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Abstract: The present work focused on the experimental study of the specific features of self-diffusion
of tridecane molecules in macroporous kaolinite, which is used as a raw material for the production of
chemically inert membranes. The measurements of self-diffusion coefficients by pulsed magnetic field
gradient nuclear magnetic resonance (PMFG NMR) revealed an increased translational mobility of
tridecane molecules in kaolinite with incomplete filling of the pore space. This effect was accompanied
by a sharp change in the slope of the Arrhenius plot of the self-diffusion coefficients of tridecane
molecules in kaolinite. An analysis of the diffusion spin echo decay in the tridecane–kaolinite system
revealed a discrepancy between the experimental data and the theoretical predictions, considering
the effect of the geometry of porous space on molecular mobility. It was shown that the experimental
results could be interpreted in terms of a model of two phases of tridecane molecules in the pores of
kaolinite, in the gaseous and adsorbed state, coexisting under the fast-exchange conditions. Within
the framework of the model, the activation energies of self-diffusion were calculated, which agreed
satisfactorily with the experimental data. Additionally, the effects of the internal magnetic field
gradients arising in a porous medium loaded with a gas or liquid on the data of the PFG NMR
measurements were calculated. It was shown that the effect of magnetic field inhomogeneities on the
measured self-diffusion coefficients of tridecane in kaolinite is small and could be neglected.

Keywords: self-diffusion; PMFG NMR; spin echo; tridecane; porous material; kaolinite; membrane;
temperature; vapor phase; fast molecular exchange; activation energy

1. Introduction

The widespread use of membranes in various branches of industry and science [1]
implies the need to obtain actionable knowledge about the physical processes occurring
when the substances transported through them are separated into components [2]. It is
important to understand the mechanism of mass transfer, the nature of the interaction of
the molecules of the transferred substance with each other and with the surface of the mem-
brane pores, etc. Real membranes differ in their properties, which determine the efficiency
of membrane transport, and as a result, their applications in gas separation [3,4], liquid
biofuel production [5], radioactive waste management [6,7], oil-in-water separation [8],
etc. In addition to such properties of membranes as mechanical strength, thermal and
chemical resistance, thermal and electrical conductivity and heat capacity, the structural
and morphological characteristics of a membrane material are also essential since they
determine the specific features of molecular transport of the target substance in membranes
and membrane sorption efficiency [2,9–11]. In turn, the diffusion and sorption coefficients
determine an essential parameter of the efficiency of a membrane: its permeability. The
values of membrane permeability for the target substance provide information on coupled
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adsorption and diffusion properties of a membrane material. Thus, to decouple these
properties, it is necessary to measure independently diffusion and adsorption parameters
in membranes [12]. A well-characterized chemically inert porous material (clays, sands,
porous glasses, etc.) filled with a liquid can serve as a model system for investigating the
features of diffusion properties in membranes.

Recently, kaolin clays were proposed as a cheap alternative raw material for produc-
ing ceramic membranes, which are used in oil-field-produced water treatment [13,14]
or in the conversion of biomass-derived free fatty acids to infrastructure compatible
hydrocarbons [15]. Samhari and coworkers managed to fabricate a flat ceramic micro-
filtration membrane from natural kaolinite for seawater pretreatment and wastewater
purification [16].

Based on the foregoing, in the present study, we considered kaolinite as a mem-
brane model and tridecane as a model substance transported through this membrane. It
should be noted that tridecane, as one of the major petroleum hydrocarbons, is present
in wastewaters and soil [17,18] and its removal requires different methods, including
membrane technology.

To study the molecular mobility of tridecane in kaolinite (a model system simu-
lating mass transfer in a membrane), pulsed magnetic field gradient nuclear magnetic
resonance [19] was employed. PMFG NMR is one of the most informative experimental
methods for studying molecular mobility in porous media [20–26].

One of the unusual features of molecular mobility of liquid in a porous medium is
abnormally high self-diffusion coefficients (SDCs) observed under certain experimental
conditions. Boss and Steiskal [27] were the first to notice that the measured values of the
SDC of water in the pores of hydrated vermiculite exceeded the bulk value; they attributed
this effect to a contribution from a vapor phase at the boundaries of the porous material.
Later, Karger et al. [21,28] also observed the enhanced mobility of water in NaY-zeolite
with mesoporous hierarchical structure. They interpreted it using an analog of the Einstein
equation for diffusion by uncorrelated jumps, according to which the mean life times
between succeeding jumps of molecules in porous space become shorter as the pore filling
decreases. D’Orasio et al. found similar effects for water in mesoporous glasses [29]. Almost
simultaneously and independently, we measured the molecular mobility of water and a
series of saturated hydrocarbons in pores of natural clay minerals using the PFG NMR
method [30] and also discovered the anomalous concentration dependences of SDC, when
the measured SDC values of a liquid that partially filled the pore space can exceed the
bulk value.

In a series of PMFG NMR experimental studies on self-diffusivities of polar (water)
and nonpolar hydrocarbons in model porous systems such as silica glasses [31–33], the
effects of pore size, pore filling and temperature on the observed phenomenon were
revealed. The abnormal molecular transport behaviors of hydrocarbons were investigated
experimentally in nanoporous solids with hierarchical pore structure for two cases of mass
exchange between micro- and mesopores [34–36]. The different temperature-dependent
patterns of the concentration dependence of molecular mobility in micro- and mesopores
were interpreted, taking into account the models of adsorption [24,34–36]. Bukowski et al.
analyzed various theoretical approaches and simulation models for describing molecular
transport in various micro- and mesoporous materials (porous glasses, zeolites, metal–
organic framework), including the phenomenon of enhanced diffusion, and the calculated
data were comparted with the experimental results obtained by PMFG NMR and quasi-
elastic neutron scattering [37].

As follows from numerous experimental data, the enhanced diffusion is a phenomenon
that is specific to fluid molecules in nanoporous materials under conditions of incomplete
filling of pore space [27–37]. The ranges of pore filling and temperatures at which this
phenomenon is observed depend on the physicochemical properties of both a fluid and a
porous material.
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In the present work, we continue to study the physical nature of this phenomenon and
consider an effect of temperature. We also check a possible impact of a systematic error,
which is inherent in PFG NMR measurements of SDC of liquid in porous materials due to a
difference between their magnetic susceptibilities.

2. Materials and Methods

Tridecane (C13H28), hereinafter referred to as TD, of a chemically pure grade was pur-
chased from Chimmed Group. The physicochemical properties of TD are as follows: molecular
mass M = 184.4 g/mol, liquid density ρl = 0.742 g/cm3 (at T = Tcr = 674.2–676.2 K), boiling
point temperature T0 = 508 K [38,39].

Kaolinite is a typical layered silicate mineral with a rigid structural cell; most of the
kaolinite minerals are close to the ideal formula Al2Si2O5(OH)4. It is composed of thin
pseudohexagonal sheets of triclinic crystal. Its structure consists of stacks of electrically
neutral 1:1 layers with 0.72-nm spacings. The adjacent layers are held together by hydrogen
bonds between the basal oxygen atoms of the tetrahedral sheet and the hydroxyl groups of
the exterior plane of the octahedral sheet [40]. Kaolinite particles have a thickness ranging
from 0.05 µm to 0.1 µm and a length ranging from 0.2–0.5 µm to 0.5–1.0 µm [40–42].

According to experimental reports [41–43], kaolinite adsorbs low-molecular sub-
stances, including hydrocarbons, but their adsorption is limited to the surface of the
particles (plane or edges), while the interlayer space remains inaccessible.

The kaolinite specimen was received from the Institute of Geology and Petroleum
Technologies of Kazan Federal University (Kazan, Russia). The porous structure of kaolinite
is characterized by a specific surface area s1 of 9.9 m2/g and a specific pore volume Vp of
0.36 cm3/g evaluated from the adsorption measurements [44,45]. The maximum thickness
of the plates achieved 0.1 µm.

The bulk-to-bulk method of sample preparation for the PMFG NMR measurements
was described in a previous work [45]. The mass content of TD in the sample was defined
as follows:

ω1 = m1/(m1 + m2),

here, m1 is the mass of TD injected into a NMR tube loaded with a weighed portion of
kaolinite with mass m2. The samples with w1 = 0.038, 0.06, 0.079, 0.14 and 0.40 were studied.

The degree of pore filling of kaolinite with TD was calculated:

θ = Vl/Vp = ω1/(1−ω1)ρlVp,

here, Vl is the specific volume occupied by tridecane. The θ values for all the samples were
less than 1, except for that with w1 = 0.40 (see Table 1).

Table 1. Characteristics of the samples, including the relative amount of TD in kaolinite, degrees of
pore filling, number of TD monolayers, energies of activation of TD diffusivity in pores of kaolinite.

No ω1 θ n mol El, kJ/mol Eh, kJ/mol E’
h, kJ/mol ET

h , kJ/mol

1 0.038 0.15 ~6 28.8 50.6 74 87
2 0.060 0.24 ~10 24.3 48.2 - 87
3 0.079 0.33 ~13 19.8 46.0 68 87
4 0.400 >1 - 16.8 - -
5 1.000 - - 15.5 - -

Here, n mol is the number of TD monolayers on the pore surface of kaolinite (calculated below); El, Eh, E′h, and ET
h

are the activation energies of TD self-diffusion in kaolinite, which are evaluated from the temperature dependence
of SDC (explanations are given below in the text).

Translational mobility characteristics of TD were evaluated from the diffusional spin
echo decay (DD) A(g2) recorded on a self-designed NMR pulse spectrometer (Department of
Molecular Physics of Kazan Federal University) operating at a proton resonance frequency
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of 64 MHz. The spectrometer is equipped with a PMFG unit, providing a maximum
gradient magnitude of 40 T/m.

The diffusion experiments used a standard stimulated echo sequence that includes
three radio frequency (RF) pulses and two pulses of magnetic field gradients [19]. The
stimulated echo sequence is shown schematically in Figure 1.
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Figure 1. Three-pulse sequence with two pulses of field gradient for measuring SDC from the diffu-
sional decay of stimulated echo [19]: 90◦ are RF pulses; A

(
g2) and A0 are the spin echo amplitudes

in the presence and absence of magnetic field gradient pulses with intensity g and duration δ, respec-
tively; ∆ is the time between magnetic field gradient pulses; g0—is constant gradient of magnetic
field; τ is the interval between the first and second RF pulses; τ1 is the interval between the second
and third RF pulses.

The observation time of diffusion is defined as:

td =

(
∆− 1

3
δ

)
,

Here, δ is the duration of field gradient pulses, which did not exceed 2.2 ms; ∆ is a
time interval between the field gradient pulses. The diffusion time varied within the range
of 3–15 ms.

In the case of isotropic free diffusion of a pure substance, the diffusion decay (DD) of
the stimulated echo is described by an exponential function:

A
(

g2
)
= A(0)exp

(
−γ2 δ2g2Dtd

)
, (1)

here, γ is the gyromagnetic ratio of proton.
The diffusion measurements in heterogeneous systems often yield spin echo decays

that are complex in shape and cannot be fitted by an exponential function. In this case,
an effective or average self-diffusion coefficient D = De f f is introduced as a quantitative
measure of translational molecular mobility throughout the sample under study. Its value
is determined from the initial slope ( g2 → 0) of diffusion decay A

(
g2).

In our experiments, all PFG NMR parameters were calibrated using a standard liquid,
namely, distilled water, which has a SDC value of 2.7 ± 0.1 10−9 m2⁄s at T = 303 K.

3. Results and Discussion

Figure 2 shows the diffusional spin echo decays A(g2) for sample 2 (w1 = 0.06) at differ-
ent temperatures. One can see that at T = 303 K, the experimental DD curve (open circles)
has a shape close to exponential, i.e., it can be approximately described by Equation (1),
which is valid for isotropic free diffusion.
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T = 383 K (solid circles). Diffusion time td is 3 ms and duration of PMFG δ is 0.2 ms. Solid curves
were calculated by Equation (2) [46] for T = 303 K (curve 1) and 383 K (curve 2); a = 0.05 µm.

With an increase in temperature up to 383 K, the DD noticeably deviates from the
exponential function (solid circles). A similar trend in the change in the DD shape with
increasing temperature (and, as a consequence, with increasing values of measured SDC)
was found theoretically for molecules in an infinitely slit-like pore with a width a [46].

According to [46], in this case, the DD is expressed as follows:

A
(
g2)

A(o)
= exp

(
−Dk2td

)
·
∫ 1

0
exp

{
k2

[
Dtd −

〈r2
⊥〉
2

]
x2

}
dx. (2)

Here, 〈r
2
⊥〉
2 = a2

3 ·
[
1− exp

(
3Dtd

a2

)]
, and 〈r2

⊥〉 is the square root-mean-square displace-
ment of a molecule in a direction perpendicular to the pore walls. The DD curves calculated
by Equation (2) with a = 0.05 µm are shown by solid lines in Figure 2.

Figure 3 shows the concentration dependences of effective SDC D determined from
the initial slope of DD at different temperatures. It can be seen that at low temperatures
of 294, 312, and 333 K, the measured SDC value of TD becomes smaller, as its content in
kaolinite decreases (curves 1–3). This result is quantitatively consistent with the theoretical
predictions [47–49]. However, an increase in temperature from 294 to 333 K is accompanied
by a noticeable weakening of the dependence D(ω1). Moreover, at T ≥ 358 K, the character
of the D(ω1) dependence changes dramatically (curves 4 and 5 in Figure 3). As the
concentration of TD in kaolinite decreases, the observed SDC starts to increase up to a value
exceeding the SDC of bulk liquid TD (DL) under the same conditions, i.e., D− DL > 0.

At elevated temperatures, the effect of enhanced diffusion of TD is manifested at a
larger filling of pores compared to that for lower temperatures (compare curves 4 and 5 in
Figure 3). Thus, in the region of enhanced diffusion, parameter

(
D− DL

)
increases both

with a rise in temperature T at w1 = const and with a decrease in the pore filling at T = const.
It should be emphasized that an increase in the measured D is observed only for the cases
of partial filling of kaolinite pores with TD, i.e., for θ < 1.
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We considered in more detail the influence of temperature on the effect of enhanced
diffusion. For this purpose, we examine the temperature dependences of the effective value
of D of TD for three samples represented in Figure 4 as an Arrhenius plot:

(
lgD− 1/T

)
.

It can be seen that both for sample 4 with w1 = 0.40 or θ ≥ 1 (curve 3) and pure tridecane
(curve 4), the dependence lgD = f (1/T) is described by a straight line. However, for all
other samples with incompletely filled pores (curves 1 and 2), the plots can be approximated
by two straight lines with different slopes. Each of these lines is characterized by the
apparent activation energy of diffusion of TD in the pores of kaolinite:

Ei = −
R

lge
·
∆
(
lgD

)
∆
( 1

T
) ,

here, R is the gas constant; subscript i = l or h specifies the low- and high-temperature
regions, respectively; El and Eh are the activation energies of self-diffusion of TD in kaolinite
under the low- and high-temperature conditions, respectively.

Table 1 lists the values of El and Eh for all the samples. As follows from Figure 4, the
changes in the slope of lgD(1/T) plots occur within a temperature range of 320–330 K that
coincides with the temperatures at which the dependence D(ω1) becomes less strong. It
can be seen from Table 1 that the values of El calculated for samples 1–3 differ from the
activation energy of diffusion for bulk TD, and moreover, it depends on the TD content.
These facts can be attributed to the adsorption of TD molecules onto the surface of kaolinite.
We assume that TD molecules are uniformly distributed over the pore surface. According
to the data reported in [50], the volume of a TD molecule is 235·10−30 m3, and the corre-
sponding area is 42 × 10−20 m2. From knowing the total number of TD molecules in the
sample and the specific surface area of kaolinite, it was possible to calculate the number of
monolayers formed by physically adsorbed TD molecules nmol on the pore surface for each
system TD–kaolinite. The values of nmol are given in Table 1.
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Following to [51], the activation energy of TD can be represented as

El = αEads

Here, Eads is the adsorption energy or the energy of van der Waals interactions between
TD molecules and adsorption sites of kaolinite, the parameter α (0 < α ≤ 1) is determined
by the TD–kaolinite van der Waals interactions. In these ranges of pore fillings and tem-
peratures, the activation energy El describes the random jumps of TD molecules from one
adsorption site to another. It should be noted that with an increase in the number of TD
monolayers on the kaolinite surface, the apparent activation energy corresponds to two
processes: (1) stochastic hopping and (2) formation of vacancies for TD molecules diffusing
within the surface layer [37]. Therefore, in this case, α > 1. In terms of this concept, one can
interpret the differences in the values of El for sample 1 and samples 2 and 3. However, a
precise picture of TD diffusion within the surface layer requires a detailed knowledge of
the surface structure of kaolinite in order to evaluate the TD–kaolinite interactions.

As mentioned above, the Arrhenius plot lgD(1/T) with the constant slope (and
constant energy of activation) was observed for sample 4 (θ > 1), which is indicative of
the fact that the translational mobility of TD molecules in the completely filled kaolinite
pores is determined by the same mechanism over the entire range of studied temperatures.
Latour et al. [52] showed that at long diffusion observation times (which is valid for our
experiments), the diffusion constant of molecules in pores depends on the connectivity
(tortuosity) of the porous space. Moreover, the long-time diffusion constant of a fluid
in the membranes depends on their permeability and arrangement [11,52]. It should be
noted that a similar Arrhenius plot was found for oversaturated mesoporous Vycor glass
with n-pentane at the temperatures exceeding the boiling point [53]. Next, we discuss the
diffusion behaviors of TD in kaolinite pores at elevated temperatures. As follows from
Table 1, in the case of incomplete filling of pores with TD, the values of activation energy
Eh are sufficiently high. Moreover, the values of Eh calculated for samples 1–3 exceed the
molar heat of vaporization of TD: q0 = 45.67 kJ/mol at the boiling point T0 = 508–509 K [42].

It seems reasonable to assume that at elevated temperatures, in the samples with
incomplete filling of kaolinite macropores (θ < 1), TD molecules exist (1) in the adsorbed
state in the surface layers with properties close to those of liquid TD (except the first
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layer) and (2) in the state of saturated vapor. We suppose that these phases coexist under
conditions of a fast exchange in the time scale of diffusion observation by the PMFG NMR
technique. Namely, the fast exchange condition is realized if the lifetimes of TD molecules
in the surface layer and in the gaseous state, tL and tG, respectively, are much less than
diffusion observation time td:

tL, tG � td, (3)

We estimate the values of tL and tG at a temperature of 333 K, which is higher than
that at which the changes are observed in the slope of the lgD(1/T) plot. Assuming again
the spherical shape of TD molecule, we calculate its diameter: ~8 × 10−10 m. Therefore,
the total thickness of the surface layer of adsorbed TD molecules l can be calculated as
l = nmol × 8 × 10−10 m. Hence, the time during which the molecule covers a distance equal
to l can be calculated: t′L ∼

l2

2DL
= 3 × 10−8 s. However, not every molecule can overcome

the surface tension forces, reach the layer–gas interfacial boundary, and finally, pass into
the gas phase. Thus, as a rough approximation, the real lifetime of TD molecules in the
surface layer was calculated as follows: tL ≈ t′L·

ρL
ρG

, where ρL and ρG are the TD liquid
and saturated vapor phase densities, respectively. In the studied temperature range, the
relation ρL

ρG
is approximately 10−2 [39] and tL ~3 × 10−6 s. The calculated value of tL is

much shorter than the diffusion observation time td ~3 × 10−3 s.
It should be noted that similar diffusion behaviors were found for nonpolar cyclohex-

ane and water in Vitrapor#5 porous glass with partially filled micrometer pores, which were
also attributed to a vapor phase contribution [32,33]. Valiullin et al. also interpreted the
experimental data on self-diffusion of hexane in a model nanoporous glass with micrometer
pores by molecular exchange between the liquid and vapor phases and evaluated the life-
times of hexane molecules in the liquid phase from the analysis of the dependence of the DD
shape on the diffusion observation time [31]. It should be noted that the effect of enhanced
diffusion was not found for tridecane partially filling the interparticle space in quartz
sand (macroporous system with a specific surface of ~10−2 m2/g) [54] and for benzene in
microporous activated carbons with a specific surface of ~103 m2/s) [24]. Thus, a pore size
and specific surface area are the crucial factors that determine the relevance of molecular
exchange limits relative to the diffusion observation time in the PMFG NMR experiments.

For TD in kaolinite pores, the lifetime in the vapor phase tG can be taken as the time
during which the molecules overcome a distance equal to the pore size, which we consider
comparable with the maximum thickness of the kaolinite plates h ~10−7 m. If we take
into account that the SDC for tridecane in the vapor phase DG is of order 10−5 m2⁄s [39]),
then, we obtain tG ~ h2

2DG
~5 × 10−10 s, which is also much less than td, and condition (3) is

satisfied in the time scale of the PMFG NMR diffusion measurements.
In this case, the measured average value SDC for TD can be represented as a sum:

D = NGDG + NLDL, (4)

Here, NG and NL are the relative number of TD molecules in the vapor and liquid
phases, respectively.

Valiullin and coauthors in a series of works [34–36] developed a generalized model for
the self-diffusion of low-molecular liquids in nanoporous solids based on the gas–liquid
interphase exchange determined by the adsorption isotherm. They found that the effective
SDC of liquid in nanopores reaches a maximum at concentrations corresponding to one-
two monolayers. Below this concentration, the effective self-diffusivity is determined
both by an increasing fraction of molecules in a vapor phase and an increasing surface
self-diffusivity or DL. Above this concentration, a decrease in the effective SDC values with
increasing concentration is a result of a decrease in the effective volume of the vapor phase
with a minimum influence of the surface interactions and insignificant changes in SDC of
molecules in the surface multilayers. A contribution of possible capillary condensation in
mesopores to the molecular mobility exhibits an almost constant value of effective SDC.
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As follows from Table 1, the smallest pore filling of kaolinite with TD corresponds to
an approximately 6 monolayer coverage of kaolinite. Hence, the effective self-diffusion
of TD in the pores of kaolinite is determined by the density and diffusivity of molecules
in the vapor phase. Keeping in mind that NL = 1− NG, and DG � DL, we can simplify
Equation (4):

D−DL = NGDG, (5)

Then, from Equation (5), it follows that the temperature dependence
(

D− DL
)
= f (T)

is determined by the dependences DG(T) and NG(T).
In general, the self-diffusion of gas molecules in nanopores is described by an inter-

polation formula known as Bosanquet’s approximation [55,56], combining the molecular
bulk (Db) and Knudsen (DK) diffusion, which are determined by the gas–gas and gas–pore
wall collisions:

1
DG

=
1

Db
+

1
DK

We assume that with a concentration range under study, the amount of TD molecules
in the vapor phase in the pore space formed by interconnected macropores is sufficient to
ensure the predominance of the gas–gas collisions. Therefore, the contribution of Knudsen
diffusivity becomes insignificant. This assumption seems reasonable, especially when
taking into account the values of apparent energy Eh exceeding the molar heat of TD vapor-
ization. According to the molecular-kinetic theory of gases, the temperature dependence of
SDC is described by the well-known formula:

DG(T) = b T
3
2 , (6)

where b is a constant.
To determine the dependence NG(T), we assume that saturated steam partially filling

the pores obeys the ideal gas laws. It can be also surmised that the degree of pore filling
can be expressed as follows:

θ = VL/(VL + VG),

and the fraction of molecules in pores in the vapor phase:

NG =
nGVG

nGVG + nLVL
,

here, VL and VG are volumes occupied by TD molecules in the liquid and vapor phases,
nL and nG are the number of TD molecules per unit volume in the liquid and vapor
states, respectively.

Then, at θ ≥ 0.05, which is true for all the studied samples, we can evaluate the relative
number of TD molecules in the vapor phase using a formula:

NG ≈
nG
nL
·1− θ

θ
=

P
nLkBT

·1− θ

θ
, (7)

here, P is the saturated vapor pressure of TD at temperature T; kB is the Boltzmann constant.
The temperature dependence of saturated vapor pressure is determined by the Clausius–

Clapeyron equation:
dP
dT

=
q(T)

T
(
Vµ

G − Vµ
L
) ,

where q is the molar heat of vaporization, Vµ
G and Vµ

L are the molar volumes of saturated
vapor and liquid, respectively.

Usually, Vµ
G � Vµ

L, and, therefore, the last equation can be written as follows:

dP
P
∼=

q(T)dT
RT2 . (8)
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It is known that the heat of vaporization q is a temperature-dependent parameter:

q(T) =
(

Uµ
G −Uµ

L
)
+ PG

(
Vµ

G − Vµ
L
)
≈
(

Uµ
G −Uµ

L
)
+ RT.

Here, the difference
(
Uµ

G −Uµ
L) is a change in the internal energy of one mole of a

substance during a liquid–vapor transition at any temperature, PG
(
Vµ

G −Vµ
L) is the value

of the system expansion work.
At the boiling point T0 for TD, we obtain:

q(T0) = q0 ≈
(

U0µ
G −U0µ

L
)
+ RT0,

Here, q0 is the specific heat of vaporization (or boiling) at the boiling point T0, and
the difference

(
U0µ

G −U0µ
L) is a change in the internal energy of one mole of a substance

during a liquid–vapor transition at the boiling point T0.
Keeping in mind that:

Uµ
G = U0µ

G −
T0∫

T

cv
G(T)dT = U0µ

G − cv
G(T0 − T)

And:

Uµ
L = U0µ

L −
T0∫

T

cL(T)dT = U0µ
L − cL(T0 − T),

where cL and cv
G are the molar heat capacity of the liquid and gas at constant volume,

respectively; U0µ
G and U0µ

L are the molar values of the internal energies of the gas and
liquid at the boiling point T0, respectively.

It should be noted that the molar heat capacities are constant in the temperature range
of 300–400 K; hence, we can write:

q(T) = q0 +
(

cL − cP
G
)
·(T0 − T). (9)

Here, cP
G = cv

G + R.
By substituting Equation (9) for Equation (8) and integrating the resulting expression,

we obtain:

lnP = −
qo +

(
cL − cp

G)T0

R
· 1
T
−

cL − cp
G

R
lnT+A, (10)

Here, A is the integration constant.
Then, the substitution of Equations (6), (7), and (10) into Equation (5) leads to the expression:

ln
(

D−DL
)
= −

q0 +
(
cL − cp

G)T0

R
· 1
T
+

(
1
2
−

cL − cp
G

R

)
lnT + const, (11)

Notably, the second term in Equation (11) depends on temperature much weaker than
the first term. In this case, the dependence of ln

(
D−DL

)
on 1/T must be described by a

linear function.
Next, we introduce the following notations:

q0 +
(

cL − cp
G
)

T0 = Eh
T (12)

and (
1
2
−

cv
L − cp

G

R

)
lnT + const = B.
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Then, Equation (11) can be rewritten as follows:

ln
(
D−DL

)
= −Eh

T

R
· 1
T
+ B. (13)

It follows from Equation (13) that the dependence of ln
(

D− DL
)

on 1/Tn can be
fitted by a linear function, the slope of which is defined as q0 +

(
cL − cp

G)T0 = Eh
T and its

magnitude is independent on the amount of a fluid in the pore space.
In Figure 5, we compared the experimental data on the TD self-diffusivity for samples

1 and 3 with different amounts of TD plotted as a function lg
(

D− DL
)
= f (1/T) for

temperatures above 333 K (see Figure 5).
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Figure 5. Temperature dependences
(
D−DL

)
of TD enclosed in pores of kaolinite for samples 1 with

ω1 = 0.038 (1) and 3 with ω1 = 0.079 (2). Symbols show the experimental data; solid lines are the
linear approximation.

The values of DL are the results of extrapolating the curves lgD(1/T) with slope El/R
(Figure 4). Two conclusions can be drawn from the results presented in Figure 5. First, the
experimental dependences lg

(
D− DL

)
versus (1/T) are linear, and second, their slopes,

which determine an apparent activation energy for both samples (E
′
h = 74 kJ/mol (1) and

E
′
h = 68 kJ/mol (2)), rather weakly depend on the content of TD in kaolinite. This result

directly follows from Equation (11). The values of apparent activation energy E
′
h are also

given in Table 1.
Next, we estimate the calculated parameter Eh

T from Equation (12) and compare
it with the experimental found value E ′h (see Equation (13)). Using the reference data
for TD T0= 509 K, q0 = 45.67 kJ/mol, cp

G = 0.304 kJ/mol, cL = 0.385 kJ/mol [39,57] and
Equation (12), we evaluated the value of Eh

T ~87 kJ/mol.
Therefore, it can be seen that the calculated and experimental values Eh

T and E ′h are
close (see Table 1).

Relationship (10) made it possible to calculate the pressures of TD-saturated va-
pors over the range of the studied temperatures, which are consistent with the values
reported in the literature [57]. Using Equations (5) and (7) and the values of DG [39], DL,
and NG obtained from the extrapolation of the low-temperature section of the lgD(1/T)
plot (see Figure 4), we calculated the high-temperature branches of lgD(1/T) plots for
samples 1 and 3. The calculated dependences 1′ and 2′ shown in Figure 4 satisfactorily
describe the experimental data.
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In principle, one can expect a change in the slope of the lgD(1/T) plots since, as
follows from Equation (6), with increasing temperature, the amount of TD molecules
in the vapor phase should be enough to define the temperature dependence of D. The
preliminary experiments on the diffusivity of decane inserted in kaolinite confirmed our
proposal. Moreover, according to the experimental data reported in [53], the similar increase
in the slope of the Arrhenius plot for n-pentane completely filling the mesopores in Vycor
glass, which was observed at the temperatures above the boiling point, could be attributed
to a contribution of the vapor phase in a pore space free of liquid. Finally, we considered
the effect of random magnetic fields created by a difference in the magnetic susceptibilities
of kaolinite and tridecane on the self-diffusion parameters measured by the PMFG NMR
method in order to evaluate a systematic error in the measurements. Fatkullin derived
analytical expressions for the SDC measured under conditions of the random magnetic field
created by the difference in the magnetic susceptibilities of the components of a spatially
inhomogeneous medium [58]. He showed that the corrections to the measured SDC for this
effect depend on the ratio of three characteristic times: the correlation time τc of a molecule
moving in a random magnetic field B* with a correlation radius ξ: τc = ξ2/D; the time
interval τ1 between the first and second RF pulses in the stimulated echo sequence (see
Figure 1), and the diffusion observation time td. Depending on the ratio between these
times, three regimes are distinguished:

1. long correlation time τc�td�τ1;
2. intermediate time td�τc�τ1;
3. short correlation times td�τ1�τc.

In most of our measurements, we used td = 6 ms; τ1 = 1.5 ms. It seems impossible to
accurately calculate the correlation time τc since there are no direct methods for determining
the correlation radius of a random magnetic field B∗. Nevertheless, it seems reasonable
to assume that this radius is related to the linear size of the pores. The slit-like pores in
kaolinite are comparable with the thickness of hexagonal plates. Therefore, with radius
ξ ~0.05 µm and D ~10−9 m2/s (the value determined before the enhanced diffusion, see
Figure 4), we obtain: τc ~2× 10−6 s. Therefore, the short correlation time regime td�τ1�τc
is implemented in our experiments. As a result, the apparent SDC measured under the
condition of random magnetic fields [58] is determined as follows:

D∗ = D

(
1 +

4
9π3/2 ·

γ2〈B∗2〉τ1
3/2ξ2a0

D03/2· td

)
, (14)

where D is the SDC measured in the absence of random fields; a0 is the minimum lin-
ear size of the system (in our case, it is the thickness of the liquid layer on the pore
surface: a0 ~10−8 m); 〈B∗2〉 is the average square of the magnetic field induction expressed
by a formula:

〈B∗2〉
1
2 ≈ 4π

(
χp − χL

)
H0, (15)

here, χp and χL are the bulk magnetic susceptibilities of the porous medium and
liquid, respectively.

By using the Gouy method [59], we obtained: χp = + 0.52·10−6 (g−1) and
χL = −0.65·10−6 (g−1). In our experiments, the magnetic field was H0 = 14 kG. Then,
we evaluated the second term in brackets in Equation (15) and found that the value of
correction to D∗ of 10−4 is negligible. Thus, the effect of random magnetic fields did not
lead to the distortion of the measured values of effective SDC of TD in the pores of kaolinite.
This conclusion was supported by the results of similar studies of enhanced self-diffusion
of other hydrocarbon liquids, including natural oil in kaolinite [45,54].

4. Conclusions

The PMFG NMR measurements of diffusion behaviors of TD filled in kaolinite revealed
the enhanced translational mobility in the case of partial filling of pores, which became
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more pronounced with temperature. This effect, as well as the specific features of the
temperature dependence of the effective self-diffusion measurements, were interpreted
in terms of a two-phase model under conditions of fast exchange between the liquid and
gas phases of the diffusant in the partially filled pores. The contribution from the TD
molecules in the state of saturated vapor determined the deviation of the lgD(1/T) plots
from the linear Arrhenius function. The activation energies of self-diffusion of TD in the
partially filled pores of kaolinite were evaluated to characterize the confined translational
mobility of TD in the surface layer molecules at low temperatures, which resulted from
the fast exchange with the vapor phase of TD, the contribution from which increases with
temperature. The results of calculations based on the two phase exchange model were in
agreement with the experimental data.

It was shown that the effect of magnetic field inhomogeneities had no effect on the
measured SDC values of TD in pores of kaolinite and, therefore, could not be the cause of
the observed specific features of diffusion behaviors.

These findings provide an insight into the mechanism of molecular transport through
membrane materials and can be used for their designing and applications under different
thermodynamic conditions.
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