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Abstract: Ultrafiltration membrane technology holds promise for wastewater treatment, but its
widespread application is hindered by fouling and flux reduction issues. One effective strategy for
enhancing ultrafiltration membranes involves incorporating activated carbon powder. In this study,
composite polyethersulfone (PES) ultrafiltration membranes were fabricated to include activated
carbon powder concentrations between 0 and 1.5 wt.%, with carbon size fixed at 200 mesh. The
ultrafiltration membranes were evaluated in terms of membrane morphology, hydrophilicity, pure
water flux, equilibrium water content, porosity, average pore size, protein separation, and E-coli
bacteria removal. It was found that the addition of activated carbon to PES membranes resulted in
improvements in some key properties. By incorporating activated carbon powder, the hydrophilicity
of PES membranes was enhanced, lowering the contact angle from 60◦ to 47.3◦ for composite
membranes (1.0 wt.% of activated carbon) compared to the pristine PES membrane. Water flux tests
showed that the 1.0 wt.% composite membrane yielded the highest flux, with an improvement of
nearly double the initial value at 2 bar, without compromising bovine serum albumin rejection or
bacterial removal capabilities. This study also found that the inclusion of activated carbon had a
minor impact on the membrane’s porosity and equilibrium water content. Overall, these insights
will be beneficial in determining the optimal concentration of activated carbon powder for PES
ultrafiltration membranes.

Keywords: polyethersulfone membrane; activated carbon; composite membrane; good health;
clean water

1. Introduction

Water is an essential resource for human life in all parts of the world. However, the
availability of clean water is becoming scarce due to the increasing population, environ-
mental pollution, and industrial development. Conventional water treatment methods
include adsorption, sedimentation, sand filtration, and disinfection prior to use for daily
activities. Adsorption is a cost-effective and efficient filtration technique due to its low
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energy consumption and lack of derived pollution [1]. However, the inadequate pollu-
tant removal capacity and limited reusability of some adsorbent materials hinder further
applications of this method [2]. Sedimentation is a chemical treatment process utilizing
chemical reagents and produces secondary pollution in the form of large-scale sludge [3].
Sand filtration effectively treats mildly polluted water, but it is unsuitable for handling
more severe contaminations [4,5]. Disinfection eliminates microorganisms using chemical
agents [6,7]; however, these chemicals can react with dissolved organic matter to produce
disinfection byproducts [8]. Membrane technologies are considered a well-established
technology for water treatment applications due to their high separation efficiency, low
energy consumption, and operational simplicity [9–12]. Separation membranes can be
classified based on their material composition into polymeric and ceramic membranes [13].
Ceramics membranes are mechanically strong and resistant to organic solvent and micro-
bial attack [14,15]. However, most water filtration systems tend to avoid using ceramics
as a separation membrane due to their brittleness, high production costs, and complex
fabrication process [16,17]. Polymeric membranes, on the other hand, offer high flexibility,
low-cost fabrication, and desirable mechanical, thermal, and chemical properties, making
them ideal for water treatment applications [18–21]. Polymers such as polysulfone [21],
polyethersulfone (PES) [22], polyamide [23], polyacrylonitrile [24], polyimide [25], and
polyvinylidene fluoride (PVDF) [26] are widely used in filtration membrane fabrication.
PES is particularly popular due to its excellent chemical and mechanical stability and
biocompatibility [27,28]. However, the low hydrophilicity of PES membranes promotes
pollutant deposition on the surface, leading to fouling and flux reduction and limiting the
further development of PES membranes [29,30]. Numerous studies have aimed to address
these challenges through surface coating modifications [31], plasma treatment [32], graft-
ing [33], and physical blending [34–36]. Among the various modification techniques, bulk
modification by introducing particles to fabricate membranes has gained more recognition
due to its simple operation [37].

There are various types of available fillers, such as zeolites, carbon nanotubes, graphene
oxide, and activated carbon, that can be used as additives in mixed matrix membrane prepa-
rations. As one of these versatile fillers, activated carbon is extensively used for water
treatment processes to separate organic and inorganic pollutants from water, owing to
its high surface area porosity and controllable pore structure [38,39]. Moreover, activated
carbon has significant potential to reduce membrane fouling when integrated into poly-
meric materials [40]. Shao et al. [41] investigated the use of combined fouling comprising
humic acid and activated carbon powder and found that activated carbon decreased the
number of contaminants on the membrane surface, resulting in reduced membrane fouling.
The effect of incorporating activated carbon into PES-hydroxyapatite-activated carbon
(PES-HA-AC) for pure water flux enhancement and irreversible fouling reduction for hu-
mic acid and bovine serum albumin was also examined [42]. The results demonstrated
that the fabricated PES-HA-AC composite membranes offered improvements in porosity,
average pore size, hydrophilicity, and long-term stability compared to the pristine PES
membrane, attributable to the introduction of negatively charged functional groups of HA
and alternative water transport pathways provided by activated carbon. Wu et al. [43] de-
veloped an activated carbon–octafluoropentanol/polyvinylidene fluoride (AC-OFP/PVDF)
composite membrane by blending PVDF and functionalized AC-OFP particles through a
wet phase-inversion method. In comparison to the unmodified AC/PVDF membrane, the
AC-OFP/PVDF membranes displayed higher permeation flux and improved salt rejection,
attributed to the enhanced compatibility between AC-OFP and PVDF.

In this study, activated carbon was employed as a filler for preparing PES composite
membranes using wet phase-inversion methods. The resulting composite membranes
were characterized using analytical tools such as SEM, water equilibrium, pure water flux,
equilibrium water content, porosity, average pore size, protein separation, E-coli bacteria
removal, and water contact angle. The performance of the composite membranes was
subsequently evaluated based on pure water flux and bovine serum albumin rejection.
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2. Materials and Methods
2.1. Materials

The PES dope solution was prepared using PES 5200, with a molecular weight of 45
(Sumitomo Chemical Co., Ltd., Tokyo, Japan). Bovine serum albumin (66.5) was obtained
from HiMedia Laboratories Pvt Ltd., Mumbai, Maharashtra 400086, India. NMethyl-2-
pyrrolidone (NMP) was obtained from Merck & Co., Inc., Rahway, NJ, USA. Activated
carbon powder of mesh 200 with an estimated size of ~74 µm, as shown in Figure 1,
was obtained from a local company in Indonesia. Pure water was used throughout the
fabrication process of the membrane and water flux test.
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Figure 1. Image of activated carbon powder.

2.2. Membrane Fabrication

The PES composite membranes were fabricated using a wet phase-inversion method.
PES, as the base polymer, was mixed with the solvent, NMP, until completely dissolved.
Once a homogeneous solution was formed, activated carbon powder was gradually added
to the dope solution at various concentrations and stirred using a magnetic stirrer. Based on
preliminary experiments where the concentration of activated carbon powder at 0.1 wt.%
and 0.3 wt.% did not show a significant improvement in water flux, activated powder
concentration at an increment of 0.5 wt.% was used in this study, at 0 wt.%, 0.5 wt.%, 1 wt.%,
and 1.5 wt.%. The dope solution was then poured onto a glass plate and spread using a film
applicator (Elcometer, Manchester M43 6BU, UK) to achieve a wet thickness of 200 microns.
Subsequently, the glass plate with the formed solution was carefully transferred to a pure
water bath to initiate the coagulation process. Figure 2 presents the dope solution and the
fabricated membranes with the respective activated carbon concentrations.

2.3. Filtration Experiments
2.3.1. Water Flux Test

The filtration experiment was conducted for 30 min to reach stable flux in a stirred
dead-end cell (HP4750 Stirred Cell, Sterlitech Corp. Kent, WA, USA), as illustrated in
Figure 3. Nitrogen gas, at a pressure of 2 bar, was introduced into the dead-end cell unit to
supply adequate pressure to the pure water. A Weighing Environment Logger recorded the
weight of the permeate water traversing the tested membrane. The following equations
were used to calculate the volumetric flux (Jv) and permeability

(
Lp
)

[44]:

Jv =
Q

A × ∆t
(1)

Lp =
Jv

∆P
(2)
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where Q is the quantity of the permeate water (in L) during the sampling time, ∆t is
the sampling time (in h), A is the area of the membrane (in m2), and ∆P is the pressure
difference (in bar).
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2.3.2. Protein Separation

A total of 0.1 wt.% of Bovine serum albumin solution was prepared in phosphate-
buffered solution (pH = 7.2). The protein separation experiment was performed at a fixed
pressure of 2 bar using a dead-end cell filtration test. An N4S UV-visible spectrophotometer
(Ningbo Hinotek Instrument Co., Ltd., Ningbo, China) at a wavelength of 280 nm was used
to quantify the concentration of the permeated protein solution. The rejection of solute (SR)
was determined by [45,46]:

%SR =

[
1 −

Cp

C f

]
×100 (3)

where Cp and C f are the permeated and feed solutions of protein concentration, respectively.
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2.3.3. Bacteria Filtration Test

Pond water was used as the water source for the bacteria filtration test. Both pond
water and irrigation water are considered untreated water sources that may contain contam-
inants, including the Gram-negative bacteria Escherichia coli [47]. Chromocult coliform agar
(Chromocult; Merck, Feltham, UK) was prepared following the manufacturer’s guidelines.
A total of 26.5 g of Chromocult coliform agar was dissolved in 1 L of pure water. The
agar solution was subsequently heated and frequently agitated in boiling water until fully
dissolved. After dissolving, the agar was cooled to 45–50 ◦C before being poured into Petri
dish plates to a thickness of 4 mm.

The bacteria colonies of target and test bacteria were prepared by streaking a bacterial
suspension onto agar-filled Petri dishes. Water samples were filtered through a fabricated
membrane using dead-end filtration cells. The filtered water was then spread across the
surface of the agar medium. To ensure even distribution of the bacteria on the agar medium,
a T-shaped spreader was used to uniformly streak the bacterial suspension. The culture
Petri dishes were incubated at 37 ◦C for 24 h.

2.4. Membrane Characterization
2.4.1. Water Contact Angle Test

A 5 µL drop of pure water was placed onto the surface of the dried membrane using a
micropipette. A contact angle image of the dropped water was captured using a digital
microscope (Dinolite Edge 3.0 AM73915MZTL, AnMo Electronics, New Taipei City, Taiwan).
The angle of the water droplet was calculated using CAD software. To ensure accurate
results, the contact angles for each membrane were measured three times, from which
the average values were calculated. Subsequently, the work adhesion (ω A), which is
the surface energy required to drag water from a membrane surface, can be calculated as
follows [48]:

ωA = γB(1 + cos θ) (4)

where γB is the water surface tension (7.2 × 10−2 N/m) and θ is the contact angle.

2.4.2. Equilibrium Water Content

The produced membranes were trimmed to the required dimensions, submerged in
pure water for a 24 h period, and promptly weighed upon the elimination of surplus water
from the membrane’s surface. Subsequently, the membranes were dried until a constant
weight was achieved, indicating the absence of any residual water. The membrane’s water
content was determined from the following equation [49]:

%WC =
Ww − Wd

Ww
× 100 (5)

where Ww and Wd are the respective weights of the wet and dry membranes.

2.4.3. Porosity

The membrane porosity was analyzed to determine the effect of blending the activated
carbon powder on membrane pore size by a gravimetric method using the following equation:

ε(%) =
Ww − Wd

ρH2O × A × L
× 100 (6)

where A is the effective area of the membrane, L is the thickness of the membrane, and
ρH2O is the density of the water (0.998 g/cm3).
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2.4.4. Average Pore Size

The membrane average pore size ( rm) of the prepared membranes could be calculated
by following the Guerout–Elford–Ferry Equation (7), using the porosity and data of pure
water flux [50]:

rm =

√
(2.9 − 1.75ε)8µH2O × L × QH2O

ε × A × ∆P
(7)

where ε is the membrane porosity, µH2O is the dynamic viscosity of water at room tem-
perature, L is the membrane thickness, QH2O is the volume of water passing through the
membrane per unit time, A is the active area of the membrane for filtration, and ∆P is the
transmembrane pressure.

2.4.5. Molecular Weight Cutoff (MWCO)

The MWCO is described as having a linear correlation with the pore size of the
membrane [51]. The evaluation of membrane MWCO involves identifying the smallest
inert solute exhibiting a protein rejection of 80–100% in an ultrafiltration test. In this study, a
high-molecular-weight protein, bovine serum albumin (BSA), was chosen as the measured
protein to indicate the pore size reduction that may occur with the introduction of activated
carbon powder.

3. Results and Discussion
3.1. Pure Water Flux Test Experiments

Figure 4 displays the water flux of fabricated membranes with varying concentrations
of activated carbon powder. In comparison to the flux of the pristine PES membrane
(10.8 LMH/Bar), the water fluxes of the PES composite membranes initially increased and
subsequently decreased as the concentration of activated carbon powder grew. The water
flux of the PES composite membrane reached its peak value of 38.4 LMH/Bar with an
activated carbon powder concentration of 1.0 wt.%, and declined by 33% to 12.7 LMH/Bar
as the concentration of activated carbon increased to 1.5 wt.%. This outcome aligns with
previous research, which suggested that a rise in water flux is due to an increase in the pore
size and porosity of PES composite membranes, as activated carbon powder is porous [43].
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As depicted in Figure 5a, when the activated carbon powder is distributed uniformly,
the carbon powders can facilitate water transfer through their porous multichannel struc-
ture. However, as illustrated in Figure 5b, when excessive activated carbon is added,
aggregation begins to occur, diminishing the effectiveness of porosity by obstructing the
channel entrances and further degrading the mass transfer facilitated by the porous chan-
nels of the activated carbon powder. This phenomenon is corroborated by the trend of flux
variation observed with the increasing concentration of activated carbon powder in the
PES composite membrane.
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3.2. Protein Separation

Bovine serum albumin (BSA) solution was used to evaluate the fabricated mem-branes’
protein rejection. As presented in Figure 6, due to the high molecular weight of bovine
serum albumin, all fabricated membranes rejected over 93% [52]. According to the figure,
the PES composite membrane has slightly lower BSA rejection compared to the pristine
PSF membrane (0 wt.% of activated carbon powder). However, the BSA rejection of the PES
membrane was slightly decreased at a higher concentration of activated carbon powder. In
justifying the observed downward trend of an increase in activated carbon concentration, it
can be stated that the BSA rejection is not significantly changed at various activated carbon
powder weights, since the addition is only up to 2.0 wt.%.

3.3. Bacteria Filtration Test

Chromocult coliform agar was chosen for this experimentation to detect E. coli in
contaminated surface water [53]. On the chromocult coliform medium, E. coli colonies
appear to range from dark blue to violet in color. Background bacteria from the medium
are identified as clear or transparent colonies [54]. The E. coli and background bacteria can
typically be differentiated by the naked eye.

Figure 7 presents bacterial growth on a chromocult agar medium. The growth of
E-coli colonies (violet color) from the unfiltered polluted water is clearly visible on the
agar plate presented in Figure 7a, indicating that the polluted water contains significant
amounts of E-coli. Figure 7b–e depict the bacterial growth on agar for filtered water using
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fabricated membranes containing activated carbon at concentrations of 0 wt.%, 0.5 wt.%,
1.0 wt.%, and 1.5 wt.%, respectively. These figures show the growth of transparent colonies,
or background bacteria, from the agar, without any sign of E-coli bacteria growth on any
of them. This result suggests that both the pristine and composite membranes that were
blended with activated carbon powder were successful in filtering E-coli bacteria from
polluted water.
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The fabricated pristine PES membrane in this study is considered an ultrafiltration
membrane with a pore size ranging from 5 to 100 nm, efficiently removing bacteria, viruses,
and proteins under a low level of applied pressure [55]. Consequently, the incorporation of
activated carbon powder into the membrane has no effect on its performance in removing
E-coli from the polluted water.

3.4. Contact Angle Analysis

Hydrophilicity is one of the critical factors in evaluating membrane permeability and
understanding filtration mechanisms. Water contact angle measurements help in assessing
the surface hydrophilicity of fabricated membranes. Generally, hydrophilic membranes
display a lower contact angle, with values of less than 90◦ [56]. Figure 8 shows the measured
water contact angles of the fabricated membranes containing 0 wt.%, 0.5 wt.%, 1.0 wt.%, and
1.5 wt.% of activated carbon powder. As depicted in Figure 8, the pristine PES membrane is
the most hydrophobic, while the most hydrophilic surface is achieved with a concentration
obtained at 1.0 wt.% activated carbon powder.

Membranes 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

obtained for the PES composite membrane containing 1.0 wt.% activated carbon powder. 
This demonstrates that the addition of activated carbon powder at a specific concentration 
increases the hydrophilicity of the membrane’s surface. 

 
Figure 8. Contact angle and adhesion work of the fabricated membranes at different activated car-
bon concentrations. 

3.5. Equilibrium Water Content Study 
Figure 9 presents the equilibrium water content of the membranes with varying con-

centrations of activated carbon powder. The figure shows that the water content of the 
membrane marginally increases as the concentration of activated carbon powder within 
the membrane rises. Membranes containing activated carbon exhibit a higher water con-
tent capacity than the pristine PES membranes, and the capacity for water content in the 
membranes expands as the concentration of activated carbon powder increases. The in-
teraction between activated carbon and the polymer matrix results in the formation of an 
interconnected network with porous voids, subsequently increasing the membrane’s wa-
ter content and further enhancing the membrane’s hydrophilicity [59]. 

 

Figure 8. Contact angle and adhesion work of the fabricated membranes at different activated carbon
concentrations.

For membranes with an activated carbon concentration of up to 1.0 wt.%, the water
contact angle values slightly decrease with the increase in activated carbon concentration,
which is due to the existence of hydroxyl groups in the activated carbon structure [57]. This
suggests that, up to a certain concentration, the incorporation of activated carbon powder
enhances the membrane’s surface hydrophilicity. However, when the concentration of
activated carbon powder in the dope solutions is increased to 1.5 wt.%, significant changes
on membrane hydrophilicity occur, most likely due to pore clogging caused by the elevated
concentration and agglomeration of activated carbon powder [52,58].

Subsequently, the water contact angle values were used to determine the adhesion
work (surface energy) using Equation (4). The acquired values are also presented alongside
the water contact angles in Figure 8. The highest contact angle value (60◦) and the lowest
surface energy (108.9 mN/m) were observed for the pristine PES membrane, while the
lowest water contact angle (47.3◦) and the highest surface energy (122.1 mN/m) were
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obtained for the PES composite membrane containing 1.0 wt.% activated carbon powder.
This demonstrates that the addition of activated carbon powder at a specific concentration
increases the hydrophilicity of the membrane’s surface.

3.5. Equilibrium Water Content Study

Figure 9 presents the equilibrium water content of the membranes with varying
concentrations of activated carbon powder. The figure shows that the water content
of the membrane marginally increases as the concentration of activated carbon powder
within the membrane rises. Membranes containing activated carbon exhibit a higher water
content capacity than the pristine PES membranes, and the capacity for water content in
the membranes expands as the concentration of activated carbon powder increases. The
interaction between activated carbon and the polymer matrix results in the formation of an
interconnected network with porous voids, subsequently increasing the membrane’s water
content and further enhancing the membrane’s hydrophilicity [59].
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3.6. Porosity

Figure 10 illustrates the overall porosity of the membranes. It can be noted that the
porosity of the composite membranes decreased slightly in comparison to the pristine
PES membrane (0 wt.%). This decline in membrane porosity may be attributed to the
increased viscosity of the dope solution, caused by the delayed demixing of solvent and
non-solvent during the coagulation process. At higher concentrations of activated carbon
powder (1.5 wt.%), the powder presumably functioned as a surfactant, reducing the surface
tension of the non-solvent in relation to the polymer film, which consequently led to higher
porosity on the membrane surface [60].

3.7. Measurement of Average Pore Size

Figure 11 presents the average pore size for all membranes prepared both with and
without activated carbon, calculated using Equation (4). The results indicate that the incor-
poration of activated carbon powder into the membrane matrix prompted an enlargement
of the composite membranes’ pore size compared to the pristine PES membrane. An
increase in the average pore radius of the composite membranes was observed when the
activated carbon concentration ranged from 1.0 to 1.5 wt.%. This behavior aligns with
findings reported in the literature [34,61], where the expansion in average pore size can
be attributed to increased heterogeneity in the membrane structure, resulting from the
integration of activated carbon powder into the dope solution during the phase inversion
process. According to the data presented in Figure 11, the calculated average pore size
of the membranes decreased at 1.5 wt.% of activated carbon content. This reduction in



Membranes 2023, 13, 906 11 of 16

average pore size can be attributed to the surface pore blockage caused by a higher particle
density being dispersed on the membrane surface [62].
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3.8. Molecular Weight Cutoff Measurement

In this study, bovine serum albumin, with a molecular weight of 69, was used to
assess the membrane molecular weight cutoff measurement. The results demonstrated
that all membranes exhibited a rejection rate above 90% for bovine serum albumin. This
finding indicates that the introduction of activated carbon powder at concentrations of
0.5–1.5 wt.% does not significantly impact the number of pore defects or the overall quality
of the membranes [63].

3.9. Membrane Morphology

To obtain a deeper understanding of the fabricated membrane’s performance, the sur-
face morphologies of the membranes were examined using Scanning Electron Microscopy
(SEM). The SEM images of the prepared membranes can be seen in Figures 12 and 13.
Surface pores with relatively uniform distributions were found for the pristine PES and
modified membranes; additionally, a few fine voids were noticed [42]. The water contact an-
gle described in Section 3.1 reveals that membranes with a concentration of 1.0 wt.% are the
most hydrophilic amongst all membranes. The scanning electron micrograph in Figure 12c
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shows that the respective membrane surface is relatively smooth, with fewer craters when
compared to the other surfaces, yielding a lower water contact angle. Figure 13 presents a
cross-sectional image of the membranes. As depicted in this Figure, the membrane consists
of an upper layer where filtration takes place, the middle structure, and the bottom layer.
The middle contains a finger-like structure, which supports the upper filtration layer along
with the bottom layer. Some of the middle structure walls are filled with microholes, whilst
others are relatively smooth and solid. With the incorporation of activated carbon powder,
slight alterations in the membrane surface morphology were detected. Although these
changes were minimal on the membrane’s top surface, the introduction of activated carbon
powder led to considerable alterations in the membrane’s bulk properties and physical
appearance, as depicted on their micrographs, yielding a more open structure [64].
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4. Conclusions

The influence of the addition of activated carbon powder on the performance of PES
composite membranes was examined, along with the identification of the optimal con-
centration for enhancing membrane filtration capabilities. The incorporation of activated
carbon powder improved the desirable properties of PES membranes, such as porosity,
average pore size, water contact angle, water permeability, protein rejection, and bacterial
removal, when compared to pristine PES membranes. An approximate doubling of water
flux was observed at an activated carbon concentration of 1.0 wt.%. Additionally, the most
hydrophilic surface was observed at this concentration, where the water contact angle
decreased by 13◦. The bovine serum albumin filtration test indicated that all prepared mem-
branes demonstrated good protein rejection (93–95% at 2 bar). Regarding bacterial (E-coli)
filtration, the incorporation of activated carbon did not affect the membrane’s performance
in removing E-coli from polluted water. In conclusion, the experimental results suggest
that activated carbon powder holds potential as a significant additive for enhancing the
properties of PES membranes in water filtration applications.
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