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Abstract: Composite solid electrolytes (CSEs), composed of sodium superionic conductor (NASICON)-
type Li1+xAlxTi2-x(PO4)3 (LATP), poly (vinylidene fluoride-hexafluoro propylene) (PVDF-HFP), and
lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) salt, are designed and fabricated for lithium-
metal batteries. The effects of the key design parameters (i.e., LiTFSI/LATP ratio, CSE thickness,
and carbon content) on the specific capacity, coulombic efficiency, and cyclic stability were systemati-
cally investigated. The optimal CSE configuration, superior specific capacity (~160 mAh g−1), low
electrode polarization (~0.12 V), and remarkable cyclic stability (a capacity retention of 86.8%) were
achieved during extended cycling (>200 cycles). In addition, with the optimal CSE structure, a high
ionic conductivity (~2.83 × 10−4 S cm−1) was demonstrated at an ambient temperature. The CSE
configuration demonstrated in this work can be employed for designing highly durable CSEs with
enhanced ionic conductivity and significantly reduced interfacial electrolyte/electrode resistance.

Keywords: composite solid electrolytes; lithium metal batteries; NASICON-type powders; LATP
powders; optimal setting

1. Introduction

Reliable energy storage technologies are needed for future-generation electronic de-
vices (e.g., laptop computers and cellphones), electric vehicles (EVs), and electric grids.
Depending on the application, the required attributes for energy storage may vary; how-
ever, high power density and capacity utilization, along with enhanced stability, safety, and
environmental friendliness, are urgently demanded [1,2]. All solid-state energy-storage
devices (e.g., batteries and supercapacitors) with compact designs and light weights are
very promising for enabling high energy densities, as well as enhanced safety and thermal
stability, since the safety hazards and physicochemical limitations associated with the
liquid electrolytes can be mitigated via utilizing solid electrolytes [3–7]. An ideal solid
electrolyte is expected to possess a high level of ionic conductivity, a wide electrochemical
stability window, and compatibility (chemically and electrochemically) with the electrode
materials [4].

Several prior efforts have been dedicated to developing various types of Li superionic
conductors, including studies that used garnet [8,9], sodium super ionic conductors (NASI-
CON) [10–13], thio-phosphates [14], argyrodites [15–17], and many other types of materials.
Among them, lithium-aluminum-titanium-phosphate (Li(1+x)AlxTi(2−x)(PO4)3, LATP) with
a NASICON-type structure is an encouraging solid-state electrolyte that possesses a rel-
atively high ionic conductivity capability (10−4–10−3 S cm−1 at ambient temperature),
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along with superior chemical stability [18–21]. It is well established that LATP ceram-
ics are capable of crystallizing in a rhombohedral lattice consisting of a PO4 tetrahedra
adjacent to a TiO6 octahedra, forming a three-dimensional pathway [22] and enabling
lithium-ion conductivity. However, since LATP ceramic particles are brittle, the solid
electrolyte/electrode interfacial structure may become unstable due to volumetric changes
in the electrode material during lithium-ion intercalation/deintercalation [4]. One strategy
for alleviating this potential issue is to design composite solid electrolytes (CSEs) that incor-
porate ceramic particles within a polymer matrix in order to provide robust mechanical
properties [13,23,24].

In this work, we designed and fabricated CSEs with LATP crystallites and a polymeric
matrix for solid-state Li-metal batteries. It is generally recognized that polymer elec-
trolytes with matrices such as poly(ethylene oxide), poly(vinylidene fluoride) (PVDF), and
poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), despite possessing great
flexibility and superior compatibility (with various electrode configurations), usually suffer
from poor ionic conductivity [25–27]. Notably, PVDF with strong electro-withdrawing
functional groups (–C–F) displays a high dielectric constant (ε = 8.4), facilitating the disso-
lution of Li salts while maintaining high concentrations of charge carriers [28]. Since the
copolymerization of two monomers, PVDF-HFP, results in reduced crystallinity compared
to the use of pristine PVDF [29], the as-prepared electrolyte structure becomes amorphous
and capable of withholding significant amounts of electrolytes. Hence, a PVDF-HFP matrix,
as a gel polymer electrolyte, was selected along with the LATP ceramic particles as the CSE.

To further improve the battery performance, an optimal CSE configuration (i.e., Li
salt/LATP ratio, thickness, and C content) was engineered for the high-performance Li-
metal batteries. The cyclic stability of the as-prepared solid-state Li-metal batteries was also
systematically explored, with the CSEs containing a LiFePO4 cathode active material. The
excellent compatibility of the CSEs with the Li anodes and its effectiveness in suppressing
the Li dendrite growth confirmed that it had a robust battery structure, with low inner
resistance and superior capacity retention during long-duration cycling. Accordingly, this
work enables the exploration of the optimal parameter settings for this robust design of
CSEs for Li-metal batteries. This work demonstrated the exceptional performance of the
ceramicized composite CSEs in suppressing Li-dendrite growth in Li|CSE|LiFePO4 (LFP)
systems. The high compatibility of the CSEs with the Li metal anodes imparted low inner
resistance and excellent capacity retention during long-duration cycling.

2. Experimental
2.1. Fabrication of CSEs

To fabricate the composite solid-state electrolytes, first, lithium bis(trifluoromethanesul
fonyl)imide (LiTFSI, Alfa, Bracknell, UK, purity: 98%) and PVDF-HFP (Sigma, Saint Louis,
MO, USA, molecular weight: 400,000) were homogeneously mixed using a glove box, and
the N-methyl pyrrolidone (NMP, Showa, Tokyo, Japan, purity: 95%) was poured into the
mixture. Highly crystalline LATP powders with an average particle size of 5 µm were
supplied from Gold Carbon Co., Ltd., Taoyuan City, Taiwan. The LATP powders were
synthesized by using an efficient sol-gel method, followed by thermal calcination. The LATP
powders were gradually added to the solution, and the entire CSE slurry was uniformly
dispersed through a planetary milling process with a rotation speed of 700 rpm for 1 h. The
weight ratio of the PVDF-HFP in the CSE films was approximately 25 wt.%. The resulting
LATP-containing slurry was then coated onto a polymeric membrane (polyethylene (PE)
separator (Hipore AC-0881, Yan Tin Chemical Co., Ltd., Hong Kong, China) with a nominal
thickness of approximately 8 µm and an uncompressed porosity of approximately 38%. The
nominal weight of the PE membrane was ~4.6–4.9 g m−2. The thicknesses of the CSEs films
casted on the PE membranes were tuned using a doctor blade (i.e., 50, 100, and 150 µm).
The actual thicknesses were approximately 40, 70, and 100 µm. The above preparation
process was carried out in a glove box, after which the CSEs were dehydrated at 140 ◦C in
a vacuum oven overnight.
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2.2. Assembly of Li-Metal Batteries

The electrochemical characterization of the CSEs was conducted using a coin cell
configuration (type: CR2032) with commercially available LFP (Ubiq Technology Co.,
Taoyuan, China) as the active material for the cathode electrode and Li metal as the anode
material. To fabricate the LFP cathode, the LFP powders (average size of ~0.5 µm) were
mixed with a binder (PVDF) and a conducting medium (Super-P, Taiwan Maxwave Co.,
Taipei City, Taiwan) with a 90:7:3 wt.% in an NMP solvent to form the LFP slurry. The
mixture was blended using a three-dimensional mixer equipped with Zr balls for 2 h to
form a uniform slurry. The resulting slurry was subsequently coated on the Al foil substrate
with a doctor blade. The LFP cathode sheets were dried at 110 ◦C in a vacuum oven
overnight. Afterward, the LFP sheets were compressed and then cut into the desired shape
for the battery assembly. The surface loading of the LFP was approximately 6–7 mg cm−2,
with an average thickness of 70 µm, and the thickness of Li metal was approximately 10 µm.
The as-prepared CSEs (with PE membranes) were placed on the LFP cathode, and the entire
composite sheet was tightly compressed under a pressure of approximately 200 kg cm−2

and then baked at 140 ◦C in a vacuum oven for 24 h to remove any residual organic solvent
(e.g., NMP) from the CSEs. After drying, the Li|CSE|LFP batteries were assembled as the
CR-2032-type coin cells in a glove box with LFP cathodes, Li-metal anodes, and CSE (i.e.,
LATP plus LiTFSI plus PVDF-HFP) solid-state electrolytes.

2.3. Materials and Electrochemical Characterization

The morphologies of the LFP, LATP, and CSE were characterized using field-emission
scanning electrode microscopy (FE-SEM, JEOL JSM-6700F, Tokyo, Japan). The crystalline
structure of the LFP, LATP, CSE samples was analyzed through X-ray diffraction (XRD,
Brucker D2 diffractometer with Cu target, Billerica, MA, USA). To explore the real-time
performance of the as-prepared CSEs, the charge/discharge cycling experiments were
performed at different C rates (which varied from 0.1 to 3 C) within the voltage range of
2.8–4.0 V at ambient temperatures. The batteries were first charged using a conventional
protocol of constant current–constant voltage (i.e., different C rates to 4.0 V, with a 0.01 mA
cut-off current), followed by discharging to 2.8 V at a constant current. Electrochemical
impedance spectroscopy (EIS, CH Instruments 608C, Austin, TX, USA) was also conducted
to quantify the polarization distribution of the coin cells assembled with the various CSEs.
The EIS measurements were carried out at different potentials within the frequency range
of 10 mHz to 100 kHz.

3. Results and Discussion

Figure 1a shows typical XRD patterns of pristine LFP powders, including the char-
acteristic peaks of crystalline LFP. The diffraction peaks within the LFP sample matched
quite well with the standard orthorhombic olivine phase of LFP (JCPDS Card No.: 83-2092:
a = 10.334 Å, b = 6.010 Å, and c = 4.693 Å) [30]. The XRD pattern confirmed that the LFP
powders were highly crystalline orthorhombic olivine [31]. The FE-SEM image of the
pristine LFP sample, as shown in Figure 1b, illustrates the homogeneous dispersion of the
quasi-spherical powders, with an average particle size of ~500 nm.

In this study, the composition of the Li1+xAlxTi2-x(PO4)3 with x = 0.3 (i.e., Li1.3Al0.3Ti1.7(PO4)3)
was specifically chosen to demonstrate its potential for high-performance batteries. The
LATP powders, which were made using the citric acid-assisted sol-gel synthesis method
followed by calcination, possessed highly crystalline structures, as depicted in Figure 2a.
The XRD pattern of the as-synthesized LATP powder can be indexed to the standard
NASICON-type structure (i.e., rhombohedral lattice, Card No.: ICDD 00-035-0754). The
characteristic peaks at 2θ = 20.8, 24.5, 29.7, 33.3, and 36.5◦ were assigned to the crystalline
planes of (012), (104), (113), (024), and (116), respectively [32,33]. It is important to note that
there is no other diffraction peak that commonly appears in the case of any impurity (e.g.,
AlPO4 [34]), revealing the high-phase purity of the synthesized LATP powders. An FE-SEM
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image of the LATP powders is provided in Figure 2b, showing the rectangular-shaped
particles homogeneously dispersed within the structure.
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Figure 2. (a) Typical XRD pattern and (b) FE-SEM image of LATP powders.

The typical XRD pattern of CSEs (i.e., composition: LATP plus LiTFSI plus PVDF-HFP)
is depicted in Figure 3a. According to Figure 3, the representative crystalline planes of the
LATP lattices are present and the crystalline PVDF-HFP morphology can be identified at
approximately 19.0, 20.6, and 26.9◦, corresponding to the α, β, and γ crystalline phases of
a PVDF-HFP structure, respectively [35]. To further explore the interfacial layer, a cross-
sectional view FE-SEM image of the interface of the LFP cathode and the CSEs was recorded
(see Figure 3b). It is clear that the CSE layer tightly covered the LFP cathode sheets, where
the CSE coating formed a dense and solid film with a uniform thickness of approximately
40 µm. There was no obvious porosity, and a cavity appeared at the interface between the
CSE and the LFP cathode, indicating that there was good adhesion to the electrode. To
ensure the uniformity of the CSEs, the elemental mapping including Ti, P, O, Al, and F was
employed to characterize the chemical distribution at the cross-sectional CSEs, as shown in
the Supplementary Materials (see Figure S1). As shown in Figure S1, the colorful dots were
well dispersed at the cross-sectional view of the FE-SEM images, indicating well-prepared
CSEs with LATP ceramics and LiTFSI salts.

Figure 4a–c shows typical charge–discharge curves of the coin cells equipped with the
different CSEs, where the LiTFSI/LATP weight ratios were set at 1.5, 1.8, and 2.0. The Li-
metal batteries were operated at 0.5 C within the potential window of 2.6–4.0 V vs. Li/Li+.
Notably, a major flat plateau was observed, corresponding to a two-phase solid reaction
of LiFePO4 ↔ (1 − x) LiFePO4 plus x FePO4 plus x Li+ plus x e− [36,37], at ~3.2−3.6 V vs.
Li/Li+, with a theoretical specific capacity of 175 mAh g−1. For all test cells, the charge–
discharge curves were symmetric at 0.5 C, revealing the reversibility of the Li+ intercalation
and de-intercalation [38–40]. In addition, as illustrated in Figure 4, the discharge capacity
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as a function of cycle number for the as-prepared CSEs (i.e., LiTFSI/LATP ratio: 2.0)
reached as high as approximately 161 mAh g−1. Importantly, the electrode polarization
(i.e., the potential difference between the charging and discharging plateau, ∆E) was
vastly influenced by the LiTFSI/LATP ratio, where ∆E demonstrated the following order:
LiTFSI/LATP ratio: 2.0 (approximately 0.25 V) < LiTFSI/LATP ratio: 1.8 (approximately
0.28 V) < LiTFSI/LATP ratio: 1.5 (approximately 0.31 V). According to this observation, a
higher LiTFSI content tended to facilitate the ionic migration within the composite layer,
alleviating the ionic diffusion resistance in the solid phase.
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Figure 4. Typical charge–discharge curves and cyclic performance of the test cells equipped with
different CSEs, where the LiTFSI/LATP ratios were 1.5 (a,d), 1.8 (b,e), and 2.0 (c,f).

To further explore the efficacy of the as-prepared composite solid-state electrolytes,
the cyclic performance of the test cells equipped with different CSEs were analyzed at 0.5 C
(see Figure 4d–f). Capacity retention and coulombic efficiency are usually employed in eval-
uating the cyclic stability of CSEs upon being cyclically charged/discharged. As illustrated
in Figure 4, the coin cell assembled with the CSE (i.e., LiTFSI/LATP ratio: 2.0) exhibited
a high-capacity retention capability (~99.6%), along with excellent coulombic efficiency
(~99.3%), after 100 cycles. In contrast, the other two cell configurations displayed poor
cyclic performance (e.g., low-capacity retention of approximately 50–82% after 100 cycles),
confirming the critical role of the CSE configuration on the electrochemical performance of
the Li-metal batteries.

Next, the influence of CSE thickness on the electrochemical performance of the lithium-
ion batteries with Li-metal anodes was explored, as shown in Figure 5. The thicknesses
of the CSE films on the LFP cathodes were controlled at 40, 70, and 100 µm. The Li-metal
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batteries were cyclically charged and discharged for 100 cycles at 0.5 C at an ambient
temperature. According to Figure 5, the reduced CSE thickness resulted in the improved
cyclic performance of the coin cells. Compared to other configurations, the Li-metal
batteries equipped with 40 µm-thick CSE films displayed the best cyclic stability (i.e., the
capacity retention was ~96.3%) and a remarkable coulombic efficiency (~92.5%) after
100 cycles. Indeed, reducing the CSE thickness reduced the ohmic polarization. In contrast,
thicker CSE layers imparted longer diffusion pathways for the Li+ ions. In particular, at
higher C-rate operations, an increased ohmic polarization may result in the poor cyclic
performance of Li-metal batteries during long-duration cycling.
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Figure 5. Typical charge–discharge curves and cyclic performance of the test cells equipped with
CSEs (PVDF-HFP/LATP = 2.0) of 40 µm (a,d), 70 µm (b,e), and 100 µm (c,f), where the LiTFSI/LATP
ratio was 1.5.

The interfacial layer between the CSEs and LFP cathodes played a critical role, affecting
the rate capability and cyclic stability of the coin cells. It is generally recognized that con-
ductive carbon particles (Super-P in this case), due to their intrinsic hydrophobicity [41,42],
significantly influence the wetting property of a CSE layer. The wetting characteristic of a
CSE is strongly related to the surface tension of an LFP cathode toward gel-phase composite
electrolytes. To inspect the influence of surface hydrophobicity, the CSEs were coated onto
three types of LFP cathodes (with three different contents of the carbon medium (5, 7,
and 15 wt.%)), and the corresponding electrochemical performances were analyzed. The
charge–discharge curves at 0.5 C, as well as the cyclic performances of the different Li-metal
batteries, are shown in Figure 6. As clearly demonstrated in Figure 6, the LFP cathode
containing 7 wt.% Super-P conductive carbon delivered the lowest polarization (approxi-
mately 0.25 V), excellent coulombic efficiency (approximately 97.5%), and higher-capacity
retention (approximately 90.1%) after 100 cycles compared to other samples. This finding
reflects that an unoptimized C content within the cathode sheets can easily result in the
unwanted peeling of CSEs from the LFP cathode, and it can even ease the formation of the
Li dendrites that lead to poor cyclic stability.

Considering the effects of the various design parameters on the performance of the
coin cells, an optimal CSE configuration (i.e., LiTFSI/LATP ratio, thickness, and carbon
content) was engineered (i.e., PVDF-HFP/LATP: 2.0, thickness: 40 µm, C content: 7 wt.%,
and heat-treated temperature: 140 ◦C) for the fabrication of the Li-metal batteries. The
typical charge–discharge curves at various rates, as well as the variations in the specific
capacity with C rate, for the coin cells equipped with this optimal CSE configuration were
recorded (see Figure 7). As shown in Figure 7a, the Li-metal battery was galvanostatically
charged and discharged between 2.5 and 4.0 V (vs. Li/Li+) at different rates (i.e., 0.1,
0.2, 0.5, 1, 2, and 3 C). The performance curves shown in Figure 7 contain the typical
charge/discharge plateau occurring at approximately 3.3–3.5 V at 0.1–0.5 C, indicating the
presence of a two-phase Fe3+/Fe2+ redox reaction via a first-order transition between the
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FePO4 and LFP [31,39,43]. With the optimized CSE configuration, the ∆E value at 0.5 C was
dramatically reduced to 0.12 V, significantly reducing the electrode polarization. In addition,
according to Figure 7, the Li-metal batteries were robustly charged and discharged at 1–3 C.
The discharge capacity as a decreasing function of the C rate is depicted in Figure 7b.
Considering the discharge capacity at 0.1 C as the basis for comparison, the capacity
retentions were maintained at 98.1% (0.2 C), 96.8% (0.5 C), 87.5% (1 C), 56.3% (2 C), and
25.1% (3 C). Notably, all the coin cells demonstrated 100% capacity retention at 0.1 C after
completing the cycling test, indicating the superior Li+ reversibility through the CSE layer,
even after high-rate cycling experiments.
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Figure 6. Typical charge-discharge curves and cyclic performance of the test cells equipped with
CSEs (PVDF-HFP/LATP= 2.0) of 5 wt.% C (a,d), 7 wt.% C (b,e), and 15 wt.% C (c,f).
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Figure 7. (a) Typical charge–discharge curves at various rates, (b) variations in specific capacity with C
rate, (c) charge–discharge curves at 0.5 C, and (d) cyclic performance of the test cells equipped with CSEs
(PVDF-HFP/LATP = 2.0, thickness = 40 µm, C content: 7 wt.%, and heat-treated temperature: 140 ◦C).
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Figure 7c illustrates the variations in the charge-discharge curves of the coin cells at
0.5 C during extended cycling (i.e., 1–200 cycles). Based on Figure 7c, the ∆E value gradually
increased with an increased cycle number, which was primarily due to the gradual aging
of the CSE layer. However, the capacity retention remained high (i.e., 86.8%), even after
200 cycles. The variation in the capacity retention and coulombic efficiency of the Li-metal
battery fabricated with the optimal CSEs is shown in Figure 7d. As clearly illustrated in
Figure 7d, the Li-metal batteries were cyclically charged/discharge at 0.5 C for 200 cycles.
The capacity retention was maintained at >85%, with a stable coulombic efficiency after
200 cycles. Indeed, such a robust performance was likely due to: (i) the lack of dissolution
of the iron from the LFP cathode [44,45], (ii) the uniform formation of the solid electrolyte
interphase layer, and (iii) the lack of a substantial formation of Li dendrites [46,47] during
the long-duration cycling, confirming that this was a stable design of the CSE layer for the
Li-metal batteries. However, the gradual aging of the optimal CSEs requires an in-depth
investigation. This may presumably be due to a slight electrode polarization during the
charge/discharge process, causing the accumulation of Li metal at the interface between
the Li anode/CSE/LFP cathode. Accordingly, work regarding nanoscaled LATP, a thinner
CSE layer, and a hot compression process is in progress.

To further explore the electrochemical performance of the optimized CSE layers, EIS
was employed, and the impedance behaviors of the symmetric cells fabricated with the
as-prepared CSEs were assessed accordingly. Figure 8 shows typical Nyquist plots of
the test cells at different potentials, where all the curves intersected the x-axis at high
frequency regions, followed by a depressed semicircle. According to Figure 8, the charge
transfer resistance associated with the CSE film (i.e., the depressed semicircle within the
Nyquist plots) demonstrated a decreasing function of the applied potential. One equivalent
circuit, as shown in the inset of Figure 8, was proposed to describe the EIS behavior and to
quantify the ionic conductivity (σ) of the CSE layer. The equivalent circuit model contained
the following components: Re, Rinf, QC, and Zw, representing the resistance of the bulk
electrolyte, the interfacial charge transfer resistance, the constant-phase element, and the
Warburg impedance associated with the Li+ diffusion within the electrode, respectively [48].
The Z-view software package was employed to analyze the impedance spectra of the CSE
layer, where the deviation between the experimentally recorded impedance spectra and the
model predictions was less than 10%. The ionic conductivity was subsequently calculated
using the formula σ = l/Re A [49,50], where the thickness of the CSE layer (l) and the
projected active area (A) were used within the formulation.
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Figure 8. Nyquist plots of the symmetric cell fabricated with the optimal CSEs at different potentials,
where the inset shows a proposed equivalent circuit. The elements, Re, Rinf, QC, and Zw, represent the
resistance of the bulk electrolyte, the interfacial charge transfer resistance, the constant-phase element,
and the Warburg impedance associated with the Li+ diffusion within the electrode, respectively.
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The ionic conductivity of the CSE sample remained relatively unchanged (2.83 × 10−4,
2.45 × 10−4, and 2.33 × 10−4 S cm−1 at 0, 0.5, and 1.0 V vs. Li/Li+, respectively), regardless
of the applied potential, confirming a highly stable CSE structure. This finding confirms that
the σ value of the as-prepared and highly optimized CSE layer was significantly enhanced
via engineering the CSE configuration compared to the LATP-based electrolytes reported
in the literature (i.e., those of approximately 1.11 × 10−4 S cm−1 [13]). For comparison,
Tables S1 and S2 in Supplementary Materials show the calculated ionic conductivities of
various CSEs in the Li-metal batteries, based on the Nyquist plots, incorporated with the
proposed equivalent circuit. We observed that both a higher LiTFSI/LATP ratio and a
thinner CSE thickness displayed a positive effect on the ionic conductivity, as demonstrated
in the proceeding sections. This reveals that there was an optimal parameter setting
in the robust design of the CSEs. Indeed, such an enhanced ionic conductivity at room
temperature is largely due to the lower crystallinity of the polymeric electrolytes (i.e., PVDF-
HFP) in the presence of the well-dispersed LATP particles within the hybrid heterogeneous
structure, which had a critical role in boosting the ionic conductivity. Accordingly, the
optimal parameters for the CSE layer demonstrated in this work can be adopted to create
a three-dimensional conductive network for facilitating ionic conductivity within hybrid
electrolytes while alleviating the interfacial electrolyte/electrode resistance.

4. Conclusions

In this work, an efficient technique was developed for fabricating high-performance
CSEs containing NASICON-type LATP particles, PVDF-HFP, and LiTFSI salt for Li-metal
batteries. The key design parameters (i.e., LiTFSI/LATP, CSE thickness, and carbon content)
were engineered to enhance the batteries’ specific capacity, coulombic efficiency, and cyclic
stability. The coin cells equipped with the highly optimized CSEs and assembled with
Li-metal anodes and the LFP cathodes demonstrated high specific capacity (~160 mAh g−1),
reduced electrode polarization (~0.12 V), and superior cyclic stability (capacity retention of
86.8%) after 200 cycles. The ionic conductivity of the optimized CSE layer reached as high
as 2.83 × 10−4 S cm−1 at an ambient temperature. The remarkable cycling performance of
the CSE layer demonstrated in this work was primarily due to: (i) the lack of dissolution of
iron from the LFP cathode, (ii) the uniform formation of the solid electrolyte interphase
layer, and (iii) the lack of substantial Li dendrite growth during the extended cycling. The
framework established in this study for designing high-performance solid-state electrolytes
with NASICON-type ceramic particles can be adopted to create a conductive ionic pathway
for facilitating Li+ ionic transport within an electrolyte while alleviating the interfacial
electrolyte/electrode resistance in Li-metal batteries. Accordingly, the CSE structures
containing LATP powders prepared in this work can be applied for substantially boosting
ionic conductivity, specific capacity, and cycle life while mitigating the interfacial resistance
of the electrolyte/electrode layer, Li dendrite formation, and ionic diffusion resistance
during long-duration cycling for lithium-ion batteries using Li metal as the anode electrode.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13020201/s1, Table S1: The ionic conductivities from
various CSE layers in Li-metal batteries, where CSE thickness = 40 µm and C content: 7 wt.%; Table S2:
The ionic conductivities from various CSE layers in Li-metal batteries, where LiTFSI/LATP ratio = 1.5
and C content: 7 wt.%; Figure S1: Cross-sectional view and elemental mapping on CSE-coated LFP
cathode sheet.
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