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Abstract: The CO2 permeability and selectivity of CHA-type zeolite membranes in the separation of
a CO2/CH4 mixture gas at high pressure were evaluated using non-equilibrium molecular dynamics
(NEMD). It was found that in a perfectly crystalline, defect-free CHA membrane, the adsorption
of CH4, which diffuses slowly in the pores, hinders CO2 permeation. Therefore, an increase in the
amount of CH4 adsorbed at high pressure decreases the CO2 permeability and significantly reduces
the CO2 selectivity of the CHA membrane. CHA membranes with grain boundaries parallel to the
permeation direction were found to show higher CO2 selectivity than perfectly crystalline CHA
membranes at high pressure, as the blocking effect of CH4 on CO2 permeation occurring within the
grain boundary is not significant. This paper is the first to show that the CO2 permeability of CHA
membranes with controlled grain boundaries can exceed the intrinsic performance of fully crystalline
zeolite membranes at high pressure.

Keywords: chabazite zeolite membrane; high pressure CO2/CH4 separation; molecular dynamics

1. Introduction

Greenhouse gases are considered to be the main cause of global warming and the
reduction of CO2 emissions into the atmosphere is necessary; CCS (carbon dioxide capture
and storage) and CCUS (carbon dioxide capture, utilization, and storage) are attracting
worldwide attention, and CO2 separation is a fundamental technology for them. Natural
gas refining is a well-known CO2 separation process [1]. Associated gas produced from gas
fields contains CO2, so a process to purify it from methane is essential for the utilization
of natural gas. The gas concentration of the associated gas varies from producing area to
producing area, and the CO2 concentration is known to vary greatly from 10 to 90% [2].

Chemical absorption is the current process in natural gas plants but is expensive
for the regeneration of the absorbent when separating high concentrations of CO2. The
membrane separation is a process driven by the chemical potential gradient (concentration
and pressure). Membrane separations are simple devices and can be operated continuously
so that the pressure of gas emanating from gas fields can be used as the driving force,
such as in natural gas plants, which are the target of separation. Polymer membranes
have already been commercialized in the field of natural gas, but there are issues with
CO2 separation performance and membrane durability [3]. Furthermore, they show a
high affinity for aromatic hydrocarbons, which are present in trace amounts in natural
gas, making their practical application difficult depending on the compositional conditions
of the natural gas produced. Zeolite membranes, on the other hand, are promising as
CO2 separation membranes due to their excellent properties such as molecular sieving
effect, selective adsorption, and high mechanical strength derived from their regular pore
structure. Recently, zeolite membranes with an 8-membered ring pore size (3.8 × 3.8 Å),
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such as chabazite (CHA) and Deca-dodecasil 3R (DDR), have been successfully produced
and have been reported to show high separation performance with separation factors
exceeding 100 for CO2/CH4 mixture separation [4,5]. This is due to the fact that the kinetic
diameter of the CO2 molecule (3.3 Å) is smaller than the pore size and that of the CH4
molecule (3.8 Å) is equal to the pore size of CHA zeolite.

High-silica CHA-type zeolite membranes exhibit high gas permeability due to their
three-dimensional pore structure and large pore volume [6–8]. However, it has been
reported that the CO2 permeability of CHA-type zeolite membranes decreases in high-
pressure CO2/CH4 mixture gas systems [9,10]. Therefore, improved gas permeability is
required for the application of zeolite membranes in high-pressure CO2 separation, such as
in natural gas purification.

Grain boundaries formed during the formation process of zeolite membranes have
been considered a problem to be solved for practical application as a factor that reduces the
molecular sieving properties. Zeolite membranes have a polycrystalline structure in which
zeolite crystals are densely deposited on a porous support, as mechanical strength and
densification become problems without support [11]. In recent years, membrane formation
methods that can suppress the formation of grain boundaries and repair methods after
formation have been proposed [12–14]. Recent studies have attempted to quantitatively
assess the influence of grain boundaries in Silicalite-1 (MFI) membranes by combining
fluorescence confocal optical microscopy (FCOM) and image processing techniques, and
have also shown that cracks (crystal cracks) are the biggest factor in reducing the molecular
sieving effect of zeolite membranes [15]. The most important factor that reduces the
molecular sieving effect of zeolite films is cracking [16].

However, it is difficult to completely remove grain boundaries from zeolite mem-
branes, and the inherent performance of zeolites cannot be exceeded. The mechanism
of gas separation at grain boundaries is also not well understood. We have reported
the investigation of gas diffusion at grain boundaries inside MFI using the equilibrium
molecular dynamics (EMD) simulation [17,18], but the effect of grain boundaries in mixed
gas systems by EMD is difficult to determine due to the effect of the chemical potential
gradient not being considered directly. On the other hand, the non-equilibrium molecular
dynamics (NEMD) simulation can directly simulate gas permeation in membranes. For
the direct simulation of membrane permeation, the dual-control volume grand canonical
MD (DCV-GCMD) and simple NEMD have been reported. [19,20] We have used NEMD
simulations to study the permeation mechanism of zeolite membranes with grain bound-
aries. In the process, it was found that zeolite membranes with slit-like controlled grain
boundaries exhibit a higher separation performance than zeolite-specific CO2 separation
performance [21]. In particular, CHA membranes controlled to have grain boundaries
parallel to the direction of gas permeation were found to exhibit high CO2 permeability.

In this study, a perfectly crystalline model and a membrane model with controlled
grain boundaries were prepared for a high-silica CHA-type zeolite membrane, and the
effect of controlled grain boundaries on the CO2 permeability was discussed by simulating
CO2/CH4 mixture gas permeation using the NEMD method at different pressure conditions.
The NEMD results show that the presence of CH4 with slow diffusion within the zeolite
crystals decreases the CO2 permeability, suggesting that the CO2 aggregation effect at the
grain boundaries can be used to improve the CO2 permeability of the CHA membrane.

2. Calculation Method

For the CO2/CH4 permeation simulation in CHA-type zeolite membranes, our previ-
ously reported NEMD calculation scheme was used, with atomic interaction parameters
optimized to reproduce the experimental adsorption isotherm data [21]. In this study, the
parameters of PCFF were applied for van der Waals between all atoms, and the atomic
charges of silica, oxygen in crystal, and oxygen at the terminal were 1.244, −0.622, and
−0.311, respectively. Figure 1 shows the unit cells of the perfectly crystalline model and the
polycrystalline model in the NEMD. The gas molecules were generated on the generation
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region with a given velocity according to the Boltzmann distribution toward the membrane
model, and permeated molecules were removed from the unit cell on the deletion region.
This method makes it possible to control the number of gases impinging on the membrane
on the feed and permeation sides.
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Figure 1. The cross view of CHA zeolite membrane on NEMD; (a) is a perfectly crystalline model
and (b) is a polycrystalline model. The atoms by CPK model represent the silica atoms in yellow,
oxygen atoms in red. The layer at the top and the layer at the bottom shows the gas-generation region
and the gas-deletion region, respectively.

The framework used a CHA-type zeolite structure with SiO2/Al2O3 = ∞, which con-
tains no Al atoms at all, a perfectly crystalline model without defect, and a polycrystalline
model consisting of surfaces with different crystal orientations fabricated. High-silica CHA
membranes without Al are hydrophobic, which makes them very advantageous zeolite
membranes for natural gas processing containing vapor [6]. The polycrystalline model
was assumed to be a membrane with grain boundaries perpendicular to the surface. The
grain boundaries in polycrystalline models were considered to be a slit pore with a width
of 0.6 nm. The membrane thickness of all models was around 0.45 nm. The periodic
boundary condition was used in two Cartesian coordinates along the membrane surface
in the NEMD. To maintain the crystalline nature of the CHA zeolite, the coordinates of
the zeolite’s constituent atoms, Si and O, were fixed during the NEMD. The oxygen atoms
exposed to the surface were terminated with a hydrogen atom; on the other hand, the bared
O atom on the grain boundary surface was not terminated with a hydrogen atom. Although
the surface of the grain boundary of the CHA membrane would be terminated by the -OH
group, because the test calculation of NEMD using the all OH terminated model showed no
significant difference in the calculated membrane performance, the unterminated boundary
surfaces were considered to be defined by the grain boundary size clearly.

The equimolar CO2/CH4 mixture was considered as the feed gas. Permeation simula-
tions by NEMD were carried out by varying the time interval f for gas molecule generation,
thereby varying the partial pressure conditions on the feed side (Equation (1)) [22].

f =
PS√

2πmkBT
(1)
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where S is the membrane surface area, m is the molecular weight of the gas molecule, kB is
Boltzmann constant, and T is the temperature. All NEMD simulations were carried out at
298 K and the temperature of the system was controlled by the velocity scaling method.
Table 1 summarizes the appearance intervals f used in this study. Gas molecules that were
reflected at the membrane surface and far enough away from the membrane were deleted
as not involved in permeation. The gas molecules permeating the membrane were removed
just before they reached the permeate side and the pressure on the permeate side in all
NEMD simulations was zero. The permeate flux J is calculated by counting the number of
molecules, n, permeated during time ∆t at steady state and dividing by the surface area, S,
of the membrane (Equation (2)).

J =
n

∆t·S (2)

Table 1. Calculations of the time interval f for generating a gas molecule on each membrane model.

f (fs)

0.5 MPa 2.0 MPa 4.0 MPa 6.0 MPa 8.0 MPa

Perfectly
crystalline

CO2 21,524 5381 2690 1794 1345
CH4 12,978 3245 1622 1082 811

Polycrystalline CO2 9146 2287 1143 762 572
CH4 5515 1379 689 460 345

3. Results and Discussion
3.1. Perfectly Crystalline Model

NEMD simulations of the CO2/CH4 mixture gas at different pressure conditions
were performed on a perfectly crystalline membrane model of CHA zeolite with (1 0 0)
crystalline planes oriented on the surface. Figure 2 shows snapshots of the NEMD results
on the perfectly crystalline model at the feed pressures of 0.5 MPa and 8.0 MPa. Note that
gas molecules are not shown in the snapshot as they are removed when they permeate
the bottom of the zeolite membrane. Under the pressure condition of 0.5 MPa, CO2
molecules were observed to gradually permeate from the membrane surface, occupying
the pores, irrespective of the orientation of the crystal planes. On the other hand, the
number of CH4 molecules in the membrane was few. This is because of the molecular
sieving effect of the membrane. The direction of the CO2 molecules in the membrane was
parallel to the permeation direction and they were observed to be arranged in a row. This
mode of diffusion is known as “single-file diffuse” [23]. This sequence is considered to
indicate the direction of permeation of the CO2 molecules; the direction of the 8-membered
ring pores in the CHA zeolite membrane. As the atomic interactions between the gas
molecules and zeolite used in this paper were based on parameters that could reproduce
experimentally reported adsorption isotherms [24], it can be assumed that CO2 molecules
permeate according to the single-file diffusion within the zeolite crystals resulting in a high
CO2 selectivity.

As shown in Figure 2b, the NEMD at the feed side pressure of 8.0 MPa shows that
the number of CO2 molecules in the membrane is lower than at 0.5 MPa. Figure 3 shows
the change over time in the number of permeated gas molecules at 0.5 MPa and 8.0 MPa.
The number of permeated CH4 molecules at 0.5 MPa was very small and it takes a longer
calculation time (>100 ns) to calculate a precise flux. This may be due to the fact that in the
defect-free, perfectly crystalline model, the kinetic molecular diameter of CH4 is almost
equal to the pore diameter of the CHA zeolite, which requires a long calculation time for
diffusion through the zeolite [25]. The number of CO2 molecules permeated increased
almost monotonically after 20 ns, irrespective of the pressure conditions. At 8.0 MPa, the
number of CH4 molecules permeated also increased monotonically after 20 ns. This is
probably because of an increase in the frequency of CH4 impinging on the membrane
surface at high pressure and an increase in the number of CH4 molecules entering the
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membrane pore. In other words, in a defect-free, perfectly crystalline CHA membrane,
the permeation of CH4 molecules is significantly reduced at low pressure, indicating that
although CO2, which is smaller than the pore size, is selectively permeated, this advantage
may be lost at higher pressures.
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Figure 4 shows the permeability and separation factor from the NEMD with the feed
side pressures of 0.5, 2.0, 4.0, 6.0, and 8.0 MPa: the CO2 permeability decreases at higher
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pressures, while the CH4 permeability increases slightly. The results indicate that the CO2
selectivity decreases in the perfectly crystalline CHA membrane at high pressure. This is
consistent with the trend in the experimental data of Kida et al. [9]. Analysis of the concen-
tration distribution of gas molecules in the perfectly crystalline CHA membrane model for
different pressure conditions on the feed side (Figure 5) shows that the CO2 concentration
near the membrane surface on the feed side decreases with increasing pressure. On the
other hand, the CH4 concentration increased at higher pressures, suggesting that the CH4
molecules adsorbed on the membrane surface inhibit the CO2 permeation.
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As shown in Figure 5, the molecular concentration of CH4 in the membrane tended to
increase at high pressure and was almost the same above 4.0 MPa. On the other hand, the
molecular concentration of CO2 in the membrane decreased at high pressure. This may
be due to the fact that the permeation of CO2 molecules is inhibited by CH4 molecules,
which diffuse more slowly in the pores, resulting in blocking the CO2 diffusion at higher
pressures. Krishina et al. reported that the diffusion of gas molecules in zeolite membranes
was strongly influenced by slower diffusing molecules [26]. Figure 6 shows the results of
the analysis of the gas permeation velocity in the membrane with respect to the direction
of permeation: at 0.5 MPa, CO2 molecules are permeated faster, while at higher pressures
they are permeated more slowly. The higher the pressure, the slower the permeation
velocity. On the other hand, the opposite trend was observed for CH4. At low pressure, the
CH4 permeation is inhibited because CO2 molecules occupy the pores, but as the number
of CH4 adsorbed in the membrane increases, the permeation of CH4 molecules, which
diffuse more slowly, is considered to be the rate-limiting factor. A permeation test by
Li et al. revealed that CO2 inhibits CH4 adsorption, and CH4 slows the CO2 diffusion in
the SAPO-34 membrane that has pores that are similar to CHA [27]. In other words, it is
clear that the contribution of diffusion within the zeolite crystals is greater than adsorption
at the membrane surface to the reduction in the CO2 permeability in the CHA membrane
at high pressure. Indeed, the adsorption selectivity of CHA-type zeolites in an equimolar
CO2/CH4 gas mixture at 8.0 MPa is around eight [19,28], suggesting that the NEMD
simulation results at 8.0 MPa show little CO2 selectivity due to diffusivity.

Membranes 2023, 13, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 6. The velocity of gas molecules along permeation direction in a perfectly crystalline model 
of CHA zeolite membrane on NEMD simulation at different pressure conditions. 

3.2. Polycrystalline Model 
NEMD simulations of CO2 and CH4 mixtures were performed using a polycrystalline 

membrane model at 8.0 MPa. Similar to our previously reported results [21], selective ag-
gregation of CO2 molecules was observed in the grain boundaries opened to the mem-
brane surface. After 20 ns, when the number of permeated molecules becomes steady, CO2 
molecules are selectively adsorbed at the grain boundaries rather than in the crystalline 
regions, as shown in Figure 7, and the permeability in the grain boundary membrane 
model is estimated to be a significant contribution of gas permeation. 

 
(a) (b) (c) 

Figure 7. The snapshots of the cross view of the membrane in the unit cell were obtained from the 
NEMD for CO2/CH4 mixture gas permeation at high pressure. CO2 and CH4 molecules by the CPK 
model represented the carbon atoms in gray, oxygen atoms in red, and hydrogen atoms in white, 
whereas the CHA zeolite was represented by the stick model. (a) 5 ns, (b) 10 ns, and (c) 15 ns. 

Figure 8 shows the permeability and separation factors for the polycrystalline and 
perfectly crystalline membranes. The gas permeability in the polycrystalline model was 
more than ten times larger than in the perfectly crystalline membrane. The CO2 selectivity 
in the polycrystalline model at low pressure was smaller than in the perfectly crystalline 
model. This is due to the grain boundary being larger than the kinetic diameter of CH4, 
which reduced the molecular sieving effect, consistent with the trend obtained experimen-
tally [8]. However, at pressures above 4.0 MPa in Figure 8c, the CO2 selectivity in the pol-
ycrystalline model was greater than that of the perfectly crystalline model. This is because 
the polycrystalline model has major CO2 permeation in the grain boundary region and is 

Figure 6. The velocity of gas molecules along permeation direction in a perfectly crystalline model of
CHA zeolite membrane on NEMD simulation at different pressure conditions.

3.2. Polycrystalline Model

NEMD simulations of CO2 and CH4 mixtures were performed using a polycrystalline
membrane model at 8.0 MPa. Similar to our previously reported results [21], selective
aggregation of CO2 molecules was observed in the grain boundaries opened to the mem-
brane surface. After 20 ns, when the number of permeated molecules becomes steady, CO2
molecules are selectively adsorbed at the grain boundaries rather than in the crystalline
regions, as shown in Figure 7, and the permeability in the grain boundary membrane model
is estimated to be a significant contribution of gas permeation.
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Figure 7. The snapshots of the cross view of the membrane in the unit cell were obtained from the
NEMD for CO2/CH4 mixture gas permeation at high pressure. CO2 and CH4 molecules by the CPK
model represented the carbon atoms in gray, oxygen atoms in red, and hydrogen atoms in white,
whereas the CHA zeolite was represented by the stick model. (a) 5 ns, (b) 10 ns, and (c) 15 ns.

Figure 8 shows the permeability and separation factors for the polycrystalline and
perfectly crystalline membranes. The gas permeability in the polycrystalline model was
more than ten times larger than in the perfectly crystalline membrane. The CO2 selectivity
in the polycrystalline model at low pressure was smaller than in the perfectly crystalline
model. This is due to the grain boundary being larger than the kinetic diameter of CH4,
which reduced the molecular sieving effect, consistent with the trend obtained experi-
mentally [8]. However, at pressures above 4.0 MPa in Figure 8c, the CO2 selectivity in
the polycrystalline model was greater than that of the perfectly crystalline model. This
is because the polycrystalline model has major CO2 permeation in the grain boundary
region and is less susceptible to CO2 permeation inhibition by CH4, which occurs in the
crystalline region. When separating CO2 from CH4 at high pressure using a high-density
crystal membrane such as the perfectly crystalline model in this study, CO2 molecules
have difficulty overtaking CH4 molecules in the CHA crystal. This is thought to be due
to the one-dimensional diffusion of CO2 molecules between pores. On the other hand,
the structure of the polycrystalline membrane modeled in this study is slit-like, which
allows surface diffusion (two-dimensional diffusion) of CO2 molecules to overtake CH4
molecules. The illustration of mechanism of the effect by a grain boundary is shown in
Figure 9. It is very difficult for CO2 molecules to overtake CH4 molecules on the perme-
ation pathway in zeolite crystals because of kinetic diameters. On the other hand, in the
presence of grain boundaries, there are permeation pathways from within the zeolite crystal
to the grain boundary. This means that even if the CH4 molecules occupy the pathway
within the crystal, the CO2 molecules can overtake the CH4 molecules by diffusing from
the crystal to the grain boundary. Interestingly, the CO2 selectivity of the polycrystalline
model at 8.0 MPa is greater than the adsorption selectivity (α = 8) in the CHA zeolite. At
high-pressure conditions, the amount of gas adsorbed at the grain boundary is reported
to be slightly greater than that of zeolite crystals [29]. Therefore, in CHA membranes
with grain boundaries, CO2 molecules are not affected by the permeation-inhibiting effect
of CH4 molecules within the crystals, and the polycrystalline membrane may have the
ability to show higher separation performance than the perfectly crystalline model under
high-pressure conditions. This means that fine-controlled grain boundaries may exceed the
separation performance of zeolite crystals.
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4. Conclusions

To investigate the CO2 separation performance of CHA zeolite membranes at high
pressure, permeation simulations of a CO2/CH4 mixture gas up to 8.0 MPa were carried
out using the NEMD. The NEMD results showed that CO2 permeation was blocked by
the adsorption of CH4, which diffuses slowly inside the CHA zeolite membrane, and that
this blocking effect reduced the CO2 selectivity at high pressure. On the other hand, in the
CHA membrane with grain boundaries opened to the membrane surface, gases selectively
permeated through the grain boundaries, thus suppressing the blocking effect caused by
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CH4 in the zeolite crystals. It was also suggested that the active utilization of fine-controlled
grain boundaries can maintain CO2 selectivity and improve the permeation flux. This
paper shows that grain boundary CHA films exhibit higher gas permeability than fully
crystallized ones. These results demonstrate that precise control of the grain boundary
structure can separate CO2 more efficiently than conventional zeolite membranes under
high pressure.
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