. Therefore, more researchers
have devoted themselves to the exploration of membrane shielding materials to protect hu-
mans and their environment, and these efforts have expanded to the preparation of many new
membrane-based shielding materials, such as the use of 3D printing design [35–38], as well as
the development of MXene-based [39–42], carbon-based [43–46], iron-based [47–50], cellulose-
based [51–54], and lead-free materials [55–60]. The traditional electromagnetic/radiation
shielding method was to directly blend conductive fillers to improve the shielding perfor-
mance [61], especially in the field of electromagnetic radiation shielding. However, it was
not easy for the fillers to form an effective continuous network, which made it difficult for
electrons to pass through the polymer matrix and hindered efforts to improve the effectiveness
of the membrane shielding materials [62]. In addition, commonly used radiation shielding
materials are mostly concrete and metals (such as lead, tungsten, iron, etc.) [23–25,29,30].
However, concrete has some disadvantages, such as large volume, difficult movement, and
poor compressive capacity [9,29,30]. Meanwhile, boron-containing stainless steel has a higher
density [34]. Common heavy metals are often toxic, heavy in weight, have a poor melting
point, low mechanical strength, and offer poor shielding performance against neutrons [31–33].
Fortunately, with the in-depth understanding of the mechanism of membrane shielding and
extensive research on the raw materials and preparation technology of membrane shielding
materials, efforts were underway to address the above problems.

With the rapid development of electronics, components and nuclear power sources,
comprehensive strategies, and to alleviate and control electromagnetic/radiation pollution
have been put forward, and composite membrane shielding materials have quickly gained
the attention of researchers. Compared with traditional concrete and heavy metal shielding
materials, composite polymer-based materials in which a polymer comprises the matrix and
nanomaterials are introduced as fillers that have the advantages of easy molding, light in
weight, relatively inexpensive, etc., and thus these materials are promising candidates for
applications in aerospace, nuclear power plants, and medical devices [63–65]. Most polymer
substrates are polymers, such as polyurethane [66,67] and nanofibers [54,68–70]. Nanofillers
include composite shielding materials such as metal-based materials [71,72], MXene-based
materials [73–76], carbon-based materials [77–80], and so forth. They have different forms so
that they can are suitable for different fields. The combination of a nanofiller and polymer
matrix can obtain excellent shielding performance and various unique functions [81]. There-
fore, the effective strategy to enhance the electromagnetic interference/radiation shielding
performance and meet the actual needs was to construct a hybrid system comprised of a single
material combined with multiple materials, thereby integrating the desirable characteristics of
different materials and expanding their applicability.

However, portable communication devices such as wearable electronic products and
head-mounted sensors are controlled by wireless networks, so their internal electronic
components and complex circuits will inevitably produce a large amount of electromagnetic
radiation, which will greatly affect the normal operation of high-end precision electronic
component systems and human health [12–16]. It was found that [82–84] great progress
had been made in the preparation of transparent conductive films by using both AgNW
and MXene, which can eliminate the influence of electromagnetic pollution on human
health, but the complex preparation process and the use of chemical reagents greatly limits
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their large-scale application. In particular, the transparent conductive films prepared based
on polymers are easy to cause internal damage to polymers during the preparation process,
which is the biggest obstacle to their further application [83,84]. With the deepening of
research, the self-repairing ability was introduced into the polymer matrix by imitating
the self-repairing characteristics of cells and tissues to realize the cooperative repair of
structure and function, effectively solve the vulnerability problem of polymers, reduce the
harm caused by radiation leakage, prolong the service life, and maintain the functional
stability of devices [84,85]. The summary of this important subject provides an important
theoretical basis for the development of shielding materials with a number of desirable
characteristics, such as multifunctional applications, flexibility, low density, low cost, high
transparency, and rather light weight.

In this paper, the membrane shielding materials that have been developed to address
various forms of electromagnetic/radiation were comprehensively analyzed and discussed
(Figure 3). Membrane shielding materials used in different fields have special targeting
functions. At the same time, the shielding performance of membrane materials was closely
related to the structure and composition of the materials, which were determined by the
preparation methods leading to these materials. Therefore, these membrane materials have
obtained excellent properties such as thermal stability, flexibility, being light in weight,
and exhibiting light transmittance through special modification and preparation methods,
and they are suitable for use in specific fields. Based on these considerations, this paper
summarizes the research progress of traditional and new membrane shielding materials,
puts forward strategic solutions, and expounds the different construction strategies for
membrane shielding materials. Finally, the shielding mechanism and structural design prin-
ciples of shielding materials were deeply analyzed, and the future development prospects
and directions for the membrane shielding materials industry were put forward. We believe
that this brief review will provide valuable insight regarding the current research status of
membrane shielding materials and will help to elucidate the possible research directions for
solving the bottleneck in the field of electromagnetic/radiation-contaminated membrane
shielding materials. Therefore, we believe that this work will provide inspiration and be a
valuable reference tool for those pursuing the field of shielding materials research.
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Figure 3. Technical development of membrane shielding materials to handle electromag-
netic/radiation pollution.

2. Electromagnetic and Radiation Pollution

With the rapid development of electronic technology, the widespread application of
high-end precision electronic components and 5G communication systems in aerospace,
military engineering, electrical electronics, wireless computers, mobile phones, wearable
smart devices, and other fields has greatly enriched our daily lives and changed our
lifestyles [74,82]. In recent years, with the rapid growth of electronic communication
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equipment, the use of electronic products by the eight billion people across the world
has increased exponentially. The resulting electromagnetic pollution problem was very
prominent, which not only affected the normal work of high-end precision electronic
components but also posed a significant threat to human health [82], as shown in Figure 4.
According to research reports, economic loss due to electronic equipment failures caused by
electromagnetic interference around the world is as high as $500 million USD every year [83].
At the same time, if people all over the world were exposed to radiation for prolonged
durations, the health hazards would inevitably become overwhelming. For example,
electromagnetic waves can interfere with aircraft navigation [85], cause damage to electronic
equipment, and lead to information leakage [84]. In addition, electromagnetic radiation
interferes with the normal operation of equipment, causing electronic equipment failure,
which leads to serious losses in military and civil applications. Besides, electromagnetic
waves can affect the human body, causing different degrees of damage to various organs
and tissues [86]. Recent studies have pointed out that these forms of radiation can lead
to depression, suicidal tendencies, children’s ADHD, and neuropsychiatric disorders, as
well as abnormal births [86]. More importantly, with the development of 5G technology in
recent years, people who are often accompanied by mobile phones and computers have
become increasingly worried about the health implications of electromagnetic radiation.
Compared with the traditional 4G network, which mainly works at around 2.4 GHz, the
emerging 5G (6 GHz) network operates at a higher frequency, so it will produce higher
energy electromagnetic radiation, which will cause great harm to people’s health and the
operation of electronic equipment [87]. In order to protect human health and ensure the
normal operation of precision electronic equipment, there is an urgent need for efficient
electromagnetic interference membrane shielding materials to eliminate electromagnetic
radiation. New electromagnetic interference membrane shielding materials should be light
weight, inexpensive, porous, highly efficient, have high thermal conductivity, have wide
absorption bands, and offer controllable comprehensive performance.

Membranes 2023, 13, x FOR PEER REVIEW 5 of 46 
 

 

2. Electromagnetic and Radiation Pollution 

With the rapid development of electronic technology, the widespread application of 

high-end precision electronic components and 5G communication systems in aerospace, 

military engineering, electrical electronics, wireless computers, mobile phones, wearable 

smart devices, and other fields has greatly enriched our daily lives and changed our life-

styles [74,82]. In recent years, with the rapid growth of electronic communication equip-

ment, the use of electronic products by the eight billion people across the world has in-

creased exponentially. The resulting electromagnetic pollution problem was very promi-

nent, which not only affected the normal work of high-end precision electronic compo-

nents but also posed a significant threat to human health [82], as shown in Figure 4. Ac-

cording to research reports, economic loss due to electronic equipment failures caused by 

electromagnetic interference around the world is as high as $500 million USD every year 

[83]. At the same time, if people all over the world were exposed to radiation for pro-

longed durations, the health hazards would inevitably become overwhelming. For exam-

ple, electromagnetic waves can interfere with aircraft navigation [85], cause damage to 

electronic equipment, and lead to information leakage [84]. In addition, electromagnetic 

radiation interferes with the normal operation of equipment, causing electronic equip-

ment failure, which leads to serious losses in military and civil applications. Besides, elec-

tromagnetic waves can affect the human body, causing different degrees of damage to 

various organs and tissues [86]. Recent studies have pointed out that these forms of radi-

ation can lead to depression, suicidal tendencies, children’s ADHD, and neuropsychiatric 

disorders, as well as abnormal births [86]. More importantly, with the development of 5G 

technology in recent years, people who are often accompanied by mobile phones and com-

puters have become increasingly worried about the health implications of electromagnetic 

radiation. Compared with the traditional 4G network, which mainly works at around 2.4 

GHz, the emerging 5G (6 GHz) network operates at a higher frequency, so it will produce 

higher energy electromagnetic radiation, which will cause great harm to people’s health 

and the operation of electronic equipment [87]. In order to protect human health and en-

sure the normal operation of precision electronic equipment, there is an urgent need for 

efficient electromagnetic interference membrane shielding materials to eliminate electro-

magnetic radiation. New electromagnetic interference membrane shielding materials 

should be light weight, inexpensive, porous, highly efficient, have high thermal conduc-

tivity, have wide absorption bands, and offer controllable comprehensive performance.  

 

Figure 4. Sources and hazards of electromagnetic pollution. Figure 4. Sources and hazards of electromagnetic pollution.

With the rapid development of the nuclear energy industry, α, β, x, γ, neutrons
and other rays were widely used in medical detection, aerospace, nuclear submarines,
nuclear power generation, nondestructive testing, the military, as well as in agriculture
and industry [88–90]. Although the application of radiation plays a great role in promoting
human development and is becoming increasingly important, the existing radiation hazards
can not be ignored, as shown in Figure 5. Alpha rays are comprised of mainly helium nuclei,
and some radioactive heavy elements will emit alpha particles through alpha decay, thus
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becoming photons. Once alpha particles are inhaled or injected into the human body, they
can destroy the cells of internal organs [90]. Beta rays are a type of charged particle that
moves at high speed and is released during the radioactive decay of a nuclide. Originating
from either man-made or natural sources, beta rays are a more harmful form of radiation
than alpha rays, and they can penetrate more deeply into materials and tissues, including
skin [91]. X/γ rays have high photon energy as well as strong penetrating capabilities [92],
and they can ionize substances, so that they not only damage human tissues and organs [93],
but also pollute the environment, and have thus been classified as Class I carcinogens [94].
A neutron is one of the nuclei that make up the nucleus of an atom. Neutron radiation has a
strong penetrating power, and it is more dangerous to the human body than the same dose
of X/γ rays, which is 2~14 times that of X/γ rays, and it is also included in the list of Class
I carcinogens [95]. After the human body is exposed to radiation, the digestive system
and male gonads will become seriously damaged, potentially inducing the formation of
tumors, which will easily lead to early death. At the same time, the damaged body was
susceptible to severe infection. Therefore, providing effective protection against radiation
has a critical role in protecting human health and environmental safety [88–95]. In order to
minimize the risk of potential adverse effects arising from excessive radiation exposure,
appropriate and effective radiation shielding materials must be utilized in all facilities
with radiation to reduce the radiation damage of the target site, especially for the health
protection of operators. Therefore, there is an urgent need for a new type of efficient,
convenient, nontoxic, and more environmentally friendly membrane shielding material to
provide protection against radiation.
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3. Comprehensive Strategies and Solutions to Mitigate and Control
Electromagnetic/Radiation Contamination
3.1. Metal-Based Membrane Shielding Materials

Metal and its alloy materials have excellent conductivity. For example, the conductivity
of copper and aluminum can reach 16~17 S/cm, and thus these materials can absorb, reflect,
and transmit electromagnetic interference [27]. Therefore, metals and their alloy materials
were first used as electromagnetic membrane shielding materials [96,97]. Xu et al. [98] pre-
pared an aluminum foam membrane shielding material by a melt foaming method that has
a good shielding effect (25–75 dB) on space plane electromagnetic waves with frequencies
in the range of 130–1800 MHz (Figure 6a). The mechanism through which the shielding
effect was analyzed, as shown in Figure 6b. With further investigation, researchers found
that eddy current loss was an important shielding form [99], and the structure of aluminum
foam described in this paper just determines the existence of eddy current loss in aluminum
foam, as shown in Figure 6c. Although metal has high electromagnetic shielding effective-
ness, it also has some disadvantages, such as high density, poor flexibility, low corrosion
resistance, and high processing cost, which limit its applicability [23–25,96,97]. Compared



Membranes 2023, 13, 315 7 of 46

with pure metal, magnesium alloy has better electromagnetic shielding performance as
well as lower density, and thus it may be considered as a potential electromagnetic inter-
ference shielding material [99]. Chen et al. [100] found that the shielding effectiveness
of the ZK60 alloy membrane was significantly improved by heat treatment, reaching up
to 75 dB (Figure 6d), and it had good mechanical properties. More importantly, through
research on the shielding mechanism (Figure 6e), it was found that ZK60 magnesium alloy
precipitates a large number of second phases in the supersaturated matrix, which leads
to better electrical conductivity, thus enhancing the shielding ability of ZK60 magnesium
alloy. To further investigate the shielding effect of magnesium alloy, Chen et al. [101]
studied the shielding effect of a ZK60 magnesium alloy membrane under different aging
conditions (Figure 6f). The shielding effect was as high as 70 dB, and the tensile strength
reached 316 MPa. However, alloying produces an excessive second phase, which reduces
the effectiveness of membrane shielding materials. In addition, it has the disadvantages
of being prone to corrosion and having insufficient flexibility, and it is easy to form sec-
ondary pollution, which greatly limits its applicability. Therefore, it is necessary to develop
membrane materials with low density, good mechanical properties, especially excellent
electromagnetic interference/radiation to prevent radiation.
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(d) Shielding efficiency of ZK60 alloy membrane [100]. Copyright 2012, Elsevier. (e) Electron backscat-
tered diffraction (EBSD) measurement of polar diagram of alloy before and after heat treatment [100].
Copyright 2012, Elsevier. (f) Shielding efficiency of ZK60 magnesium alloy membrane [100]. Copy-
right 2013, Elsevier.

In recent years, researchers have developed many methods to fabricate shielding
materials, including the preparation of metal/polymer, metal/fabric, transparent metal
membranes, aerogels, and other composite materials [102]. Metal/polymer composites,
which combine the excellent electrical conductivity of metal with the excellent mechan-
ical properties of polymers, can overcome the shortcomings of traditional metal shield-
ing materials such as rigidity and high density, while offering a good shielding effect.
Seung et al. [103] prepared a highly anisotropic polystyrene composite containing copper
oblate ellipsoid particles. Due to the presence of Cu, the conductivity of this composite
material was greatly enhanced, and its special layered structure allows electromagnetic
waves to be absorbed by this material, which can shield 300 kHz~12 GHz broadband elec-
tromagnetic waves with the highest shielding efficiency of 80 dB. The preparation process
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is shown in Figure 7a. Compared with metal/polymer composite membrane materials,
metal/fabric composite membrane materials have the advantages of low filler content,
low density, and strong interfacial adhesion, which is conducive to the dispersion of metal
fillers in the matrix and the enhancement of interfacial polarization of materials. However,
its shielding effectiveness is weaker than that of metal/polymer composite membrane
materials at 8.0~12.4 GHz.Yu et al. [104] prepared Ni nanowires (NiNWs) by a hydrazine
hydrate reduction method and dispersed NiNWs in polyvinylidene fluoride. When the
filler content (mass percentage) was 9%, the shielding effectiveness of the composite could
reach 43 dB at 8.2~12.4 GHz. The polyvinylpyrrolidone (PVP)-controlled growth mecha-
nism of NiNWs was shown in Figure 7b. In most cases, a metal plate is used as the substrate,
and the overall density of the material decreases with limited space and the fill volume is
large, which makes it difficult to meet the shielding requirements and provide the optical
transparency needed for many electronic devices. It has been found that a uniform internal
distribution as well as a dense film can be obtained when the metal shielding membrane is
prepared via magnetron sputtering. Moreover, this material can exhibit multi-functional
characteristics such as light transmission and hydrophobicity while also exhibiting a good
shielding effect against high-frequency electromagnetic radiation [102]. Wang et al. [105]
prepared a Cu-doped Ag thin membrane by magnetron sputtering (Figure 7c), and its
optical transmittance was found to reach 96.5%, which suggested that it can be used as
the window of a shield. The thickness of the membrane was only 88 nm, which can be
connected with some existing processes, and the control was flexible and convenient. The
average shielding effectiveness of the membrane against X (8~12 GHz), Ku (12~18 GHz),
Ka (18~27 GHz) and K (26.5~40 GHz) radiation reaches 26 dB. In addition, researchers have
also found that the need for high-density metal materials can be reduced by establishing
three-dimensional porous structures, and the formation of internal holes in metal aerogel
materials can enhance the multiple reflection loss of electromagnetic waves in electro-
magnetic shielding, thus obtaining good shielding performance [102]. Yang et al. [106]
assembled a Zeolitic Imidazolate Framework-67 (ZIF-67)@CNF aerogel, where ZIF-67 and
CNF were used as building blocks for a new three-dimensional ultra-light Co/C@CNF
aerogel (Figure 7d). Its shielding efficiency was 35.1 dB, and it has extremely high absorp-
tion characteristics. This good performance was due to the presence of magnetic cobalt
nanoparticles that are embedded in the carbon sheet and the three-dimensional intercon-
nection network, which enhances magnetic loss and dielectric loss. This method provides
a simple method to prepare ultra-light and ultra-high absorption aerogels with excellent
electromagnetic shielding performance.

In summary, the rapid pace of scientific and technological developments has led to
the need for better membrane shielding materials, and the traditional metal membrane
shielding materials can no longer meet the demand. It is necessary to study metal-based
membrane shielding materials in depth. The goal of developing light weight and flexible
metal films can be achieved by coating metal particles onto polymer matrices, but it is
difficult to combine a polymer interface that lacks polar functional groups with metal
particles. The key direction for the development of transparent metal composite films
was toward achieving high transparency, stretchability, and low fill volume. The biggest
characteristics encountered with metal aerogels were their high shielding effectiveness,
positive resilience, and ultra-low density. We predict that the search for solutions to the
challenge of combining and uniformly dispersing metal particles with other materials will
become a hot issue in the research of metal-based membrane shielding materials in the next
few years.
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3.2. Polymer-Based Membrance Shielding Materials

Although the density, flexibility and corrosion resistance of metal-based membrane
shielding materials have been greatly improved, their flexible wear performance is still
greatly limited [107]. The use of polymer-based membrane shielding materials can not only
mitigate the disadvantages of metal-based materials (such as their high density, suscep-
tibility to corrosion, difficult preparation, and high cost), but also address the challenges
encountered with the design of polymer-based materials [28]. In polymer technology,
two kinds of materials with different properties can be combined through the use of a
mixed filler system so that the resulting composite material has specific properties, which
is called a filled polymer-based membrane shielding material [26]. In addition, there is
a more advanced class of membrane shielding material, called conductive polymer fiber
composites (ECPCs), which are obtained with the use of conducting polymers that have
conjugated segments (such as those with as p-π, or π-π conjugation) [108]. What’s more,
conductive polymers are light and flexible [109,110], and it was expected that these poly-
mers would offer a new generation of electromagnetic interference membrane shielding
materials offering excellent performance.
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It is well known that electrical conductivity is one of the key factors affecting the
electromagnetic shielding performance of ECPCs [108]. The higher the electrical conduc-
tivity, the better the electromagnetic shielding performance. However, traditional ECPCs
have some significant shortcomings, such as the strong π-π interactions that occur between
conductive fillers with high specific surface area, which increase their tendency to aggre-
gate and thereby make it difficult to obtain a uniform dispersion of fillers in the polymer
matrix [28,109–111]. In addition, there are many free interfaces between conductive fillers
and the polymer matrix, which hinder the continuous transmission of electrons. Therefore,
the mechanical strength and shielding capabilities of ECPCs were inevitably weakened. To
improve the electromagnetic shielding performance of ECPCs, Song et al. [109] prepared
sandwich thermoplastic polyurethane (TPU) foam with adjustable frequency-selective elec-
tromagnetic shielding performance using a carbon dioxide intermittent foaming method.
Multi-walled carbon nanotubes (MWCNTs) were used as conductive fillers that were selec-
tively distributed on the surface layer, thereby yielding a TPU/MWCNTs composite with
foam-selective electromagnetic shielding performance (Figure 8a). The maximum shielding
efficiency and absorption rate could reach 53.3 dB and 0.66, respectively, and it showed
an interesting and efficient electromagnetic interference frequency selective shielding.
Liang et al. [111] modified poly dopamine (PDA) on the surface of polyurethane (PU),
and then prepared flexible sponge-like PU@PDA@Ag composites via the in-situ growth
of silver (Ag) nanoparticles on the surface of PU (Figure 8b). The research shows that
the EMI shielding effectiveness (EMI SE) of PU@PDA@Ag composites was as high as
84 dB, and the absolute shielding effectiveness (SSEt) was as high as 5250 dB cm2 g−1.
Meanwhile, PU@PDA@Ag sponge has low thermal conductivity (52.72 mW/mK), excel-
lent compression elasticity, and piezoresistance. Therefore, PU can be used to construct
flexible and highly elastic electromagnetic membrane shielding materials. He et al. [107]
used polydimethylsiloxane (PDMS) as a matrix and added multi-walled carbon nanotubes
(MWCNTs), nickel (Ni), and antimony trioxide (Sb2O3) particles as fillers to prepare a
PDMS-based electromagnetic membrane shielding composite with various fillers and
layered structures (Figure 8c). Among them, symmetric structure (SS) and asymmetric
structure (AS) composites can achieve high EMI SET/absorption coefficients of 57.4 dB/0.75
and 55.7 dB/0.80, respectively. This study provides an effective design concept for im-
proving microwave absorption capabilities by using the synergistic effect and a control-
lable distribution of fillers. Wei et al. [28] used an electrospinning method to prepare
a highly cross-linked ethylene-vinyl acetate copolymer (EVA) fiber membrane and then
synthesized a poly-dopamine layer on the surface of this film, thus promoting the reduc-
tion of Ag nanoparticles on the surface of the EVA@PDA fiber composite, and thereby
preparing an ultra-thin and flexible EVA@PDA@Ag fiber composite (Figure 8d). The con-
ductivity of shape-memorized conductive polymer fiber composite (SMCPFC) can reach
2.5 × 105 S/m, and the average EMI SE at 3.94~5.99 GHz was approximately 90 dB. After
cyclic stretching, folding, and ultrasonic washing, the conductivity and electromagnetic
interference SE remain unchanged. In addition, the SMCPFC exhibits an excellent shape
memory effect driven by electric heat, which can block more than 99.99% of electromagnetic
waves. The invention of this multifunctional SMCPFC has opened a new avenue for the
development of intelligent and functional flexible printed circuit (FPC) electromagnetic
shielding membranes.

A polymer-based nuclear radiation shielding material is an important part of a nu-
clear power plant [112]. Due to the long-term synergistic effect of nuclear radiation and
the thermal effect, its mechanical properties and shielding performance will gradually
deteriorate. Its mechanical properties and shielding performance determine whether the
device can run safely, which brings hidden dangers to the safe operation of the device [112].
Figure 9a is a schematic diagram of the interaction between a polymer-based nuclear
radiation shielding material and radiation and its effect. For polymer-based nuclear radia-
tion shielding materials, polyethylene, resin, and rubber were usually used as the matrix.
Good neutron and gamma-ray shielding effects can be achieved via the addition of boron
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carbide, lead, tungsten, and other reinforcing phase particles to such a matrix [112,113].
Wang et al. [113] prepared a continuous carbon fiber-reinforced Sm2O3/polyimide γ-
ray/neutron shielding material by a hot-pressing method (Figure 9b). This material not
only has good shielding performance, but also excellent temperature and pressure resis-
tance, and is thus a promising candidate for use in fusion reactor systems and nuclear
waste treatment applications. Kim et al. [114] fused and blended nanoscale boron carbide
(B4C) and boron nitride (BN) powders with high density polyethylene (HDPE) to prepare a
sheet film composite, respectively. The subsequent evaluations revealed that the thermal
neutron shielding performance of polymer nanocomposites was more effective than that of
micro-composites (Figure 9c), and the mechanical properties were also better. In summary,
on the one hand, this study can establish the mapping relationship between the properties
and properties of polymer-based membrane shielding materials and radiation and thus
provide technical means for the design and development of polymer-based membrane
shielding materials. On the other hand, this study can provide a technical basis for the safety
evaluation of polymer-based nuclear radiation shielding materials and allow researchers to
assess their suitability for long-term use.
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Figure 8. (a) Schematic diagram of the preparation process leading to TPU/MWCNTs of its structure
and performance [109]. Copyright 2020, Elsevier. (b) Schematic diagram of the preparation and
performance evaluation of PU@PDA@Ag [111]. Copyright 2020, Elsevier. (c) Schematic diagram
of the manufacturing process leading to traditional Sb2O3-Ni-MWCNTs/PDMS composite (CC),
asymmetric structure composite (AS) and symmetric structure composite (ss) [107]. Copyright 2022,
Elsevier. (d) Schematic diagram showing the preparation of EVA@PDA@Ag fiber composites [28].
Copyright 2022, Elsevier.
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Figure 9. (a) A schematic diagram of the interaction between polymer-based nuclear radiation
shielding materials and radiation and its effects [112]. Copyright 2021, Frontiers Media S.A.
(b) A flow chart showing the manufacturing method leading to continuous a carbon fiber-reinforced
Sm2O3/polyimide shielding material [113]. Copyright 2015, Elsevier. (c) Thermal neutron transmit-
tance of composite membrane shielding material [114]. Copyright 2014, Elsevier.

3.3. Concrete-Based Membrane Shielding Materials

Concrete is non-toxic, fireproof, and readily available from a wide range of sources.
It was a very useful material for radiation shielding applications, and it can be used to
shield against the radiation hazards of α, β, X, γ, neutrons, and other rays. Its radiation
performance was better than that of paper, thin metal, thin lead, steel, and other materials
(Figure 10a) [115]. Since 1975, concrete has been used in the construction of nuclear power
plants to prevent nuclear waste pollution, and it was often called radiation shielding
concrete (RSC) [115,116]. In recent years, the primary approach to attenuate the harm of
radiation has been to change the composition of concrete. Omid et al. [116] studied the
influence of various water-cement ratios on the shielding characteristics of heavy magnetite
concrete. As the water-cement ratio was decreased from 0.7 to 0.4, these parameters for
Cs 137 −1.333, Co60 −1.173, and Co60 −0.622 MeV sources decreased by 26.8%, 30.9% and
23.2%, respectively. This kind of heavy magnetite concrete with a low water-cement ratio
can shield gamma radiation even with a small thickness, and thus it was a promising
candidate for situations requiring concrete shielding materials but where space was limited.
Ali et al. [117] found that the shielding effect of concrete mixed with iron filings was
the best, and the maximum linear attenuation coefficient achieved with iron filler was
1.102 ± 0.263 ccm −1 (Figure 10b). Al-Ghamdi et al. [118] studied the radiation shielding
performance of heavy concrete samples with different concentrations of tungsten oxide.
It was found that the use of tungsten oxide increases the density and photon shielding
capability of the sample. In the selected energy range, high-density concrete (Conc-5)
absorbs gamma photon rays more effectively than low-density samples. The radiation
protection efficiency (RPE) of Concr-5 was 99% at 0.122 MeV, which indicated that this
kind of concrete can block almost all low-energy incident photons (Figure 10c). Therefore,
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choosing appropriate materials to shield radiation should be the main consideration in
radiation protection design.
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2017, Elsevier.

In addition, researchers have also used simulation to determine the radiation shielding pa-
rameters of any materials and composites using different radiation sources.
Paul et al. [119] calculated the shielding characteristics of concrete by the Monte Carlo method
and confirmed that the model can be used to determine the radiation shielding parameters
of any material and composite material with different radiation sources. (Figure 10d). At
the same time, shielding materials in other fields can also be evaluated by this simulation
model. Micheli et al. [120] designed a multi-layer structure with the help of particle swarm op-
timization (PSO) algorithms, and they subsequently analyzed the carbon nanotube reinforced
concrete composite material by the numerical finite element method (FEM) (Figure 10e). This
technology has a bright future in addressing issues related to electromagnetic interference. In
summary, the shielding material of concrete played an excellent role in blocking radiation,
but its durability and mechanical properties were poor. Areas requiring further attention
include improving the radiation shielding, workability, durability, mechanical properties,
crack resistance, impermeability, shrinkage, and other properties of heavy concrete, thereby
ensuring that these materials can satisfy the shielding requirements of future devices.

3.4. Lead-Based Membrance Shielding Materials

Because of its low cost, ready availability, and excellent shielding effect, lead has
become the first choice for γ-ray shielding materials used in nuclear reactors [31]. However,
lead-based materials are toxic and volatile, which leads to lead poisoning reactions in
the human body [32]. Therefore, it is necessary to prepare composite materials to reduce
the toxicity of lead-based materials. Lin et al. [121] synthesized a lead dimethacrylate
compound, and an optical resin containing Pb2+ ions was obtained by copolymerization. It
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was found that the addition of Pb2+ to optical resin not only imparts high X-ray absorp-
tion and good visible light transmission capabilities (Figure 11a), but also can improve
the glass transition temperature, refractive index, and shielding performance of the resin.
Zhang et al. [33] successfully synthesized a transparent metallized acrylate-based polymer
containing Gd and Pb through the bulk polymerization of organometallic acrylic monomers,
and they found that this newly synthesized material had good optical transparency, ac-
ceptable thermal stability, good mechanical properties, and excellent shielding properties
(Figure 11b,c). According to the modified constitutive model, it was concluded that the
Maxwell viscoelastic unit played a decisive role in influencing the response of materials to
loads (Figure 11d). Therefore, the established constitutive model can accurately describe
the nonlinear viscoelastic tensile response of metallized polyacrylates containing Gd and
Pb under quasi-static loading. In summary, lead-based composite materials will likely be a
key area of research for the future development of lead-containing shielding materials.
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Figure 11. (a) Polymer–transparent phase diagram of Pb(MA)2/St/MA ternary copolymerization
system with the same refractive index line (shaded areas are transparent areas) [121]. Copyright
2000, MDPI. (b) The stress–strain curves of Gb/Pb acrylate at various temperatures under the
same stretching rate of 1.667 × 10−4 s−1 [33]. Copyright 2022, MDPI. (c) The radiation shielding
performance of metallized acrylic polymer was evaluated by lead equivalent thickness [33]. Copyright
2022, MDPI. (d) The variation law of model parameters with temperature and interpolation curves.
(b, c, d) [33]. Copyright 2022, MDPI.

3.5. Boron-Based Membrance Shielding Materials

It was known that boron could absorb neutrons [122–155]. If a boron-containing coat-
ing material has sufficient thickness, most charged neutron particles will be absorbed, and
boron-containing materials can prevent neutron migration. Because of this characteristic,
boron can be used to simplify the preparation process and lower the cost of the resultant
material [122]. Mülazim et al. [122] prepared an ultraviolet−cured boron-containing hybrid
coating from a mixture of acrylic bisphenol A epoxy resin, methacryloxymethyl triethoxysi-
lane and boric acid by means of anhydrous sol-gel technology (Figure 12a). This coating
has a good shielding effect on neutron radiation, and improves the hardness, chemical
resistance, wear resistance, and adhesion of boron-containing hybrid materials. It can be
used in research and test reactors to shield neutron rays. Considering that boron is widely
regarded to be as the best material for use in shielding materials, many recent studies
have focused on the hydrogen absorption performance of boron nitride and its radiation
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shielding effect (Figure 12b) [123]. In addition, the structure of composite material was also
very important to improve the radiation shielding effect, especially because the incident
radiation of multilayer structure was more easily scattered and absorbed by the shielding
layer. (Figure 12c) [123,124]. Functionalized boron nitride can be used in the manufacture
of composite materials. Treated silane boron nitride (mBN) has been used to prepare high
density polyethylene (HDPE)/boron nitride composites. Figure 12c shows the reported
neutron transmittance performance, which indicates that the developed material has an
excellent radiation shielding effect. On the other hand, boron nitride treatment leads to
stronger adhesion at the interface between boron nitride and a polymer. Ji et al. [125]
prepared HDPE composites with modified boron nitride (mBN) filler that had been func-
tionalized with an organosilane compound (Figure 12d) by a traditional melt extrusion
process, and the resultant material exhibited well-dispersed filler particles as well as excel-
lent neutron shielding performance (Figure 12e). The HDPE/mBN composites prepared
in this study surprisingly showed ultra-high neutron attenuation capabilities over a wide
range of filler concentrations. To sum up, in order to obtain high-performance boron-based
membrane shielding composites, it was necessary not only for each component (matrix
and filler) to have excellent shielding performance but also for the components to have
good compatibility and appropriate interfacial properties.
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Figure 12. (a) Preparation of a hybrid coating containing boron [122]. Copyright 2021, IEEE.
(b) Schematic diagram of radiation protection effect of hydrogen boron nitride and hydrogenated
hydrogen boron nitride [123]. Copyright 2017, Elsevier. (c) Multilayer PE/hBN composites and
their neutron shielding properties [124]. Copyright 2017, Elsevier. (d) Schematic diagram of surface
modification of BN with trialkoxysilane [125] Copyright 2014, Elsevier. (e) The relationship between
neutron transmission coefficient of HDPE/BN, HDPE/mBN and HDPE/B4C composites and filler
content. d, e. [125] Copyright 2014, Elsevier.
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4. Novel Electromagnetic/Radiation Shielding Membrane Materials and Technologies
4.1. 3D Printing Design of Membrane Shielding Materials

Although the above solutions have effectively promoted the development of mem-
brane shielding composite materials and have addressed the issues arising from electro-
magnetic radiation to a certain extent, these materials still have some shortcomings, such
as the need for complicated preparation processes, a long production cycle, expensive
production equipment, and poor shielding efficiency in special fields. Among the many
manufacturing technologies available to generate membrane-based shielding materials,
3D printing technology is one of the latest frontiers in the manufacturing field. It was
particularly used to design and prepare complex shapes and structures that are difficult
to manufacture by traditional technologies, and this approach has been widely used in
various high-tech fields [126]. 3D printing can be controlled by a computer, thus reducing
labor costs. In the process of shielding material preparation, it was usually necessary
to lay some special materials for continuous layers., such as metal alloy, polylactic acid,
graphene, carbon nanotubes, MXene, etc., which increases the cutting and designability of
the structure and expands the potential applicability of 3D printing technology in various
fields [35]. Due to the unique layer-by-layer stacking method used for this approach, 3D
printing shows an exciting prospect. Shi et al. [127] introduced graphene nanosheets (GNs)
into a polylactic acid matrix by a solution blending method, and they prepared a promis-
ing multifunctional filament (Figure 13a), which endowed the composite filament with
ideal thermal conductivity and shielding performance, which reached 3.22 W/m·k and
34.9 dB, respectively, and the shielding efficiency of EWMs energy was 99.97% (Figure 13b).
Thereafter, in order to explore the manufacturing potential of potential applications of 3D
printing technology, an ideal material with a free structure and excellent performance was
constructed. Especially in thermal management, the corresponding initial heat dissipation
rate was 266% higher than that of pure radiator. At the same time, the mechanism was
explored, mainly because multifunctional filament electron transfer played a key role in
heat flow (Figure 13c). In addition, the shielding module obtained via 3D printing has high
shielding performance (35.8 dB) under a specific Bluetooth interactive signal (2.4 GHz)
(Figure 13d). In general, this innovative research not only enriches the printable materials
with customized multifunctional features but is also anticipated to provide a promising
route toward the next generation of multifunctional devices with applications in modern
electronic engineering and great market competitiveness.

3D printing technology can provide a high degree of control over the microporous
structure of the resultant material, thus facilitating efforts to achieve the functions and
properties required by EMI shielding materials. Liu et al. [128] used 3D printing technology
to construct a Ti3C2Tx/GO framework with a vertical pore gradient and then cured and
annealed the 3D framework with PDMS to prepare a TiO2-Ti3C2Tx/rGO/PDMS compos-
ite with high shielding efficiency (Figure 14a). It was worth noting that this membrane
shielding material has a unique multi-layered scale structure. In addition, simulation
studies have been employed to investigate the influence of the gradient aperture on the
electromagnetic interference of composite materials. Under the synergistic effect of multiple
loss mechanisms, the designed composite exhibits a conductivity as high as 173.1 S/m
and an excellent EMI SE of 58 dB. The same shielding material also has excellent thermal
management performance. The porous structure prepared in this study fully demonstrates
the potential of personalized design and customization using 3D printing technology,
thus broadening the potential applications of 3D printing technology in the field of elec-
tromagnetic/radiation membrane shielding materials. Generally, membrane shielding
materials with porous structures can promote the internal reflection and scattering of elec-
tromagnetic waves, and often have better shielding effectiveness than non-porous materials.
Pei et al. [129] prepared porous CNT/Ti3C2Tx/CS composites by a combination of ball
milling technology and 3D printing technology (Figure 14b,c). It was found that CNTs and
Ti3C2Tx were uniformly dispersed in the polymer matrix, which is conducive to the con-
struction of a conductive network thus improves the electromagnetic shielding performance
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of 3D printing devices, which can reach 23.5 dB. In addition, melting deposition modeling
(FDM) 3D printing technology makes use of the orientation of melt flow during polymer
extrusion, which enables the orderly arrangement of fillers as well as the convenient and
efficient construction of the filler network. Ma et al. [126] used FDM 3D printing technology
to prepare ordered GNPs/PLA sheets with PLA and graphene nanosheets (GNPs) as auxil-
iary materials. Then, a Ti3C2Tx /(O-GNPs/PLA) composite material with good shielding
performance and thermal conductivity was prepared by “layer-by-layer lamination-hot
pressing” technology and vacuum-assisted filtration (Figure 14d). Its thermal conductivity
and shielding effectiveness were as high as 3.44 W·m−1·K−1 and 65 dB, which are increased
by 1223.1% and 2066.7%, respectively, compared with PLA matrix material (Figure 14e).
This work provides a novel and simple way to design and manufacture high thermal
conductivity polymer composites with excellent electromagnetic interference SE, which
can be used in a wider range of applications.
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Figure 13. (a) Schematic diagram of the preparation process leading to PLA@GNS filament.
(b) a−b: thermal conductivity and electrical conductivity of PLA@GNS nanocomposites, c: EMI
SE characteristics of PLA@GNS nanocomposites as a function of frequency, d: and corresponding
electromagnetic parameters and EMWs transmittance. (c) a: chemical diagram of heat sink model,
b−c: 3D printed digital and super-depth-of-field images of heat sinks, d: heat dissipation curves of
pure PLA and PG9.08 filaments prepared via different thermal management environments: metal and
foam substrates, e: representative infrared thermal images of heat dissipation behavior of pure PLA
and PG9.08 heat sinks on metal substrates, f: corresponding initial heat dissipation rates on metal and
foam substrates, g: Schematic diagram of heat dissipation mechanism of pure PLA and PLA@GNs
heat sinks. (d) Schematic diagram of EMWs shielding module. [127] Copyright 2022, Elsevier.
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Figure 14. (a) Schematic diagram of preparation depicting the Ti3C2Tx/rGO/PDMS composite [128].
Copyright 2022, Elsevier. (b) Preparation process of CNT/ Ti3C2Tx/CS ink and its 3D printing
composite carbon nanotubes; CS, chitosan. (c) Schematic diagram depicting the preparation of porous
3D printed composites with different structures. b, c [129]. Copyright 2022, Wiley. (d) Schematic
diagram depicting the preparation of thermal conductive GNPs/PLA composites. (e) EMI SE and EMI
shielding diagram of Ti3C2TX/(O–GNP/PLA) thermal conductive composite. d, e [126]. Copyright
2022, Chinese Chemical Society and Institute of Chemistry.

In summary, the use of 3D printing technology to prepare electromagnetic interference
shielding materials reduces the need for tedious processes such as traditional laboratory
synthesis and provides materials with better smoothness. At the same time, it can promote
the overlapping of fillers and the efficient construction of polymer composites in the net-
work, which is an efficient and simple strategy for preparing polymer composites with high
thermal conductivity and excellent EMI SE. In addition, because of its good electromagnetic
shielding performance, 3D printing technology has great potential for use in the development
of portable electronic devices. Most importantly, 3D printing technology can also be opti-
mized by computer software, and can freely manufacture various structures, with adjustable
performance and numerous structural design options. Therefore, it was expected to inno-
vate different printing methods, resulting in increased porosity, more interfaces and higher
strength, thereby enhancing the electromagnetic shielding performance. However, only a
limited range of materials were suitable for 3D printers, and the influence caused by gaps
between successive layers, viscosity problems, were also significant challenges, which may be
the limiting factors impeding its use and its application expansion. It was believed that with
the introduction of 4D and 5D printing in the manufacturing industry, the shortcomings of 3D
printing technology could be eliminated and more advanced materials could be manufactured
via these technologies. The use and improvement of 3D printing technology will soon bring
about a new revolutionary world.
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4.2. MXene-Based Membrance Shielding Materials

With the increasing popularity of portable and wearable devices, materials that are
light in weight, have a low density, are highly flexible, and have excellent mechanical
stability are becoming highly sought-after for use as EMI shielding materials. Due to its
excellent conductivity, MXene has been widely investigated and applied in the field of
electromagnetic interference shielding, and it has thus become a very popular electromag-
netic interference shielding material [39–42]. However, during the application of MXene, it
was reported that the EMI SE of MXene/polymer electromagnetic interference shielding
composites was relatively low, randomly distributed MXene cannot readily form an effec-
tive conductive path in the polymer, resulting in poor shielding performance [130]. On the
basis of ion intercalation and ultrasonic-assisted preparation of low-layer high-conductivity
Ti3C2Tx, Wang et al. [130] employed a low-temperature thermal reduction method to re-
move some polar groups from the surface of Ti3C2Tx. A Ti3C2Tx/epoxy electromagnetic
interference shielding nanocomposite was subsequently prepared by a solution casting
method, with shielding performance reaching as high as 41 dB. Research on its shield-
ing mechanism shows that due to an impedance mismatch, part of the electromagnetic
wave was reflected and absorbed by carrier interaction, and the rest was reflected and
re-absorbed, thus causing more of the electromagnetic wave to be lost due to the presence
of the shielding composite and fully attenuating the electromagnetic wave (Figure 15a).
However, the demand for high shielding performance membrane shielding composites
in the aerospace field was still facing challenges and further research was needed. In
another study, Wang et al. [131] firstly prepared a low-level Ti3C2Tx MXene. Subsequently,
porous Ti3C2Tx MXene/C composite foam (MCF) was prepared by a reduction method.
An MCF/epoxy electromagnetic shielding nanocomposite with excellent shielding prop-
erties and mechanical properties was then prepared via vacuum-assisted impregnation
and a curing process (Figure 15b). X-ray photoelectron spectroscopy (XPS) data show that
MCF has a highly cross-linked network, so the membrane shielding material has robust
mechanical properties. In addition, it has been found that absorption plays a dominant role
in the shielding mechanism of MCF/ epoxy electromagnetic shielding nanocomposites,
and the shielding performance reaches 46 dB (x band). MCF’s unique three-dimensional
conductive network expands the range of applications for MXene membrane shielding
materials into the field of electromagnetic interference shielding. Renewable porous biochar
and two-dimensional MXene have attracted much attention in the field of high-end electro-
magnetic interference shielding because of their unique ordered structure and excellent
conductivity. Liang et al. [132] prepared a MXene aerogel/wood-derived porous carbon
(WPC) composite material with good conductivity and ultra-light weight properties by
using porous carbon derived from natural wood (Figure 15c). Through a series of charac-
terization methods (Figure 15d), it was demonstrated that the membrane is an excellent
shielding material, and its shielding performance reaches as high as 71.3 dB. This kind
of wall-like “mortar-brick” structure (in which the WPC skeleton is the “mortar” and the
MXene aerogel is the “bricks”) not only effectively solves the structural instability of MXene
aerogel network, but also greatly prolongs the propagation path of electromagnetic waves.
It dissipates the incident electromagnetic waves in the form of heat energy and electric
energy, thus showing superior EMI shielding performance (Figure 15e). This study is ex-
pected to provide a feasible way to prepare ultra-light, green, efficient and multifunctional
MXene-based materials.
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Figure 15. (a) Schematic diagram of shielding mechanism of annealed Ti3C2Tx/epoxy resin elec-
tromagnetic interference shielding nanocomposite [130]. Copyright 2019, Elsevier. (b) Schematic
diagram of preparation process leading to a MCF/epoxy electromagnetic shielding nanocompos-
ite [131]. Copyright 2019, Elsevier. (c) Schematic diagram depicting the preparation depicting the
MXene aerogel/WPC composite. (d) a: TGA, b: XPS, c: FTIR, d: Raman, e: water absorption capacity,
f: water contact angles of natural wood WPC-500, WPC-1000 and WPC-1500. (e) a: Photos of “stucco
brick” structural walls. b: SEM images of MXene aerogel /WPC composites, d: element mapping
images of Ti, e: EMI SE of MXene aerogel /WPC composite, f: Comparison of EMI SE values between
MXene aerogel /WPC composite and WPC-1500, g: electromagnetic interference and SE value are
the same as density, h: Schematic diagram of electromagnetic wave passing through MXene aerogel
/WPC composite. c, d, e [132]. Copyright 2020, Elsevier.

Although MXene membrane shielding materials have been widely used, how to use
these materials as high-performance electromagnetic wave absorption and electromagnetic in-
terference shielding materials and make them have multiple functions is still a great challenge.
Zhen et al. [133] prepared a Ti3C2Tx/carbon nanotubes/Co nanoparticle (Ti3C2Tx/CNTs/Co)
nanocomposite with a 2D/1D/0D structure via an electrostatic assembly method (Figure 16a).
This membrane shielding material has highly integrated functions, including excellent elec-
tromagnetic wave absorption, EMI shielding efficiency, thermal cycle stability, photothermal
conversion performance, flexibility, and hydrophobicity (Figure 16a). Similarly, hydrogels are
rich in water pores, which are expected to promote the reflection of incident electromagnetic
microwave (EMWs) and enhance the polarization loss ability of water molecules and hydrogen
bond networks. This makes hydrogel promising as a high-performance EMI shielding mate-
rial. Yang et al. [134] prepared a kind of electromagnetic interference (EMI) shielding material
which integrates a honeycomb-like ordered porous structure, high conductivity MXene precip-
itates (MS)and water, and a highly flexible hydrogel, which is mainly composed of “garbage”
MS and bionic pores (Figure 16b). This membrane shielding material not only had bionic
ordered pore structure, but also possessed is a strong frame composed of highly crosslinked
MS, which stabilizes the micron-sized pore structure and is more conducive to the formation
of high-strength hydrogel with mechanical super-flexibility. Under the synergistic effect of
this MS-based conductive network, 30 PVA chains, water and porous structure, MS-based
hydrogel shows good EMI shielding performance, and more surprisingly, it has sensitive and
reliable functions of human motion detection and intelligent coding. In addition, the pollution
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caused by the emission of thermal radiation also greatly affects human life. Therefore, there
is an urgent need for multifunctional electronic skin with the functions of thermal radiation
regulation and electromagnetic interference shielding. Song et al. [135] prepared a flexible
electronics skin with Ti3C2Tx MXene as the conductive electrode (Figure 16c). It was found
that this skin has flexible transmission power and high-performance shielding effectiveness
of 36.3 dB. This technology could not have applicability in areas such as thermal radiation
modulation and EMI shielding, but also provides technical and experimental guidance for
the design of other multi-band spectral shielding materials. As part of their efforts to address
the difficult processing and poor mechanical properties of MXene-based shielding materials,
Wang et al. [136] prepared a three-dimensional highly conductive cellulose nanofiber/Ti3C2Tx
MXene aerogel (CTA) with an oriented porous structure. They then thermally annealed the
CTA to obtain thermally annealed (TCTA)/epoxy nanocomposites (Figure 16d). MXene and
these materials were light weight, readily processable, moldable, had high EMI SE values,
possessed excellent mechanical properties, and had good thermal stability.
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Chemical Society. (c) Schematic depiction of the preparation of multifunctional skin [135]. Copyright
2022, American Chemical Society. (d) Schematic diagram of TCTA/epoxy nanocomposites [136].
Copyright 2020, American Association for the Advancement of Science.

In conclusion, the preparation or processing of these commonly used MXene layers
for use in membrane shielding materials still faces several challenges such as high cost, low
yield, or the need for additional functionalization, which limits the practical applicability of
these materials due to the need for cost and environmental efficiency. Therefore, we should
pay attention to the combination of composite membrane shielding materials, turn waste
into treasure, and make it have the advantages of no waste, expansibility, and low cost.
In addition, due to the weak interlayer interaction between MXene nanosheets, they tend
to lack flexibility and poor mechanical strength. To address these issues, the best strategy
is to compound MXenes with other components to achieve EMI shielding. Based on the
above analysis, combined with multifunctional and excellent EMI shielding performance,
MXene-based membrane shielding materials with high strength and superb flexibility have
strong potential for applicability in the next generation of electronic products.
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4.3. Carbon-Based Membrane Shielding Materials

Traditional shielding materials are prone to problems such as difficult processing, high
cost, poor shielding effect, narrow absorption bands and secondary pollution. Carbon-
based materials often have the advantages of electrical conductivity, easy molding, being
light weight, having a low cost, providing corrosion resistance, as well as having wide
absorption bands, and thus they have become the first choice of new generation shielding
materials. Common examples of these carbon-based materials include graphite, graphene,
carbon fibers, and carbon nanotubes [43–46]. Therefore, carbon-based shielding materi-
als were often composite materials composed of carbon-based materials which serve as
conductive fillers and other substrates [43–46]. The research on high-efficiency composite
shielding materials by scholars all over the world has often focused on increasing the filling
degree of carbon-based materials, improving the dispersion of fillers and reducing the
thickness of composite materials [43–46].

Graphene was a two-dimensional, single-layer material with a single-atom thickness.
On account of its superior electrical properties and large aspect ratio, graphene has been
highly valued as an electromagnetic interference shielding material. It was an allotrope
of carbon with a sp2 configuration and has excellent mechanical and thermal properties.
Graphene has been widely used as an electromagnetic interference shielding material in
ultra-thin flexible membrane, paper, laminates, microcellular foams, sheets, and other
materials [137]. The electromagnetic shielding efficiency of graphene can reach as high
as 135 dB, while the value required for commercial application was only 20 dB [137].
Huangfu et al. [138] prepared a membrane shielding nanocomposite containing graphene
oxide (Figure 17a). The prepared nanocomposite had a porous structure, which provided
the shielding material with good conductivity (52.1 S/m), shielding efficiency (42 dB),
mechanical properties (5.35 GPa) and thermal properties (171.3 ◦C). Unfortunately, carbon-
based fillers do not readily form an effective continuous network, which makes it difficult
for electrons to transport in an epoxy resin matrix and impedes efforts to improve the EMI
SE values. However, the preparation of a continuous structure by a pre-forming process
can significantly improve EMI SE value. Liang et al. [62] successfully prepared graphene
oxide/epoxy resin (RGF/EP) electromagnetic shielding composites by introducing differ-
ent layers of graphene oxide membranes into an epoxy resin matrix by pre-arrangement.
It was found that the introduction of highly aligned RGF with a layered structure helps
to improve the EMI SE and in-plane conductivity of RGF/EP electromagnetic shielding
composites (Figure 17b). Designing a predictable microstructure and significantly improv-
ing its shielding effectiveness against electromagnetic interference is still a daunting chal-
lenge. Liang et al. [139] prepared a three-dimensional porous graphene nanosheet/reduced
graphene oxide foam/epoxy resin (GNPs/reduced graphene oxide/EP) nanocomposite
(Figure 17c). The shielding performance of this material reached as high as 51 dB, the ther-
mal conductivity was 1.56 W/mK, and the electrical conductivity was as high as 179.2 S/m.
The study provides a new design strategy for shielding and efficient heat dissipation of mul-
tifunctional carbon-based composites. Liang et al. [140] also designed a three-dimensional
silver sheet/reduced graphene oxide foam (AgPs/RGF) with many regular spherical hollow
structures, and successfully prepared a three-dimensional AgPs/RGF/EP nanocomposite
with a highly regular separation structure (Figure 17d), which can shield 99.998% of electro-
magnetic waves and has a minimal skin depth. The design of this material demonstrates a
promising way to prepare lightweight and high-precision electronics for key applications
such as those in the aerospace sector.
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Figure 17. (a) Preparation schematic diagram and performance test of PANI/MWCNT/thermally
annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites [138].
Copyright 2019, Elsevier. (b) Schematic depiction of the fabrication process leading to RGFS/EP EMI
shielding composite material [62]. Copyright 2019, Elsevier. (c) aA: Schematic diagram of the prepara-
tion pathway leading to three-dimensional GNPs/rGO/EP nanocomposites by the template method,
bB: Schematic diagram showing the preparation of GNPs/EP nanocomposites by a traditional blend-
ing casting method [139]. Copyright 2019, Royal Society of Chemistry. (d) Schematic diagram
showing the preparation of three-dimensional AgPs/rGF/EP nanocomposites [140]. Copyright 2019,
Royal Society of Chemistry.

The separation structure formed in carbon-based composites has great advantages
in improving the electromagnetic interference shielding performance. However, due to
the limitation of processing methods and the severe deterioration of mechanical proper-
ties, t the practical applicability of this composite is limited. Zhang et al. [141] prepared
a separated carbon nanotube/polypropylene (CNT/PP) composite by simple and envi-
ronmentally friendly methods such as pre-coating, melt mixing, and injection molding
(Figure 18a). The material not only has good at shielding performance, but also has good
tensile strength and a desirable Young’s modulus, which provides a feasible method for
the separation and compounding of carbon-based shielding materials. Song et al. [142] pre-
pared a CCA@rGO/PDMS EMI shielding composite materials using a backfilling method
(Figure 18b), and obtained the best shielding performance of 51.0 dB, excellent thermal
conductivity, robust mechanical properties, and good thermal conductivity. This excellent
comprehensive performance suggests that cellulose carbon aerogel (CCA)@rGO/PDMS
electromagnetic shielding composite material may have prospects for use in light and flexi-
ble electromagnetic shielding composite materials. In addition, thin membranes are an ideal
choice for electromagnetic interference shielding because of their ultra-thin planar structure,
light weight properties, good flexibility, and facile preparation process. Hu et al. [45] pre-
pared a multifunctional aerogel membrane composed of strong aramid nanofibers (ANFs),
conductive carbon nanotubes (CNTs) and hydrophobic fluorocarbon (FC) resin (Figure 18c),
which has a large specific surface area (232.8 m2 G1), high conductivity (230 S·m−1), and
excellent hydrophobicity (its contact angle can reach 137◦). Guo et al. [143] prepared a multi-
functional layered carbon-based composite membrane with graphene oxide/expanded
graphite (GO/EG) as the top heat conduction and EMI shielding layer by adopting the
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layered design and assembly strategy (Figure 18d). The composite membrane has a
high in-plane thermal conductivity (95.40 W (m·K)−1), an excellent EMI shielding effect
(34.0 dB), good tensile strength (93.6 MPa) and fast electric heating response (5 s), and is
thus a promising candidate for a broad range of applications
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Figure 18. (a) Schematic diagram showing the preparation of separated carbon nan-
otubes/polypropylene composites and their performance evaluations [141]. Copyright 2020, Elsevier.
(b) Schematic diagram of the manufacturing process leading to CCA@RGO/PDMS electromagnetic
interference shielding composite material [142]. Copyright 2021, SpringerOpen. (c) Schematic di-
agrams showing the preparation, and multifunctional characteristics of FC-ANF/CNT mixed gas
gel membrane [45]. Copyright 2019, Elsevier. (d) Schematic diagram of preparation process of PI
composite membrane [143]. Copyright 2020, American Chemical Society.

As the lightest and thinnest material known in the world, carbon-based materials have
excellent conductivity, high aspect ratios, large specific surface areas, abundant functional
groups, ultra-light weight, and thus they have great application potential as electromag-
netic/radiation shielding materials. Carbon-based membrane shielding materials have
high thermal conductivity, high inherent tensile strength, and high elastic moduli, which
provides them with unique advantages for applications as multifunctional electromagnetic
shielding materials. In order to ensure that these types of membrane shielding materials
can better meet future technological needs, there are still many challenges that must be
addressed, such as reducing their cost, and improving their flexibility, corrosion resistance,
thermal conductivity, transparency, and environmental stability. In the future, researchers
will still need to develop new methods, find new materials, and optimize the construction
technology of multiple composite structures to effectively improve the performance of
carbon-based electromagnetic shielding materials, and make them multifunctional (high
thermal conductivity, corrosion resistance, and high transparency) and intelligent on the
basis of meeting the performance requirements of “thinness, lightness, strength, and width”.
Successfully achieving these goals will greatly expand the applicability of carbon-based
electromagnetic shielding materials. A wide range of carbon-based materials were highly
favored for their excellent properties, such as being light weight, having excellent flexibility,
extraordinary electrical properties and corrosion resistance, which make great contribu-
tions to electromagnetic interference shielding and other applications. The disadvantage
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of carbon-based electromagnetic interference shielding materials is their low impedance
matching caused by high conductivity, which leads to high reflection and low absorption.

4.4. Iron-Based Membrane Shielding Materials

Due to impedance mismatch, most electromagnetic waves will be reflected at the
interface between the composite and the air, which will cause electromagnetic pollution
to to be released into the surrounding environment [144,145]. The research shows that
the introduction of magnetic materials can improve the impedance matching performance
between composite materials and air, weaken the reflection of electromagnetic waves,
and absorb electromagnetic waves through magnetic loss [146,147]. Depositing magnetic
nanoparticles (Fe2O3, Fe3O4, NiFe2O4, etc.) onto conductive fillers can not only enhance
their EMI SE, but also achieve insulation modification and solve the contradiction between
excellent electromagnetic interference shielding and electrical insulation performance [148].

Wang et al. [149] used a Ti3C2Tx@Fe3O4/CNF aerogel (BTFCA) to prepare BTFCA/epoxy
nanocomposites with a long-distance layered structure (Figure 19a). Due to the introduction
of Fe3O4, BTFCA is endowed with excellent magnetism. In addition, the composite can
retain its original long-distance layered structure and maintain structural integrity. This is
mainly because the high rigidity of Fe3O4 also provides BTFCA with a high degree of rigidity,
which allows BTFCA/epoxy nanocomposites to retain the integrity of the layered structure
arranged remotely (Figure 19b). In order to improve the electrical insulation performance of
electromagnetic interference, the influence of internal conductive materials can be reduced
by the structural design of composite materials and the insulation of the outer layer of the
sandwich structure. Guo et al. [148] prepared a sandwich structure of CF@Fe2O3/(BN/Sr)
composite material by depositing Fe2O3 particles onto carbon fiber (CF) with CF @Fe2O3 as
filler (Figure 19c). Its structure can not only realize the heat conduction and electrical insulation
functions of composite materials, but also achieve excellent EMI shielding performance and
reduce secondary electromagnetic pollution through an “absorption-reflection (transmission)-
reabsorption” process when electromagnetic waves pass through conductive fillers bearing
magnetic materials. In addition, the CF@Fe2O3/(BN/SR) composite material was found to
exhibit a better heat dissipation effect (5.6 ◦C) than commercial silicone grease (QM850) when
it was evaluated on a computer CPU as a test platform. In addition, it has wide-ranging
application prospects in the electronics field. As dipolar materials, Fe2O3 materials polarize
in the presence of these waves, which leads to higher attenuation of electromagnetic waves.
In order to efficiently construct a three-dimensional magnetic graphene-based composite
structure and significantly improve electromagnetic interference, Liang et al. [85] prepared a
three-dimensional Fe3O4-modified carbon nanotube/reduced graphene oxide foam/epoxy
(3 Fe3O4-CNTs/RGF/EP) nanocomposite (Figure 19d). Subsequent performance tests revealed
that its conductivity reaches 15.3 S/m and its EMI SE value reaches 36 dB, which is increased
by nearly 482% compared with the composite material, which lacks a 3D structure. The
introduction of Fe3O4 nanoparticles in the study will increase the magnetic and dielectric
losses, on the one hand, due to the interface polarization between Fe3O4 nanoparticles, and
other materials, and on the other hand, due to the formation of heterogeneous systems
and stronger coupling between adjacent Fe3O4 nanoparticles, which will polarize in the
presence of electromagnetic fields, thus obtaining better electromagnetic wave absorption.
Therefore, excellent magnetism and efficient three-dimensional skeleton structure were the
primary factors for the excellent electromagnetic shielding performance of three-dimensional
Fe3O4-CNTs/rGF/EP nanocomposites (Figure 19e).
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posite. (b) Morphology of BTFCA and BTFCA/ epoxy nanocomposites. a, b [149]. Copyright 2022,
SpringerOpen. (c) Schematic diagram and microstructure of CF@Fe2O3/(BN/Sr) composites [148].
Copyright 2022, Elsevier. (d) Operating temperature of CPU. (e) Comparison of EMI SET of Fe3O4–
CNTs/EP and 3D Fe3O4–CNTs/rGF/EP nanocomposites physically blended by different preparation
methods. d, e [85]. Copyright 2019, Elsevier.

Although iron oxide has excellent magnetic properties and strong spin polarization
at room temperature, it can be used to absorb microwave radiation. However, Fe3O4
nanoparticles tend to aggregate due to their strong magnetic dipole-dipole interaction,
which affects the shielding effectiveness. To solve these problems, Liu et al. [43] prepared
a three-dimensional porous graphene/Fe3O4/epoxy nanocomposite (Figure 20a), which
can effectively prevent agglomeration and has excellent thermal stability as well as me-
chanical properties. Wang et al. [150] functionalized Fe3O4 nanoparticles with silver and
11 mercaptononanoic acid (MUA), and they reacted Fe3O4@Ag-COOH nanoparticles with
the acyl amine of MWCNTs-NH2 to obtain conductive and magnetic layered composite
nanoparticles MWCNT-Fe3O4@Ag (Figure 20b). The functionalized nanoparticles were
readily dispersible in the composite material. Yiming et al. [151] used ethylenediamine
functionalized Fe3O4 (NH2-Fe3O4) nanoparticles and graphene oxide (GO) to prepare a
composite material with high shielding effectiveness (Figure 20c), which can be readily
dispersed with graphene to obtain excellent shielding performance. Chen et al. [3] prepared
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PS composites with high electrical conductivity and electromagnetic shielding effectiveness
by blending modified Fe3O4 nanoparticles with other solutions (Figure 20d). The modified
nanoparticles were easily dispersed in the solution, exhibiting a synergistic effect with
other materials, showing a good microwave absorption effect, and greatly enhancing the
shielding performance.
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Figure 20. (a) Schematic diagram of porous GNP/ Fe3O4/epoxy nanocomposites prepared by
epoxy-water-inorganic filler suspension emulsion polymerization [43]. Copyright 2019, Elsevier.
(b) Schematic diagram of general preparation process of MWCNT-Fe3O4@Ag/epoxy resin nanocom-
posite [150]. Copyright 2019, Elsevier. (c) Preparation schematic diagram of Fe3O4/TAGA/epoxy
nanocomposite [151]. Copyright 2018, Elsevier. (d) Schematic diagram of the synthesis of (a) PS/
Fe3O4@RGO and (b) PS/TGO/Fe3O4 composites [3]. Copyright 2015, Elsevier.

Besides iron oxide, the FeNi alloy also has excellent initial permeability, relative perme-
ability, low coercivity, as well as repeated magnetization loss, and thus it has great potential
in EMI shielding applications. Song et al. [152] loaded functionalized FeNi alloy particles
(f-FeNi) on a graphene oxide aerogel with a regular honeycomb structure (GH), and they
prepared a magnetic and conductive rGH@FeNi/epoxy electromagnetic shielding composite
(Figure 21a). Its shielding efficiency is as high as 46 dB, and at the same time, it has good ther-
mal stability (its heat-resistance index and temperature at the maximum decomposition rate
were 179.1 ◦C and 389 ◦C, respectively. Yang et al. [153] embedded a FeCoNi medium entropy
alloy in a one-dimensional carbon matrix frame to prepare a composite electromagnetic wave
absorber (Figure 21b), which significantly enhanced the electromagnetic wave absorption
performance. Guan et al. [154] prepared highly dispersed fine FeNi nanoparticles (NPs) that
were coated with carbon nanofibers (FeNi@CNFs) (Figure 21c), for use in shielding materials
to obtain a satisfactory synergy of impedance matching and attenuation resistance. The use of
FeNi NPs was an effective and promising strategy for designing light and high-performance
electromagnetic wave absorbers.
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Copyright 2022, SpringerOpen. (b) Schematic diagram of the synthesis strategy leading toFeCoNi/CF
composites [153]. Copyright 2022, SpringerOpen. (c) Schematic diagram and mechanism diagram of
the manufacturing process leading to FeNi@CNFs [154]. Copyright 2022, Elsevier.

In short, from the perspective of application, the membrane shielding materials in-
corporating iron and its oxides are very useful in energy, medical treatment, research, and
many other fields. In this section, we have explored the composite materials composed
of carbon, polymer, and iron-based materials, in which iron is an important component
that can prevent electromagnetic interference (EMI) through reflection and absorption.
Dielectric loss and magnetic loss are the reasons for high microwave absorption and total
shielding performance. In this case, iron and its components can be combined with con-
ductive polymers, carbon-based materials, or other materials to achieve a synergistic effect,
which has become a popular strategy for EMI shielding applications. This approach also
likely points the way for the future development of electromagnetic shielding materials
that are lighter, thinner, less costly, and offer superior absorption performance compared to
that of the existing materials.

4.5. Cellulose-Based Membrane Shielding Materials

At present, most membrane shielding materials are made by combining highly con-
ductive elements with substrates by various methods, such as coating or mixing. However,
numerous reported membranes shielding materials were based on non-renewable poly-
mers [39–50], which is inconsistent with the concept of green chemistry and sustainable de-
velopment. Therefore, some biopolymers have attracted the attention of researchers [54,155].
As the most abundant renewable polymer on earth, cellulose is widely used in various fields
because of its excellent characteristics, including low production cost, biodegradability,
biocompatibility, and being light in weight [156]. Cellulose contains many hydroxyl groups,
which may promote the formation of hydrogen bonds, which can promote the combination
of cellulose with other elements. Generally, cellulose composites are prepared in the form of
membranes, papers, or porous materials. Cellulose serves as a matrix in composites, which
can improve the mechanical properties of these materials. At the same time, it can be used
as a dispersant to evenly distribute nanoparticles and reduce the content of conductive
components, thus yielding a thin and efficient EMI shielding material [155].
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Zhou et al. [70] designed a multilayer membrane with an alternating structure com-
prised of cellulose nanofiber (CNF) layers and MXene layers by alternating vacuum filtra-
tion (Figure 22a). Based on the mechanical frame effect of the CNF layers, the nano-zigzag
cracks in the MXene layer can be effectively prevented from spreading to the whole mem-
brane, and the mechanical strength and toughness of the alternating multilayer membrane
(CNF@MXene) are improved. It can withstand more than 1000 folding tests without be-
coming damaged, and the shielding efficiency was as high as 40 dB, paving the way for
the application of new intelligent protection equipment suitable for cold and complex
conditions. Han et al. [157] compounded aramid nanofibers (ANFs) that were prepared by
a chemical dissociation method with other fillers, thus obtaining a thermally conductive
and electromagnetic interference shielding composite membrane (Figure 22b) with a Janus
structure (boron nitride nanosheets (BNNS)/ANF). This BNNS/ANF film exhibits both
conducting as well as insulating behavior and has excellent electrical stability and reliability.
Uddin et al. [158] simply soaked, carbonized, and integrated two-dimensional layered
MoS2 with low conductivity into waste cellulose paper, which promoted absorption by
optimizing the dielectric loss and green shielding by reducing reflection. This was mainly
due to the introduction of two-dimensional stacked MoS2 sheets, which provided the source
of interfacial polarization and multiple relaxation pathways. MoS2 also acts as a bridge
between cellulose fibers, forming a conductive network, promoting conductive loss, and
thus providing an effective strategy for sustainable manufacturing of high-performance
green EMI shielding materials (Figure 22c,d).
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Figure 22. (a) A schematic diagram of the preparation of alternating multilayer membrane
(CNF@MXene) [70]. Copyright 2020, American Chemical Society. (b) A schematic diagram of
the preparation of (BNNS/ANF) -(AgNWs/ANF) thermal conductive composite membrane with
Janus structure [157]. Copyright 2022, Tsinghua University Press. (c) A schematic diagram depicting
the synthesis of cellulose carbon (MoS2@WTCC) derived from waste paper towels decorated with
MoS2. (d) The low conductivity of MoS2 and cellulose fiber structure produce an effective conductive
network, which is essential to improve shielding performance and minimize secondary reflections.
c, d [158]. Copyright 2022, Elsevier.

Many studies show that the internal multilayer structure provides an important con-
tribution toward shielding effectiveness. Qian et al. [42] designed a structure in which car-
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bonized cellulose microspheres were inserted into the Ti3C2Tx MXene layer (CCM@MXene).
A CCM@void@MXene composite membrane with an “egg carton” structure was obtained
(Figure 23a). Cellulose can be integrated with Ti3C2Tx MXene to form a graded material
to enhance microwave absorption or EMI shielding performance, and then show better
conductivity and shielding efficiency. This graded porous egg box-shaped structure was a
promising candidate for use in high-efficiency EMI shielding systems. Zhang et al. [159]
designed a CNT interface/cellulose porous composite (Figure 23b) by adjusting the porous
microstructure and the distribution of carbon nanotubes in the cellulose composite and
achieved excellent shielding performance as well as good mechanical properties and low
density. Its shielding effect reached 40 dB, and its modulus was 279 MPa g−1 cm3. This
research can preserve the environment and pave an effective way for high-performance
electromagnetic interference shielding materials, thus promoting many practical and ad-
vanced applications of cellulose. Rahman et al. [160] designed a cellulose-based membrane
shielding material based on bacterial cellulose (BC), a flexible and multifunctional organic-
inorganic hybrid membrane (BC-SiO2-TiO2/Ag) (Figure 23c). This material can be easily
disinfected under ultraviolet irradiation from a lamp or natural light, and safely discarded
or even recycled. Wu et al. [161] used superfine (1.4 nm) cellulose nanofibers to achieve
physical and chemical cross-linking of MXene (PC-MXene) nanosheets, thus preparing
PC-MXene membranes with good flexibility and high conductivity (Figure 23d). The ad-
dition of nano-cellulose reduces the insulation polymer gap between MXene nano-sheets,
thus preventing the deterioration of the conductivity and EMI shielding performance of
MXene/ polymer composites and enabling the fabrication of strong and ultra-thin film
shielding materials.
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Figure 23. (a) Schematic diagram showing the fabrication of CCM@void@MXene composite mem-
brane (CVMF) [42]. Copyright 2021, Elsevier. (b) Schematic depiction of the preparation process
leading to carbon nanotube matrix/cellulose porous composite (route 1) and carbon nanotube in-
terface/cellulose porous composite (route 2) [159]. Copyright 2019, American Chemical Society.
(c) Schematic diagram showing the preparation of cellulose-based membrane shielding material [160].
Copyright 2020, Elsevier. (d) Schematic diagram of PC-MXene physical and chemical double cross-
linking preparation process [161]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

As electromagnetic shielding and absorbing materials, cellulose-based composites pro-
vide impressive performance while also having room for further expansion in terms of their
performance, applications, and structural diversity. Besides their desirable characteristics,
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such as their low density, low cost, and good electromagnetic efficiency, other requirements
such as corrosion resistance, thermal stability, and hydrophobicity cannot be ignored due to
the diverse range of working environments that should also be considered. Therefore, there
is still much room for innovation and growth in the research of cellulose-based materials
in many aspects, and the road to maturity will be difficult and full of expectations. A
helpful area for further research will be to gain deeper insight into the shielding mechanism
of cellulose-based composites, and this knowledge will provide more new opportunities
leading to the next generation of electromagnetic absorption shielding materials.

4.6. New Lead-Free Membrane Shielding Materials

Over the years, researchers at home and abroad have conducted a series of investigations
on radiation shielding materials, and various radiation shielding materials have been devel-
oped. However, further research was needed to optimize the preparation process, enhance
the radiation shielding performance, and improve the comprehensive performance of these
materials [162,163]. Traditional radiation protection materials used for personal radiation
protection have been rubber-based composite materials with lead and its compounds as the
main filling materials. Because of their poor softness, strong toxicity, limited shielding effect,
and other problems (especially their heavy weight and poor comfort), these materials cannot
meet the actual requirements for safe and comfortable protective clothing [162,163]. In order to
obtain ideal protective materials, it is necessary to prepare lead-free radiation protection com-
posites with better flexibility and radiation shielding performance by optimizing composite
component design and improving composite processing technology.

In order to solve the lead pollution caused by the widespread use of lead-containing
materials in shielding materials for radiation protection, technical approaches for utilizing
lead-free composite shielding materials have been put forward. Li et al. [164] designed
a lead-free multilayer polymer composite, which is a layered composite based on tung-
sten/octene copolymer)/(bismuth/octene copolymer). The shielding mechanism of this
structure was primarily due to X-ray penetration becoming weakened by the synergis-
tic effect of layers and interfaces, so that the X-ray shielding ability can be effectively
enhanced (Figure 24a). Tiwari et al. [165] prepared a nano-composite membrane with
a green surfactant (Figure 24b), which has excellent shielding effectiveness and is very
suitable for commercial applications. Yu et al. [166] studied the influence of micro-nano
Bi2O3 membranes with different morphologies on shielding performance, and they found
a synergistic effect between the particle size and the morphology on low-energy X-ray
attenuation (Figure 24c–e). Therefore, the synergistic effect of particle size and morphology
should be considered during the design of effective radiation-proof clothing.

In summary, the current research mainly focuses on the lead-free radiation shielding
materials that can be used as radiation shielding materials. According to the cost per-
formance, practicability and physical properties of lead-free materials, there are many
kinds of lead-free materials that can be suitable for applications as radiation shielding
materials. Lead-free radiation-proof materials are lightweight and have good protective
performance. Therefore, future medical radiation protection clothing must be light, efficient
and environmentally friendly, so as to improve the working comfort for medical staff, en-
sure their health and safety, and not contaminate the environment with lead or other toxic
materials. Finally, no matter what kind of shielding agent is added to medical radiation
protective clothing, in addition to its radiation protection performance, many factors such
as mechanical properties, preparation difficulty, impact on the environment, cost, and so
forth. should be considered to meet the national standards of medical protective clothing.
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incident direction and number of layers, b: Structural schematic diagram of a multilayer composite
materials with different layers, c: Schematic diagram of a photon attenuation mechanism [164].
Copyright 2021, Springer Nature. (b) Synthesize NPs, and then make thin membrane [165]. Copyright
2020, American Scientific Publishers. (c) SEM image of the top section of the prepared thin membrane
and EDX analysis of Bi2O3 bulk [166]. Copyright 2021, Elsevier. (d) X-ray transmission of bulk Bi2O3,
BM–MP1.2, HT–MW1.3, BM–NP0.8 and HT–NF0.4 [166]. Copyright 2021, Elsevier. (e) Get the mass
attenuation coefficient of bulk Bi2O3 from XCOM, and comparison with the corresponding value of
each experimental sample. c, d, e [166]. Copyright 2021, Elsevier.

5. Mechanism of Membrane Shielding Materials

In view of the increasingly serious electromagnetic/radiation pollution, the research,
development, and application of membrane shielding materials have garnered signifi-
cant attention in various fields. Electromagnetic/radiation shielding materials refer to
materials that attenuate electromagnetic waves through reflection, multiple reflection, and
absorption, and cut off or reduce the transmission of electromagnetic/radiation waves [54].
Their mechanism of action was different from that of wave absorbing materials [54]. As
can be seen from Figure 25, when the incident electromagnetic wave reaches the surface
of the shielding material from the emission source, due to the impedance change of the
propagation medium, part of the electromagnetic wave is reflected back to the space on
the same side of the emission source, and the attenuation of the electromagnetic wave
caused by this is called reflection loss. The reflection loss value was proportional to the
interface impedance difference. Subsequently, the remaining electromagnetic waves within
the shielding body were further absorbed by the shielding material through dielectric loss
or magnetic loss (absorption loss) or attenuated through multiple reflections (multiple
reflection loss), and finally a small amount of electromagnetic waves passed through the
shielding material to reach the reflection source [167]. The ability of a material to reflect,
absorb, and attenuate radiation was closely related to its own electronic and magnetic
properties. For conductive shielding materials, increasing conductivity can enhance ab-
sorption and reflection loss at the same time [63]. Generally, the shielding effectiveness or
electromagnetic wave attenuation rate can be used to evaluate the shielding performance of
materials. Shielding efficiency was the result of the joint action of three attenuation modes,
and this value is expressed in decibel (dB) units. The larger the shielding value, the better
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the electromagnetic wave blocking effect. However, the electromagnetic waves reflected
back to the same side of the emitting source or transmitted through the shielding material
will continue to endanger human health, interfere with the operation of equipment, and
cause secondary pollution. At present, a growing amount of research is devoted to reducing
the proportion of reflection loss, improving the absorption efficiency of shielding materials,
and reducing the transmission coefficient of shielding materials.
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Shielding efficiency was the most intuitive index to measure the performance of
shielding materials [54]. If a material’s shielding efficiency is less than 10 dB, it can be
considered to have no shielding efficiency. If the shielding efficiency was below 30 dB,
the material was considered to have poor shielding performance. A material with a
shielding efficiency in the range of 30–60 dB was considered to have moderate performance
which can meet the requirements of civil, general commercial, or industrial electronic
equipment. At 60–90 dB, the shielding material was considered to have high shielding
performance and could be used for military and aerospace applications. When a material’s
shielding efficiency was greater than 90 dB, it was considered to have excellent shielding
performance, and was suitable for demanding scenarios such as the shielding of high-
precision equipment [63]. According to their shielding effectiveness, shielding materials
can be divided into different categories of shielding levels, as shown in Figure 26.
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According to the mechanism of electromagnetic shielding materials, the total elec-
tromagnetic shielding effectiveness (SETotal) can be divided into three parts as expressed
in Equation (1) [54,63,169,170]. The first of these parts is a reflection loss (SER) and is
shown in Equation (2), which refers to the loss caused by the impedance mismatch of
electromagnetic waves on the surface of electromagnetic shielding materials. The second
part is the absorption loss (SEA) as shown in Equation (3), which refers to the loss caused
by the absorption of the energy of electromagnetic waves by electromagnetic shielding
materials during transmission within these materials after the electromagnetic waves enter
the materials. SEA is further sub-divided into electrical loss tan δµ which is expressed by
Equation (4) and magnetic loss tan δε which is expressed by Equation (5). The third category
is multiple reflection loss (SEMR), which is expressed by (6). This loss is caused by multiple
reflections between the inner walls of electromagnetic shielding materials, and it should be
noted that SEMR can be omitted when the electromagnetic shielding effectiveness is greater
than 15 dB.

SETotal = SER + SEA + SEMR (1)

SER = 20 log η0
ηs

= 39.5 + 10 log
√

σ
2π f µ = 50 + 10 log σ

f

= 10 log 1
1−R

(2)

SEA = 20 log e
d
δ = 8.7 log

√
π f µσ = 10 log

1
1− R

(3)

tan δµ =
µ′′

µ′
(4)

tan δε =
ε′′

ε′
(5)

SEMR = 20 log
(

1− e
2d
δ

)
(6)

In the above equations, η0 and ηs represent the inherent impedance of the propagation
medium and material, respectively. Meanwhile, ε′ (the real part of the dielectric constant)
and µ′ (the real part of permeability), respectively, represent the material’s ability to store
electromagnetic waves, while ε′′ (the imaginary part of dielectric constant) and µ′′ (the
imaginary part of permeability) represent the material’s ability to lose electromagnetic waves.
In addition, δ denotes the skin depth, d is the material thickness, σ represents the electrical
conductivity, f denotes the electromagnetic wave frequency, µ is the magnetic permeability,
while R and T denote the reflection coefficient and transmission coefficient, respectively.

However, in the face of a complex electromagnetic/radiation environment, the state of
knowledge regarding this which impedes efforts to develop membrane shielding materials
for future applications. With the continuous efforts by researchers, deeper insight was
gradually being gained about the mechanism of shielding materials. Jin et al. [170] have
proposed that a unique alternating multilayer structure could have an important role in
shielding radiation. When the incident electromagnetic microwave (EMW) was eliminated,
it was absorbed or dissipated in the material in the form of heat, and the internal transmis-
sion times are increased to form multiple reflections to weaken the EMW. In addition, an
MXene layer provides a continuous thermal conduction network in the whole membrane,
thus greatly enhancing the in-plane thermal conductivity of multilayer membrane mate-
rials (Figure 27a). Cheng et al. [171] have proposed that the inhomogeneity of a medium
leads to multiple scattering phenomena and reflection of EMW in multi-channels. The
macro sandwich cavity structure formed by the prepared AN@MXene/TW material greatly
prolongs the transmission path of the electron beam, resulting in more absorption atten-
uation, which has better shielding performance than a single-sided coating (Figure 27b).
Zhu et al. [172] have postulated that the electromagnetic synergistic network composed of
reasonably designed conductive network and confined magnetic particles was the main rea-
son why composite aerogels have excellent EMI performance while maintaining ultra-low
reflectivity. The aligned layered structure of this type of aerogel delays the transmission
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of microwave by nearly infinite internal reflection and scattering, which provides space
for effective attenuation of the electromagnetic cooperative network (Figure 27c). Shahzad
et al. [173] had suggested that shielding was mainly attributable to multiple internal reflec-
tions generated by MXene structure. EMW can be reflected back and forth between layers
(I, II, III, etc.) until it was completely absorbed by the structure (Figure 27d). Huang
et al. [174] established a perfect double permeation structure to explain its mechanism
(Figure 27e). On the one hand, the double-permeability structure produced more interfaces,
and its resonance characteristics [175] absorbed numerous electromagnetic waves due to
multiple reflections in the structure. On the other hand, the interaction between electric
dipole and electromagnetic wave [176] strengthened the absorption of electromagnetic
waves. Zhang et al. [175] have suggested that wave interference occured during the course
of multiple reflections, and its possible resonance characteristics would promote the absorp-
tion of specific electromagnetic waves (Figure 27f). Wang et al. [177] prepared a shielding
material with a layered structure of conductive pearls. When an electromagnetic wave
reached the surfaces of the conductive pearls, it would interact with the carrier wave on
the surface of MXene and thus become partially reflected. In addition, it would enter the
inside of the conductive pearl layer, and the layered structure would reflect and scatter
many times, resulting in the absorption and attenuation of electromagnetic energy. In
addition, the existence of functional groups (-O, -OH, -F) and N atoms on the surface of
MXene may lead to polarization under the action of an alternating electric field, resulting
in polarization loss, which comprehensively enhanced the shielding effect (Figure 27g).
Therefore, with the deepening of the research on shielding mechanism, the development
of lightweight and efficient three-dimensional porous membrane shielding materials will
become an important focus of future research.
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Figure 27. (a) Electromagnetic microwave dissipation mechanism and heat conduction mechanism
with high thermal conductivity [170]. Copyright 2020, Elsevier. (b) Illustration of the launching
mechanism [171]. Copyright 2022, American Chemical Society. (c) Electromagnetic interference
shielding mechanism of composite aerogel [172]. Copyright 2022, American Chemical Society.
(d) Electromagnetic interference shielding mechanism [173]. Copyright 2016, American Association
for the Advancement of Science. (e) Schematic diagram of an electromagnetic interference shielding
mechanism [174]. Copyright 2022, Ivyspring International Publisher. (f) Schematic diagram of the
transformation of co-continuous conductive structure and its influence on the interaction with incident
waves [175]. Copyright 2020, Elsevier. (g) Schematic diagram of the EMI shielding mechanism of
conductive pearls [177]. Copyright 2022, Wiley.
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6. Review of Composite Membrane Shielding Materials for
Electromagnetic/Radiation Pollution

By combining different components, researchers have prepared a wide variety of
composite materials with excellent electromagnetic/radiation shielding properties. The
properties of some reported composite electromagnetic/radiation shielding materials are
listed in Table 1. The SE value of most cellulose composite electromagnetic interference
shielding materials was in the range of 25–70 dB in the frequency range of 8.2–12.4 GHz
(X-band), and the SE values of some other membrane shielding materials can reach up to
91 dB. However, the properties of membrane shielding materials prepared with different
composite materials are very different.

Table 1. Summary of the properties of some membrane shielding materials.

Classification Material Frequency/GHz SE/dB Strength/MPa Characteristics Ref.

Metal AgNWs/NC 8–12 60–76 - High thermal and
electrical conductivity

[97]
AgNF [178]

Polymer
EP/PES/MWCNT

3.94–12.4 23–90 2.55–69.7
Adjustable conductivity, good

flexibility, production cost.

[28]
PDMS/MWCNTs [107]
EVA@PDA@Ag [175]

Concrete WO3 and barit 0.122 (MeV) 99% (RPE) Thermal durability and chemical
corrosion resistance [118]

Lead PVA/pb(NO3)2 - - 37.5 It has good attenuation characteristics
for neutrons and γ rays. [179]

Boron BN/NFC - - 102 Good radiation resistance and neutron
absorption performance. [124]

3D
TiO2-Ti3C2Tx/rGO

30 58–65 Flexible, controllable and efficient
[126]

Ti3C2Tx/(o-
GNPs/PLA [128]

MXene

AgNW@MXene/

8–12.4 44.96–58.4 11.7–422
Lightweight, strong flexibility and

high shielding efficiency

[171]
Ti3C2Tx/PANI/LM [180]

MXene/Epoxy [177]
MXene/GO [181]

Carbon PLA/PCL/8CNT/0.8IPU 9 35.6 - Good electrical conductivity, light
weight and stable chemical properties.

[175]
CNTs/SBS [182]

Fe Fe3O4@CNT 8.2–12.5 30–91 0.1692–0.0432 Strong absorption and frequency
bandwidth

[3]
PS/TGO/Fe3O4 [172]

Cellulos

CNT-
interface/cellulose 8.2–12.4 28–40 22.5 Thermal stability and easy processing

[159]
Waste paper cellulose [158]

Lead-free Gd2O3/NR Neutrons - 8.29 High temperature resistance and
oxidation resistance [95]

The thickness and density of a shielding material greatly affect its performance and ap-
plicability. Therefore, various parameters and properties, as well as the correlation among
many factors and the performance response mechanism, should be comprehensively con-
sidered when developing membrane shielding materials. Cellulose was anticipated to
have a very important role in the preparation of shielding materials because the world
was turning toward sustainable and renewable materials, and cellulose and its derivatives
have important characteristics such as biodegradability, biocompatibility, non-toxicity, high
surface area, molecular polarization, switchable hydrogen bonding, and low cost [51–54].
The introduction of different types of nanomaterials improves the properties of cellulose
and its derivatives. Combining a material such as cellulose with graphene or carbon nan-
otubes yields materials with good electromagnetic interference shielding performance, light
weight, and low density. However, both graphene and carbon nanotubes are expensive,
so the compromise between SE and cost should be considered when designing materials
for practical applications. When cellulose is combined with metal or metal oxide, the
resulting material has high electromagnetic interference SE, but its high weight and poor
corrosion resistance limit its applicability. However, the EMI SE of the material prepared
by combining cellulose with conductive polymer was lower than that of the above two
materials. In addition, significant progress has been made through the combination of
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cellulose with MXene, and the obtained materials show excellent EMI shielding perfor-
mance. Moreover, the use of 3D printing technology to design electromagnetic interference
was a very promising preparation method, and combining theoretical simulation with
experimental data will have an important role in optimizing manufacturing methods.

In addition, compared with dense thin membranes, three-dimensional porous materi-
als can trap electromagnetic waves in pores and increase the number of reflections, which
is beneficial to enhancing electromagnetic absorption loss. This is mainly due to the unique
multi-reflection mechanism of porous structures, which can not only reduce the material’s
density and improve the impedance matching characteristics of the absorbent, but also
facilitate the adsorption, and recombination of powder or wave-absorbing nanomaterials,
thus meeting the requirements of “thin, light, wide, and strong” electromagnetic shielding
materials. However, in order to realize industrial application, it was necessary to find
ways to further reduce the manufacturing costs and simplify the preparation methods. If
low-density and ultra-light biomass porous carbon materials are used, it will be easier to
construct binary, ternary, or even more composite absorbing materials and thus achieve
stronger electromagnetic shielding performance, which will have broader applicability.
However, to overcome the contradiction between impedance matching and attenuation
characteristics and to achieve a synergistic enhancement of electromagnetic loss by organic
coupling of various mechanisms, further research will be needed on the synergistic loss
mechanism of multi-element three-dimensional porous composite absorbing materials. In
addition, it was necessary to continue to investigate ways to construct multi-component
composite three-dimensional porous electromagnetic shielding materials with stronger elec-
tromagnetic loss capabilities and a higher impedance matching level through microstructure
design and to optimize the preparation processes leading to three-dimensional porous
electromagnetic shielding materials. Finally, three-dimensional porous material-based
electromagnetic shielding materials with high temperature resistance, corrosion resistance,
compressibility, and flexibility can be developed to further improve the practicability and
applicability of electromagnetic shielding materials.

In order to obtain a good shielding effect, it is necessary to modify filler materials
via approaches such as morphology control, coating modification, and blending modi-
fication. Achieving this goal will enable the development of inexpensive new conduc-
tive fillers with high conductivity, good mechanical properties, and good compatibility
with the shielding materials. If these types of fillers become available, it will be easier
to form three-dimensional network frameworks, thereby improving the absorption rate
of electromagnetic waves/rays and reducing the reflectivity and transmittance of mem-
brane shielding materials. In addition, combined with advanced material characterization
methods, various related factors that affect the shielding effectiveness of electromagnetic
shielding materials are sorted out, the internal relationship of each influencing factor is
revealed, and the electromagnetic shielding mechanism related to multiple factors in com-
plex composite materials is analyzed. Therefore, it will be highly desirable to develop a
new type of low-cost, and high-performance composite membrane shielding materials.
The modification methods, the selection of modified materials and the preparation process
all affect the performance of the composite membrane shielding materials together, and
successfully taking these considerations into account will enable the construction of an
efficient conductive network and a green shielding material that can be readily dispersed
in its matrix. In particular, when designing composite membrane shielding materials, the
shielding mechanism should be considered in a comprehensive manner.

7. Conclusions and Prospect

In summary, electromagnetic interference and radiation pollution seriously interfere
with the normal work of precision electronic components and directly endanger informa-
tion security as well as human health. Therefore, it is particularly important to develop
efficient electromagnetic interference shielding materials to prevent the failure of high-
precision electronic instruments and protect human health. The rapid pace of scientific and
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technological development has led to more demanding requirements for shielding mate-
rials, such as high absorption capacity, low density, wide frequency range, good thermal
stability, good mechanical properties, light weight, flexibility, and low cost.

This paper mainly explores the recent progress that has been achieved with single
structure design, multiple composite structure design, preparation technology, and the
electromagnetic loss mechanism of membrane shielding materials designed to counteract
electromagnetic/radiation pollution. It has been found that by introducing porous struc-
tures, constructing heterogeneous structures, designing multilayer structures, as well as
utilizing 3D structures, simulations, fillers, and magnetic materials, the electromagnetic
shielding performance of membrane shielding composites can be effectively improved.
In addition, a shielding material can be endowed with other functional characteristics to
realize the integration of structure and function.

In the future, the development direction of membrane shielding materials will be
mainly as follows:

(1) Simulation. WinXCOM, Auto-Zeff software, EGS software, MCNP software, CST
software, COMSOL and other software programs are used for simulation so as to optimize
the preparation process leading to membrane shielding materials. As computing technology
continues to progress, the development of new and more accurate simulation software
will likely provide further benefits in this area; (2) Multiple compounding of functional
materials. The use of carbon-based functional materials such as conductive polymers and
graphene or metals, fibers, or fabrics are promising ways to enhance the properties of
shielding materials, and these strategies are likely to garner significant attention in the
future; (3) Functional integration. With good shielding performance, multiple functions
can be achieved, such as good wave absorbing performance, flame retardant performance,
antibacterial performance, and radiation resistance; (4) Intelligence. By exhibiting a timely
response to the surrounding environment, a smart or intelligent shielding material could
adjust its internal structure and electromagnetic characteristics according to the changes
in the surrounding environment; (5) Green and environmental protection. Researchers
should make efforts to develop promising green electromagnetic interference shielding
materials with low reflectivity and superior dynamic performance adjustment function that
help reduce secondary electromagnetic pollution and can be applied in complex situations;
(6) Self-repairing materials. The design of supramolecular networks to repair the damaged
surface independently can be employed to impart membrane shielding materials with
self-repairing capabilities, which can prolong the service lifetimes of these materials, reduce
the costs associated with repairing or replacing the damaged equipment, and improve the
safety for all users and the public.

In conclusion, optimizing the design of shielding systems from the perspective of theo-
retical simulation, developing new shielding materials with multiple functions, light weight,
high efficiency, and high strength materials, and organically combining them to enhance
the integration degree for the structure/function of the electromagnetic/radiation shielding
systems are key aspects of current and future research in this field. Most importantly, re-
searchers in the future should give full consideration to the unique properties of membrane
shielding materials, such as porosity, multilayers, magnetism, and conductivity, which will
enable the development of a wider range of applications for these materials (especially in
harsh environments) and also help to address challenges encountered during production.
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