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Abstract: Carbon dioxide (CO2), which results from fossil fuel combustion and industrial processes,
accounts for a substantial part of the total anthropogenic greenhouse gases (GHGs). As a result,
several carbon capture, utilization and storage (CCUS) technologies have been developed during the
last decade. Chemical absorption, adsorption, cryogenic separation and membrane separation are the
most widely used post-combustion CO2 capture technologies. This study reviews post-combustion
CO2 capture technologies and the latest progress in membrane processes for CO2 separation. More
specifically, the objective of the present work is to present the state of the art of membrane-based tech-
nologies for CO2 capture from flue gases and focuses mainly on recent advancements in commonly
employed membrane materials. These materials are utilized for the fabrication and application of
novel composite membranes or mixed-matrix membranes (MMMs), which present improved intrinsic
and surface characteristics and, thus, can achieve high selectivity and permeability. Recent progress
is described regarding the utilization of metal–organic frameworks (MOFs), carbon molecular sieves
(CMSs), nanocomposite membranes, ionic liquid (IL)-based membranes and facilitated transport
membranes (FTMs), which comprise MMMs. The most significant challenges and future prospects of
implementing membrane technologies for CO2 capture are also presented.

Keywords: greenhouse gases (GHG); post-combustion CO2 capture; membrane-based technologies;
gas permeation; membrane materials; composite membranes; mixed-matrix membranes

1. Introduction

Global warming, which is caused by the increase in greenhouse gases (GHGs) in the
atmosphere, has become a considerable concern as it poses a major threat to human health,
energy security and ecosystems [1]. Carbon dioxide (CO2) emissions, which result from
the combustion of fossil fuels and from industrial processes, account for approximately
65% of the total anthropogenic GHGs globally [2]. Almost 40% of these emissions result
from the electricity production of coal-fired power plants [3]. As a result, carbon (CO2)
capture, utilization and storage (CCUS) technologies are urgently required to minimize
CO2 emissions and maintain climate temperature [4,5].

Carbon capture processes are categorized into four main groups: (i) post-combustion
capture, (ii) pre-combustion capture, (iii) oxy-fuel combustion capture and (iv) capture
from industrial process streams. The selection of the applied process depends on the gas
stream composition and the emission site; in some cases, CO2 capture is required at the
beginning of the process operation, while others may require CO2 capture at the end of the
process operation (exhaust phase) [6]. Post-combustion capture is the separation of CO2
from flue gases, which are produced after the combustion of fossil fuels or biomass and
generally contain 73–77% N2, 15–16% CO2, H2O (5–7%), O2 (3–4%) and other impurities,
such as SOx and NOx [3]. Post-combustion capture process is regarded as a technically and
economically viable solution for reducing carbon emissions in a variety of sectors/emitters,
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where decarbonization is possible, but costly in the near future. These emitters include
fundamental industrial sectors, which rely on the combustion of fossil fuels, such as power
generation plants and steel or cement production industries, but also secondary emitters,
such as chemical plants and waste incinerators. Compared to the other three carbon capture
processes, post-combustion capture can be easily retrofitted to existing plants and, therefore,
it may be the only effective and economic way to reduce CO2 emissions without affecting
the process upstream, leading to the transition towards net-zero industries [7,8].

The most common post-combustion CO2 capture technologies include chemical ab-
sorption (with liquid solvents), adsorption (with solid adsorbents), cryogenic separation
and membrane separation. Among them, chemical absorption is the most mature tech-
nology as it can achieve high CO2 capture capacity and removal efficiency, reaching 100%
when monoethanolamine (MEA) is employed as a solvent. However, chemical absorption
with amines presents several challenges, such as high requirements for energy regeneration,
a low reaction rate and a strong environmental impact due to the presence of corrosive
or volatile solvents. As a result, alternative carbon capture technologies are increasingly
examined both on a research level (lab-scale applications) and in real field conditions (pilot-
or full-scale plants) [9].

Unlike CO2 capture technologies with solvents or adsorbents, CO2 capture with mem-
branes presents significant benefits, such as small footprint, easy scale-up, low capital and
operating cost and low energy consumption, as they can deliver high-pressure CO2 without
utilizing chemical solutions or energy-intensive steam. Membrane separation technology,
which was first developed in the 1980s, employs CO2-selective membranes to separate
CO2 from a gas stream [10,11]. This technology has been applied successfully in other
applications as well, such as biogas upgrading and natural gas purification. Despite its
advantages, however, the major drawback of membrane separation still remains to be
the trade-off between selectivity and permeability, which are the most important factors
affecting process efficiency and economics [12,13]. Therefore, the development of novel
membrane technologies which capture CO2 more efficiently and selectively is required.
Over the last few years, several studies reviewed and compared membrane-based technolo-
gies for CO2 capture from flue gases or other gas streams. Da Conceicao et al. (2023) [14]
summarized the literature that is linked to the development or application of membrane
separation in terms of separation modeling and process simulations. Singh et al. (2022) [15]
featured current advancements in CO2 capture with membranes, but focused mainly on the
utilization of polymeric membrane materials. In their review on membrane technologies
for post-combustion carbon capture, Favre et al. (2022) [16] provided a compact, but rather
limited, overview regarding commonly employed membrane materials, as they did not in-
clude the latest advancements in composite membranes, which are increasingly fabricated
and applied in recent years. The present study aims to review the main post-combustion
CO2 capture technologies from flue gases, but from the standpoint of the progress which
has recently been made after the application of membrane-based technologies. Specifically,
the objective of the present review is to present the state of the art in novel membrane
materials for carbon capture, and primarily focuses on the utilization of mixed-matrix
membranes (MMMs) with enhanced intrinsic and surface properties that promote CO2
capture.

2. Main Processes for CO2 Capture

CO2 capture from various gas streams can be classified as follows (Figure 1): (i) post-
combustion capture, (ii) pre-combustion capture, (iii) oxy-fuel combustion capture and
(iv) capture from industrial process streams. Selecting the appropriate capture process
depends on the CO2 content in the gas stream, the gas stream pressure and the type of fuel
used (whether it is solid or gas); thus, not all capture processes are compatible with all
systems. All processes, however, involve separating CO2, O2 or H2 from a gas stream, such
as a flue gas, air, a natural gas or a biogas, and can be achieved using physical or chemical
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solvents, solid sorbents, membranes, cryogenic separation or via a combination of these
methods [17–21].
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Every CO2 capture process has advantages and disadvantages. Post-combustion
capture allows the easy retrofit of existing plants and, thus, an immediate reduction in
emissions. The disadvantages include inefficient capture due to the low partial pressure of
CO2 and the presence of impurities that degrade the employed solvents. Pre-combustion
capture benefits from the high partial pressure of CO2 and concentrated gas streams, which
results in efficient absorption and reduced solvent consumption. Nevertheless, the main
drawback lies in the demand for gasification, which increases process cost and complexity.
In oxy-fuel capture, a fuel is burnt with oxygen of high purity, and a concentrated CO2
stream that promotes absorption is generated. However, the air separation process, which
is required for oxy-fuel combustion, is very energy-intensive [22–24].

2.1. Post-Combustion Capture

Post-combustion capture refers to the separation of CO2 from flue gases, which are pro-
duced after the combustion of fossil fuels or biomass, and usually present a low CO2 content
(3–20%), a low partial pressure of CO2 (0.03–0.2 bar) and high temperatures (120–180 ◦C),
but contain NOx and SOx impurities. During this process, the flue gas is not directly
discharged into the atmosphere. It is transferred to a specially designed equipment that
separates the biggest amount of the produced CO2. The separated CO2 is led to a storage
tank, and the flue gas which has remained is vented to the atmosphere. Aside from flue
gases, carbon capture from various industries, e.g., cement and stainless-steel manufactur-
ing facilities, can also be classified as post-combustion capture, although these industries
yield higher CO2 concentrations compared to the typical flue gases encountered in most
post-combustion power plants. Nowadays, chemical absorption, which employs the utiliza-
tion of aqueous amine solutions, is the most commonly applied post-combustion capture
process [19,25].

2.2. Pre-Combustion Capture

Pre-combustion capture refers to CO2 capture from a synthesis gas (syngas) after the
conversion of CO into CO2. This process initially involves the reaction of a fuel with O2
(or air) and/or steam to produce mainly a synthesis gas or a fuel gas, which is composed
of CO and H2. CO then reacts with steam in a catalytic reactor, which is known as a ‘shift
converter’, to form CO2 and more hydrogen in a process called water–gas shift reaction
(WGS). After the WGS reaction, the CO2 content in the flue gas is high, i.e., in the range
of 15–60% (dry basis), at a total pressure of 2–7 MPa, and physical solvents (e.g., Rectisol
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or Selexol) are usually employed for CO2 capture. The resulting fuel, which is rich in
hydrogen, can be used for heat and power generation, e.g., in furnaces, boilers, engines,
gas turbines and fuel cells. A 15–40% CO2 content at increased pressures (200–600 psi) is
usually contained in most pre-combustion gas streams [19,20,25,26].

2.3. Oxy-Fuel Combustion Capture

Oxy-fuel combustion capture was initially developed to yield CO2 of high purity
(>99%) during enhanced oil recovery (EOR). In this relatively new process, almost pure
oxygen (95–99%), instead of air, is used for combustion, resulting in a flue gas that contains
H2O and CO2 at a very high concentration. When pure oxygen is used to burn the fuel, the
temperature of the flame is very high, but CO2 and the rich-in-water flue gas can be recycled
in the combustor to change this. For the production of oxygen, cryogenic air separation
is usually applied or, to a lesser extent, other alternative technologies (e.g., membrane
separation) [19,25,26].

2.4. Capture from Industrial Process Streams

Several industrial applications involve process streams, which present the opportunity
for capturing large quantities of CO2 at relatively low costs. CO2 capture from these
sources has been applied for more than 80 years, although most of the captured CO2 is
usually discharged into the atmosphere since there is no incentive for further utilization or
storage. Capturing CO2 from industrial process streams may not be the complete answer
to current climate change requirements since the amount of CO2, which is generated
during combustion, is much higher; however, it can provide the ‘starting point’ for the
initial CO2 capture. Current examples of CO2 capture from industrial process streams
include the purification of natural gas and the production of syngas for the synthesis of
ammonia, alcohols and synthetic liquid fuels. Other examples, which involve sources of
CO2 that are usually not captured, include fermentation and cement and steel production
facilities. Finally, there are industrial process streams which employ two or more of the
aforementioned CO2 capture processes, regardless of whether they contain a low or high
CO2 concentration [19,21].

3. Post-Combustion CO2 Capture Technologies

In comparison with the other CO2 capture processes (i.e., pre-combustion capture, oxy-
fuel combustion capture and capture from industrial process streams), post-combustion
capture is technologically more mature and presents the highest short-term potential for
CO2 reduction, as it can be easily incorporated and adjusted to existing fossil-fueled power
plants or implemented into other industrial CO2 emitters (e.g., cement industries, iron and
steel production industries). This retrofit of existing power plants is related to the smaller
interferences of the capture process with other components. However, the process should
be appropriately adapted to treat impurities (mainly SOx and NOx) and the considerable
amounts of oxygen, which are contained in flue gases [26–28].

The main post-combustion CO2 capture technologies include chemical absorption
(with liquid solvents), adsorption (with solid adsorbents), cryogenic separation and mem-
brane separation [29,30]. Table 1 presents the main benefits and challenges of these tech-
nologies. Selecting the appropriate capture technology depends on the specific discharge
conditions, and the main criterion is the flue gas state, i.e., its composition, flow rate,
temperature and CO2 content. This selection is also affected by the desired production
(e.g., CO2 purity and transport pressure) and the discharged standards (e.g., H2S, NOx
and SOx) [31]. The CO2 capture technologies which have been adequately developed and
applied commercially (TRL9) include chemical absorption and cryogenic separation. Chem-
ical absorption allows CO2 capturing from streams with a low CO2 content and achieves
high CO2 capture efficiencies. Cryogenic separation is suggested for increased CO2 con-
centrations (>90%) and produces high-purity liquified CO2. However, these technologies
are highly energy-demanding. On the contrary, membrane technologies, which employ
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the pressure difference as a driving force to achieve CO2 separation, may become a more
efficient option, especially when the treatment of CO2 stream (with a concentration of >10%)
is coupled with the appropriate tuning of the driving force. In addition, separation with
membranes does not require storing or treating of hazardous chemicals, although it may
present a lower separation efficiency than chemical absorption and cryogenic separation.
Currently, post-combustion CO2 capture from flue gases with membrane separation is on a
pilot-scale level (TRL-6) [32].

Table 1. Comparison of the main technologies for post-combustion CO2 capture [32].

Technology Mechanism Advantages Drawbacks Maturity

Absorption

Physical or chemical
absorption of CO2 into

a liquid carrier
(solvent); regeneration

via increase in
temperature or

reduction in pressure

High capture efficiency
(>90%); aqueous amine

scrubbing (MEA) is
currently the

benchmark carbon
capture technology

Large energy penalty,
estimated at 20–30% of
the power plant output;

solvent regeneration
and CO2 recovery
contributing ~50%;

equipment corrosion
and removal/disposal

of solvent

TRL 9

Adsorption

Physical or chemical
adsorption of CO2

using a solid sorbent;
regeneration via

increase in temperature
or reduction in pressure

Lower regeneration
energies compared to
solvents due to lower

heat capacities

Heat transfer, stability
and attrition challenges TRL 7–9

Cryogenic separation
Used for gas streams

with high CO2
concentration (>90%)

Liquid CO2 produced
is ready for

transportation
Energy intensive TRL 9

Membrane separation

Selective transportation
and separation of CO2
through a membrane

under the driving force
of pressure difference

No hazardous
chemicals storage,

handling, disposal, or
emissions issues;
simple operation;

reduced plant footprint;
diminished need for
modifications to the
existing power plant

steam cycle

Relatively low partial
pressure of CO2 in the
flue gas; use of low-cost

and durable
membranes; efficient

permeability and
selectivity; thermal,

physical and chemical
stability must be

improved

TRL 6

It should be noted that chemical absorption and membrane separation cannot be
directly compared in terms of energy consumption due to the different energy sources
(i.e., heat for absorption and electricity for membrane). Similarly, an overall cost compari-
son of CO2 capture technologies would also be difficult, and each technology should be
examined case by case, taking into account the specific conditions that are applied, such as
flue gas composition, flue gas flow rate and targeted CO2 capture capacity. Nonetheless,
comparative (techno-)economic assessments have been conducted for the main CO2 capture
technologies. According to Hongjun et al. [33], who compared, in 2011, the cost of chemical
absorption, membrane separation and Pressure Swing Adsorption (PSA) for CO2 capture
from flue gases of coal-fired power plants, the cost ranged between USD 30 and USD
60 per ton for chemical absorption, between USD 50 and USD 78 per ton for membrane
separation and between USD 40 and USD 63 per ton for PSA. In 2017, after reviewing chem-
ical absorption and membrane separation for their energetic and economic performances,
Wang et al. [30] concluded that (i) chemical absorption still remains energy-intensive and
costly, despite the diversity of optimization methods that are applied to reduce the energy
consumption and cost of this technology; (ii) although membrane separation was initially
expected to compete with chemical absorption, it presents advantages only at a low CO2
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capture percentage (<90%), and its capture ability is limited by the characteristics of the
employed membrane materials; and (iii) it is difficult to compare the energetic and eco-
nomic results in the literature and infer general conclusions since the relevant research
studies are usually based on specific conditions and assessments. Four years later (2021),
Zanco et al. [8] compared chemical absorption, adsorption (with zeolite) and membrane
separation for post-combustion CO2 capture from flue gases. The comparative assessment
showed that adsorption and membrane separation can become cost-competitive on a small
scale (i.e., <100 tons of processed flue gas per day) with low recovery rates (i.e., <40%);
however, chemical absorption remains the most cost-effective option for the majority of
facilities and recovery rates. In 2022, the cost for carbon capture projects was estimated
globally at USD 60–110/per ton, and it is expected to decrease further to USD 30–50 per
ton by 2030 [34].

3.1. Chemical Absorption

Absorption is the most applied technology for CO2 capture because it is technologically
mature, commercially available and easily adaptable to several processes, such as post-
combustion, pre-combustion and oxy-fuel combustion capture. In this technology, CO2 is
selectively absorbed from a flue gas by means of a lean solvent via a physical or chemical
mechanism. Physical absorption is based on the solubility of carbon dioxide in the solvent,
and chemical absorption is based on the chemical reaction between carbon dioxide and the
solvent. The latter is usually preferable for CO2 capture from power plants as it presents
higher CO2 selectivity at low CO2 partial pressures [35,36].

In chemical absorption technology (Figure 2), first, CO2 is chemically absorbed into
a lean solvent in an absorption column (absorber), and then it is desorbed by utilizing a
stripping gas of high temperature in a column where the solvent is regenerated (desorber
or stripper), consuming a significant amount of energy. More specifically, the cooled flue
gas initially enters the absorber and contacts, in a counter-current flow, the descending
solvent, which is usually a 15–40 wt % MEA aqueous solution. The solvent becomes ‘rich’,
i.e., absorbs CO2, at 40–60 ◦C and 1 bar, and exits the absorber, while the clean flue gas
exists from the top of the column before it is passed to a wash column and vented to the
atmosphere. The rich solvent is then heated in a cross-flow heat exchanger (through the
regenerated later-coming hot lean solvent from the desorber) and pumped to the top of the
desorber where it is regenerated at increased temperatures (100–120 ◦C) and at a pressure
of 1.5–2 atm. Heat is provided by a reboiler, which is the most important energy penalty
of the process. The regenerated solvent is finally pumped back to the absorber via the
cross-flow heat exchanger, which decreases the temperature [35,37].

Various solvents are used in the absorption technology, namely amines, ionic liquids,
ammonia, deep eutectic solvents and water-lean solvents. Monoethanolamine (MEA) is
one of the most employed (and studied) solvents on the lab, pilot and full scales. MEA
presents low cost, viscosity and volatility, which are considered desirable properties for
CO2 capture. In addition, a significant amount of data/information is available regarding
its physical and chemical properties (degradation, solubility of O2, etc.), both in lab-scale
reactors and in pilot-scale or industrial capture plants. The most important drawback,
however, is the high energy amounts that are needed to break the bonds of the formed
carbamate (CO2 + MEA) and regenerate the solvent. This is almost 57.5% of the total
energy consumption, accounting for 50% of the operating cost [38–40]. Furthermore, the
incorporation of such systems in a power plant increases almost 70–80% of the electricity
cost and reduces 25–30% of the net efficiency of the power plant [39,41]. MEA is also
highly oxidative and easily degrades when it comes in contact with impurities, such as
excess oxygen and sulphur dioxide. This degradation accounts for almost 10% increase
in the operating cost. Consequently, the relevant research studies aim to either decrease
the high consumption of energy via the application of alternative solvents and process
configurations, or to employ less energy-intensive CO2 capture technologies where solvent
regeneration is not required (e.g., membrane separation) [35,42].
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3.2. Adsorption

In this technology, an adsorbent agent is used to selectively adsorb and separate
CO2 from the flue gas in a two-step process (Figure 3); CO2 is initially adsorbed on the
surface of the adsorbent agent, which is then regenerated usually via the application of
heat (Temperature Swing Adsorption, TSA) or by reducing the pressure (Pressure Swing
Adsorption, PSA) [43,44]. For TSA, the energy consumption derives from heating, while
for PSA, the energy consumption mainly comes from the compressor system [45]. It is
reported that TSA processes offer additional advantages compared to PSA. First of all, the
flue gas, which is emitted at an almost ambient pressure, does not require pressurization.
Secondly, waste heat can be used to provide the energy that is needed for temperature
swing. Therefore, the low temperature difference between the regeneration and adsorption
steps of TSA (30–150 ◦C) and the possibility to use the available waste heat reduce the
operating cost, thereby promoting the implementation of TSA [46]. Nowadays, TSA is
mainly employed for post-combustion capture of CO2 from flue gases [47].
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Adsorption can be characterized as physical or chemical, depending on the involved
mechanism. During physical adsorption (or physisorption), CO2 molecules attach to the
pore walls of the adsorbent agent primarily through microscopic forces (Coulomb force
and Van der Waals force), without forming chemical bonds. At ambient temperature, CO2
physisorption takes place and the gas uptake is directly related to the porous structure of
the adsorbent’s surface. Chemical adsorption (or chemisorption) refers to the formation of
chemical bonds between CO2 and the adsorbent surface. During chemisorption, coating or
chemical grafting occurs on the surface of a porous material by integrating basic groups that
interact with the acidic CO2 molecules. The adsorption of CO2 at increased temperatures
(>140 ◦C) is primarily governed by chemisorption. In the temperature range of 25–140 ◦C,
both physisorption and chemisorption can occur [44,49].

The selection of the adsorbent agent is one the most important factors to achieve
effective separation when the adsorption technology is considered for CO2 capture. The ad-
sorbent agent should have high CO2/N2 selectivity, high adsorption capacity, fast kinetics,
high surface area, mild desorption ability, high resistance/tolerance towards moisture and
impurities, high mechanical strength, low operating cost and high stability when applied
in a multi-cycle operation [50]. Typical adsorbents for CO2 capture are zeolites, activated
carbon, alumina, silicates and metal–organic frameworks (MOFs) [51,52].

The application of adsorption can result in high energy savings compared to the
commonly applied absorption with amines. In addition, it is a simple, environmentally
friendly technology that is quite readily retrofitted to existing plants and, thus, offers the
flexibility to capture CO2 from different industrial CO2 sources due to the different available
adsorbent regeneration modes and reactor types [51,53]. Other advantages include high
adsorption capacity at ambient conditions, stability for long-term application, low cost for
regeneration and fast kinetics [50]. However, although adsorption is a relatively mature
technology for some industrial applications of large scale, its application in real-field
post-combustion CO2 capture process still presents significant challenges concerning the
adsorption materials, the gas–solid contact systems and the regeneration mode. In addition,
the flue gas used should be rich in CO2 because the majority of the available adsorbents
have low selectivity. For this reason, current research studies have focused mainly on the
development of innovative adsorbent materials and aimed to reduce energy consumption
by minimizing the adsorption heat and maximizing the adsorbents’ capacity [37,53].

3.3. Cryogenic Separation

Cryogenic separation (Figure 4) exploits the condensation (cryogenic distillation tech-
niques) or desublimation points (cryogenic desublimation techniques) of the gases that are
contained in a flue gas. In the first group of techniques, distillation columns are employed
to separate and recover CO2 in liquid form. The obtained CO2 is of high purity; however,
these techniques are highly energy-intensive because very high pressures are required
to prevent the formation of CO2 frost. During desublimation techniques, CO2, which is
at atmospheric pressure and a temperature of −78.5 ◦C, desublimates directly from the
gaseous state to the solid state [54].

When compared to the other CO2 capture technologies, the principal advantage of
cryogenic separation is the high recovery rate and purity. In addition, it is a relatively
simple technology that employs a two- or three-step sequence (compression, expansion and
separation); it does not demand the utilization of volatile chemicals (e.g., as in absorption);
and it is conducted under mild pressures [29,55]. However, cryogenic separation demands
high power to operate the refrigeration unit, which increases the operating cost, and it also
requires feed gas pre-treatment and dehydration to avoid CO2 freezing in the cold section
of the fractionation equipment [56].
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3.4. Membrane Separation

During membrane separation, CO2-selective membranes are utilized to separate CO2
from a flue gas stream. CO2 capture with membrane separation was applied initially for
the purification of natural gases, as an alternative to the utilization of amine solvents, in
the 1980s. Since then, membrane separation technologies have expanded their market
share due to a series of benefits, such as low capital cost, low energy consumption, low
space requirements and high sustainability in distant areas [10,58]. In addition, they are
environmentally friendly, have simple operation and do not produce harmful wastes, as
opposed to, e.g., chemical absorption which employs amine absorbents [59]. The following
section presents the basic principles, the main process configurations and membrane
materials, and the current advancements regarding the application of membrane-based
technologies, mainly for efficient CO2 capture from exhaust flue gases.

4. CO2 capture with Membrane Technologies
4.1. Basic Principles and Mechanism of Membrane Gas Separation

During gas separation using membrane technology, a membrane acts as a filter that al-
lows specific molecules to permeate (e.g., CO2) but prevents other molecules from entering
the membrane (e.g., CH4 and H2O) (Figure 5) due to characteristics such as gas–membrane
chemical interactions or the kinetic diameter. Membrane processes, such as micro-filtration,
ultra-filtration, nano-filtration and reverse osmosis, are widely used in solid–liquid sep-
arations [60]; however, membrane gas separation is also attracting intensive research for
carbon capture, utilization and storage (CCUS) during recent years [10,61].

For membranes with no permanent porosity, i.e., membranes that consist of dense
polymeric materials, the most widely adopted mechanism/model for mass transport is
the solution-diffusion model. According to this model, transport occurs in three steps:
(1) dissolution or sorption of a gas into the membrane at the high-pressure material side,
(2) diffusion of the sorbed gas through the membrane, and (3) desorption of the gas from
the membrane at the low-pressure material side. The chemical potential difference between
the high-pressure and low-pressure contacting phases controls the driving force, which is
created through gas compression or vacuum. For ideal gas contacting phases, the gas flux
across the membrane is calculated using the following equation:

Ji =
Qi
δ
·
(

Pr·xi − Pp·yi
)

(1)

where Ji is the flux across the membrane of species i (mol/m2/s); Qi is the membrane per-
meability for species i (mol·m/m2/s/Pa); δ is the effective membrane thickness (m); Pr and
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Pp are the feed/retentate high pressure and the permeate low pressure (Pa), respectively;
and xi and yi are the high-pressure and low-pressure gas-phase mole fractions (mol/mol),
respectively. The permeability is equal to the product of gas solubility and diffusivity in
the membrane. The ratio of permeability to membrane thickness in Equation (1) is defined
as the gas permeance: q ≡ Qi

δ · (mol/m2/s/Pa). Commonly, permeance is expressed in gas
permeation units (GPUs), where 1 GPU = 3.35 · 10−10 (mol/m2/s/Pa).
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Selectivity expresses the ability of a membrane to separate two gases. For a pair of
gases, i and j, selectivity is defined as the ratio of gas permeabilities or permeances:

ai,j =
Qi
Qj

=
qi
qj

(2)

where component i is the gas with the higher permeability, resulting in a selectivity greater
than 1. In membrane technologies, selectivity and permeability are the most important
parameters for efficient gas separation and determine the process economics; the energy
(operating) cost is controlled by selectivity, whereas the membrane area (capital) cost is
controlled by permeability. An increase in selectivity decreases the amount of gas that
must permeate from the high-pressure feed to the low-pressure permeate to achieve the
desired targets for product purity; this decreases the compression energy lost due to
permeation. An increase in permeability or permeance, i.e., of the gas permeation flux
per unit of driving force, reduces the area of the membrane and the capital cost that is
necessary to achieve a specific feed or product flow rate [14,62]. The Robeson correlation is
an empirical correlation that presents a trade-off between permeability and selectivity of
gases, and its upper boundary is usually employed to assess the performance of membrane
systems (Figure 6). To address the challenges in reducing carbon capture cost, a membrane
material should be on the Robeson upper bound (or above it), i.e., in the region of high
permeability/moderate selectivity [63,64].
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rearranged polymers, PIMs: polymers of intrinsic microporosity) [63].

4.2. Membrane Configurations and Process Engineering

Typical membrane configurations for separating CO2 include hollow fiber (HF), flat-
sheet (FS) and spiral-wound (SW) membranes (Figure 7). Hollow fiber membranes, which
contain hundreds or thousands of hollow fibers packed into bundles, are the most studied
membrane configuration due to their high surface area per unit volume, which promotes
gas transfer. However, they present drawbacks, such as fiber fouling and significant
pressure drops. On the contrary, flat-sheet membranes, which are usually stacked on top of
each other, present lower pressure drops and enhanced mass transfer because they employ
specially designed feed spacers. In addition, they can be easily fabricated and physically
or chemically cleaned. Spiral-wound membranes actually consist of flat-sheet membranes
that are rolled around a collection tube [65,66].

According to the employed process engineering configuration, gas separation using
membranes can occur in a single-stage process with one membrane module or in a two- (or
multi-)stage process with two (or more) membrane modules that are placed in series or
in a parallel configuration (Figure 8) [67,68]. During the single-stage process (Figure 8a),
high selectivity is needed to achieve 95% purity and 90% recovery of CO2. Consequently,
it is difficult to achieve high targets using the single-stage membrane process, mainly
because the purity of the final product is limited by the low CO2 content in the feed gas
and by the trade-off effect between recovery and purity. On the contrary, high purity and
recovery targets are achieved more easily in the two-stage membrane process (Figure 8b)
as the gas recycling enhances the recovery of CO2 significantly. However, the two-stage
membrane process consumes more power since more compressors (or vacuum pumps)
are needed, and the gas recycling increases the required membrane area. Consequently,
during membrane separation with two or more stages, the main target is to reduce energy
consumption and membrane area [69].
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4.3. Membrane Materials

Each membrane material presents advantages and disadvantages, which are concerned
with the separation performance, material cost, lifetime and other characteristics, such as
chemical and thermal stability, and mechanical strength. Organic (polymeric) membranes,
inorganic membranes and mixed-matrix membranes (MMMs) are the main membranes
applied for post-combustion CO2 capture [70–72].

Among various membrane materials, polymeric materials present inherent advan-
tages in terms of cost, variety and ease of processing. Polymers, including polyacety-
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lene [73], polyaniline [74], polyamides [75], polyimides [76], polyetherimides [77], poly-
carbonates [78], poly(phenylene oxides) [79], poly(ethylene oxides) [80], polysulfones [81]
and cellulose acetate [82], have been examined for post-combustion CO2 capture. Gener-
ally, the solution-diffusion transport mechanism and the facilitated transport mechanism
are broadly adopted as the principal mechanisms when the design of new polymers is
considered. Membranes which are made from the aforementioned polymeric materials
follow the solution-diffusion mechanism. In facilitated transport membranes, CO2 trans-
port is enhanced by the interaction between CO2 molecules through reversible reactions
(see Section 5.5). Compared to other materials, polymeric materials can be regarded as
the optimal materials due to many characteristics, such as thermal stability, mechanical
strength and chemical resistance. By controlling the polymer preparation and chemical
composition process, the permeability and selectivity of these membranes can be easily
adjusted. In addition, polymeric membranes are one of the best options due to the devel-
opment of membrane technologies in various industries, such as biogas upgrading and
petrochemicals. However, CO2 adsorption via polymer-based materials can cause swelling
and plasticization problems [15,83]. Table 2 presents the CO2/N2 separation performance
for various polymer-based membranes.

Table 2. Performance of CO2/N2 separation for various polymer-based materials [61].

Membrane Material

Permeance a

(mol·s−1·m−2·Pa−1) or
Permeability b

(mol·s−1·m−1·Pa−1)

CO2/N2 Selectivity Reference

Cellulose acetate 2.48 × 10−7 a 40.17 [84]
Polyimides-TMeCat 6.30 × 10−10 b 25 [85]
Polyimides-TMMPD 1.89 × 10−9 b 17.1 [86]
Polyimides-IMDDM 6.17 × 10−10 b 18.1 [86]

Polysulfone-HFPSF-o-
HBTMS 3.31 × 10−10 b 18.6 [87]

Polysulfone-HFPSF-TMS 3.47 × 10−10 b 18 [88]
Polysulfone-TMPSF-HBTMS 2.27 × 10−10 b 21.4 [89]

Polycarbonates-TMHFPC 3.50 × 10−10 b 15 [90]
Polycarbonates-FBPC 4.76 × 10−11 b 25.5 [91]

Non-polymeric materials, such as activated carbon, zeolites, silica and metal–organic
frameworks (MOFs), are also emerging for CO2 capture. These membranes are more
stable than polymeric membranes and, therefore, they are strong candidates for the efficient
separation of gas mixtures, especially under harsh operating conditions. However, although
inorganic membranes can be used in adverse conditions, the construction and sealing of
the relevant modules for applications of high temperatures are quite difficult, and the cost
of production is often much higher in comparison with polymer membranes. Ceramic
membranes, which usually consist of aluminum oxide (Al2O3), titanium oxide (TiO2) or
carbon nanotubes (CN), are a group of inorganic membranes with improved properties in
terms of mechanical strength, thermal stability and chemical stability. Nonetheless, they
present short operating time and low flexibility to form HF or SW membranes; as a result,
their utilization in CO2 capture is still under research [72,83,92].

The limitations of membranes that are made from pure polymeric or inorganic ma-
terials prevent their widespread utilization in gas separation processes. Although pure
polymeric membranes present exceptional mechanical properties, which allow their easy
processing, they are limited by the trade-off effect that prevents achieving both high selec-
tivity and permeability. Pure inorganic membranes present high selectivity or permeability,
but they are thick and fragile and, thus, it is difficult to use them on a full-scale level.
Aiming to overcome the aforementioned issues, the co-blending of organic and inorganic
materials has been proposed to fabricate composite or mixed-matrix membranes (MMMs)
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with high permeability, selectivity, enhanced mechanical properties and potential for large-
scale implementation. As a result, current research in membrane-based gas separation
focuses mainly on the synthesis of composite membranes, which are usually fabricated via
the integration of innovative inorganic materials, also known as ‘fillers’, into polymeric
membranes [93,94]. The following section presents the latest developments regarding the
use of these membranes for separating CO2.

5. State of the Art in CO2 Capture with the Use of Membrane Technologies

The application of membrane separation processes for CO2 capture is increasingly
gaining traction during the last decade. Membrane technologies are environmentally
friendly, energy-efficient and easily scalable, while also presenting cost-effectiveness and
design simplicity [95]. As concerns carbon capture, membrane technologies are employed
mainly for H2/CO2 separation during pre-combustion, CO2/N2 separation during post-
combustion and O2/N2 separation during oxy-fuel combustion. This section focuses
primarily on the latest developments of membrane separation processes for CO2/N2
separation during post-combustion capture.

The most recent advances in CO2 capture using membrane technologies principally
involve employing a membrane material; the vast majority of research studies that examine
membrane-based technologies for post-combustion CO2 capture focus on the fabrication
and application of novel membrane materials which selectively separate CO2 from N2.
In most of them, a polymeric material (continuous phase) is combined with an inorganic
material of micro- or nano-size (filler, dispersed phase) to form composite membranes or
mixed-matrix membranes (MMMs) with improved properties, i.e., enhanced intrinsic and
surface characteristics. To achieve this, composite membranes employ a broad variety of
materials, such as silica, zeolites and metal oxides [58,83,96,97].

The fillers, which are incorporated in MMMs, can be classified as non-porous
(e.g., metal oxides and silica) or porous [98]. Generally, porous materials are classified into
four groups [99,100]:

(i) Inorganic materials, e.g., zeolites.
(ii) Carbon-based materials, e.g., carbon nanotubes and carbon molecular sieves (CMSs).
(iii) Organic-based materials, such as (a) porous organic frameworks (POFs), which in-

clude covalent organic frameworks (COFs), porous aromatic frameworks (PAFs),
covalent organic polymers (COPs) and porous organic polymers (POPs), and (b) mi-
croporous polymers, which include polymers of intrinsic microporosity (PIM) and
thermally rearranged (TR) polymers.

(iv) Hybrid materials, which are also known as metal–organic frameworks (MOFs).

Among the aforementioned materials, recent progress focuses mainly on the develop-
ment and integration of metal–organic frameworks (MOFs) and carbon molecular sieves
(CMSs) into novel MMMs. Other types of MMMs, which are increasingly examined for
their potential to improve CO2 separation, include nanocomposite membranes, which
employ nano-sized fillers (of various materials); ionic liquid (IL)-based membranes, which
employ ionic liquids as the continuous phase in the fabricated MMMs; and facilitated
transport membranes (FTMs), where the gas diffusion mechanism is based on facilitated
transport.

5.1. Metal–Organic Framework (MOF) Membraness

Metal–organic frameworks (MOFs) comprise a new kind of porous materials, which
are constructed from multidentate organic ligands and metal ions. In comparison with
typical porous materials, e.g., zeolites and carbon nanotubes, MOFs can provide an ideal
platform for gas absorption and separation, drug delivery, catalysts, electrode materials
and semi-conductors due to their well-ordered architecture. MOFs present characteristics
such as tunable pore size, large surface area and chemistry, which are favorable for gas
separation and for unlocking efficient CO2 capture paths [101].
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Apart from the development of typical fabrication techniques for MOF-based mem-
branes, membranes that combine MOFs with other materials have also been generated in
recent years. MOF membranes, which usually have a thickness of micrometers, present
high mechanical stability; however, they have low separation performance due to high
mass transfer resistances and result in low permeabilities. To deal with this drawback,
ultrathin two-dimensional monolayer MOF membranes with a thickness of nanometers
have been proposed [102,103]. Yao et al. (2023) [104] employed an anodic electrodeposition
method to incorporate in situ different kinds of MOFs (HKUST-1, Cu-BDC and Cu-BDC-
NH2) into the nanochannels of graphene oxide (GO), aiming to result in the formation of
a new layer-by-layer structure confined by GO layers. The pore-size distribution of the
obtained membranes was wider, and a significant increase in elastic modulus and hardness
was observed. The membranes also presented high CO2 capture capacity and selectivity,
providing a promising strategy to produce functional and mechanically strong MOFs for
real-field applications. One of the most representative MOFs, which presents high affinity
for CO2 due to its abundant CO2-philic groups and sites, is zeolitic imidazolate framework-
8 (ZIF-8) (Figure 9). ZIF-8 was incorporated as a filler by Wang et al. (2024) [105] into a
Pebax matrix (60 wt % polyethylene oxide and 40 wt % polyamide 6), and the obtained
MMM achieved enhanced CO2 separation performance. Other novel MOF-based mem-
branes, which offer significant benefits, e.g., enhanced separation performance, defect-free
structures and improved mechanical properties, include ionic liquid (IL)-MOF membranes,
covalent organic framework (COF)-MOF membranes and MOF-glass membranes [106].
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Figure 9. Zeolitic imidazolate frameworks (ZIFs): (a) design of a ZIF using tetrahedral metals and
imidazolates to present tetrahedral topologies typically found in zeolites, (b) main imidazolate linkers
which are applied during ZIF synthesis, and (c) crystal structures of a ZIF with various pore sizes
and openings. Atom labelling scheme: C, black; O, red; N, green; Br, purple; Cl, orange; and Zn,
blue polyhedra. H atoms are not depicted for clarity. Yellow spheres represent the space in the
framework [107].
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5.2. Carbon Molecular Sieve (CMS) Membranes

Carbon molecular sieves (CMSs) are a type of activated carbons with pores of a very
low (molecule) size, which have been utilized for separating O2 from air and CO2 during
biogas upgrading. However, they are much less investigated for CO2/N2 separation and
carbon capture from flue gases [108]. The rigid pore structure of CMS membranes presents
a bi-modal pore-size distribution, where the micropores (7–20 Å) improve gas permeability
and the ultra-micropores (<7 Å) enhance gas selectivity through molecular sieving. Due
to these properties, CMS membranes are often utilized for separating gases with similar
molecular kinetic diameters [109,110]. CMS membranes have attracted worldwide atten-
tion as they exhibit higher chemical and thermal stability and enhanced gas separation
performance compared to polymeric membranes. Several polymers are used to synthesize
CMS membranes, such as polyimides, phenol formaldehyde, cellulose, poly(phenylene
oxide), sol–gel polymers, poly(vinylidene chloride-co-vinyl chloride) and poly(furfuryl
alcohol). Among the aforementioned materials, poly(furfuryl alcohol) is considered a
strong possible precursor for manufacturing high-performance CMS membranes [111,112].

The development of MMMs which contain CMSs has been examined by various re-
searchers. A suitable filler must withstand high temperatures and be easy to prepare, taking
into account the preparation conditions of CMS membranes and the demand for economic
efficiency [113]. Li et al. (2019) [114] adopted the strategy of filler design optimization
with membrane carbonization to produce mixed-matrix CMS membranes incorporating a
hierarchical zeolite 5A filler (Figure 10). Apart from its intrinsic micropores, the hierarchi-
cal filler also possessed mesopores of ∼8 nm that offered additional transport pathways
to facilitate the diffusion of CO2 through the membrane carbon matrix. More recently,
Zhang et al. (2023) [113] incorporated the zeolite ZSM-5 into the carbon matrix of a CMS
membrane to fabricate a CMS/ZSM-5 MMM. The results showed that the gas permeabili-
ties of CMS/ZSM-5 MMM for H2, CO2, O2, N2 and CH4 were significantly improved in
comparison with the pure CMS membranes.
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5.3. Nanocomposite Membranes

When the incorporated inorganic material (filler) is of nano-scale size, the obtained
MMMs are also known as nanocomposite membranes. Nanofillers (usually between 1
and 100 nm) are increasingly incorporated in polymeric matrices to produce MMMs in
recent years. Nanofillers present molecular sieving ability, an arranged pore structure, good
mechanical properties and thermal stability, and their exceptional interfacial compatibility
forms special nano-channels for the transportation of CO2 when they are combined with
polymers. Nanofillers in MMMs are used to decrease the gas transport resistance and
enlarge the chain spacing in the polymer. In addition, they increase CO2 solubility in
MMMs, while the sieving ability of their porous structure improves significantly the gas
selectivity and permeability [95].
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Based on the number of dimensions, nanofillers (and their respective MMMs) can be
zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional
(3D) (Figure 11). Zero-dimensional nanofillers are typically represented by nanoparticles,
which include mainly gold, zinc, silver or metal oxides with a pore size of 1–50 nm usually.
One-dimensional nanotubes, nano-wires, nano-rods and nano-fibers are nanomaterials of
‘needle’ shape, while two-dimensional nanomaterials are thin nanosheets with only one
external nano-scale dimension. Two-dimensional nanomaterials can reach a few square
microns, usually far exceeding their thicknesses. Nanoporous materials, such as zeolites,
silicalites and MOFs of polycrystalline structures can be regarded as 3D nanofillers. It must
be mentioned that bulk nanoparticles and bundles of 1D materials and multi-nanolayers
are also regarded as 3D nanomaterials and, therefore, exhibit tunable properties based on
their dispersion state [115].
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Figure 11. Mixed-matrix membranes (MMMs) with (a) 0D nanomaterials (nanoparticles), (b) 1D
nanomaterials (e.g., carbon nanotubes), (c) 2D nanomaterials (e.g., graphene oxide nanosheets) and
(d) 3D nanomaterials (e.g., microporous nanomaterials) [115].

In recent years, various research studies have investigated the fabrication and uti-
lization of nanocomposite membranes for efficient CO2 capture. Dai et al. (2023) [116]
demonstrated that the addition of one-dimensional carboxymethylcellulose (CMC) between
2D g-C3N4 nanosheets is a promising material for CO2 separation membranes. Using the
electrostatic self-assembly method, Zhao et al. (2023) [101] synthesized novel porous amino-
functionalized nanosheets with polyethyleneimine (PEI-F-Ce) and combined them with a
polyethylene oxide (PEO) matrix to fabricate an MMM (XLPEO/PEI-F-Ce) of high CO2/N2
selectivity. It was shown that XLPEO/PEI-F-Ce selectivity was significantly enhanced due
to the combined improvement in solubility and reaction selectivity. Maleh et al. (2022) [117]
suggested a novel polyethersulfone (PES)-based MMM for separating CO2 from natural
gases and flue gases. These researchers also studied how polyurethane (PU) and clay
nano-sheets affect the structure and the separating properties of three MMMs that were
based on PES, and showed that the incorporation of PU and clay nano-sheets into the PES
matrix significantly improved its gas permeation and separation properties.

5.4. Ionic Liquid (IL)-Based Membranes

Ionic liquids (ILs) are molten organic salts in liquid form, with typical melting points
lower than 100 ◦C [118]. ILs are attracting attention in solvent-based post-combustion
CO2 capture because they present some remarkable characteristics, such as high thermal
stability, flammability and low volatility with huge tunability when selecting cations and
anions. Due to these properties, high CO2 solubility and high separation potential for
specific gas molecules can be achieved. However, pure ILs present a small surface area and
a limited capacity for CO2 capture [119]. Recently, the combination of ILs with membranes
has been reported as a potential separation system. With membrane support, an IL can
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keep its solvent properties and, consequently, improve its gas separation efficiency. Several
distinct types of membrane processes combined with ILs have been investigated, including
supported ionic liquid membranes (SILMs), IL composite polymer membranes (ILPMs), IL
composite mixed-matrix membranes (ILMMM), poly(ionic liquid) membranes (PILMs), IL
gel membranes (ILGMs) and IL membrane contactors (ILMCs). These systems have shown
high gas separation efficiency [120].

In recent years, the number of research studies which employ ILs for the fabrication
of MMMs with enhanced CO2 separation characteristics has increased. Mahboubi et al.
(2023) [118] combined 1-butyl-3-methylimidazolium acetate, as an ionic liquid, with a
polyether-block-amide polymer and aluminium oxide (Al2O3) nanoparticles, and prepared
a novel ternary MMM with improved permeability and selectivity for CO2. Nabais et al.
(2022) [121] also suggested the incorporation of different azo-porous organic polymers
(azo-POPs) (Figure 12), as fillers, into ion gels with a high IL content (80 wt %) for the
fabrication of MMMs with enhanced CO2 separation characteristics. Ahmad et al. (2018,
2021) [122,123] successfully employed an IL as the continuous phase in an MMM and
enhanced its CO2 separation performance. According to Sanni et al. (2022) [120], among
the membrane–ionic liquid systems, a hybrid system that is comprised of cellulose acetate,
methyl ammonium nitrate and graphene oxide (CA-methyl ammonium nitrate-GO) is a
possible candidate with high CO2 capture (>80%) due to its enhanced porosity, mechanical
and thermal stability, good selectivity and low CO2 permeability.
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5.5. Facilitated Transport Membranes (FTMs)

When CO2 permeates through a membrane, different transport mechanisms can take
place, such as solution diffusion, Knudsen diffusion, convective diffusion, capillary conden-
sation, molecular sieving and facilitated transport. In polymeric membranes, apart from
the solution-diffusion mechanism, which is a common gas diffusion mechanism, especially
in non-porous polymers, CO2 transport can be facilitated via reversible chemical reactions
between CO2 and specific molecules (carriers) (Figure 13) [124]. These membranes, which
are known as facilitated transport membranes (FTMs), can reversibly interact with CO2
and, thus, provide an ‘extra’ mechanism to promote its transport, while other components
exclusively pass through the solution-diffusion model [60,94]. FTMs have shown great
potential for superior gas separation performance and specifically for CO2 capture [125].
Through the incorporation of carrier agents into the polymer matrices to react with CO2
reversibly, FTMs provide high flux and selectivity. Mobile carriers and fixed carriers are the
two predominant FTM types. A mobile carrier is also called a supported liquid membrane
(SLM) or an ‘immobilized’ liquid membrane (ILM). This carrier initially reacts with CO2 on
the feed side, and the subsequent product moves across the membrane. On the permeate
side, CO2 is released and H2 (or other gas species) is not influenced by the facilitated
transport. A fixed carrier, which is bonded covalently to the polymer backbone, has limited
mobility. Each CO2 molecule reacts with one carrier site and then passes to the next site
until it reaches the permeate side [95,126].
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Researchers have made attempts to establish FTMs in two directions: (i) development
of innovative carriers that present high diffusivity and reactivity with CO2, and (ii) devel-
opment of low-cost membranes that present very high selectivity. Stability in long-term
operation is also necessary as membranes can be exposed to flue gases with NOx and SO2
impurities. Until now, only a small number of polymeric membranes have shown to be
efficient for CO2 capture, especially in pilot plants. Polyvinylamine (PVAm), which is a
weak linear cationic polyelectrolyte that contains many primary amine groups, is widely
reported as appropriate for facilitated CO2 transportation following various pathways with
the presence of water [96,127]. Janakiram et al. (2019) [128] used an FTM that consists of
a selective layer based on the blend of polyvinyl alcohol (PVA) with sterically hindered
PVAm, and achieved 652 GPU of CO2 permeance, but a rather low CO2/N2 selectivity
(41.3). In the following years, they scaled up and used three different hollow fiber FTMs
with real flue gases from a cement plant [129] and simulated a two-stage membrane process
using different classes of facilitated transport membranes, which were previously validated
in industrial conditions, with promising results [130]. Wu et al. (2023) [66] also developed
SW membrane modules for industrial use with an effective membrane area of 31 m2. The
employed modules consisted of amine-based facilitated transport PVAm multilayer com-
posite membranes, which were fabricated using roll-to-roll coating equipment. The results
showed that a reduction in operating pressure increased the purity of CO2 but decreased
the CO2 capture rate, and there was a trade-off between the power consumption and the
membrane area demand. However, although PVAm-based modules have proven to be
competitive, compared to most amine-based technologies, the difficulty in maintaining high
performance in larger plants still prevents their full-scale application. Aiming to increase
the mechanical strength of membranes, the main constituents of polymers coupled with
other polymers or nanofillers, carbon nanotubes and metal–organic frameworks (MOFs)
are also considered in FTMs [96].

6. Commercially Applied Membrane Modules for Industrial CO2 Capture

Three commercial membrane modules have been successfully demonstrated at a
relatively high TRL (5–7) for post-combustion capturing of CO2 from flue gases of fossil
fuel-fired and cement facilities: PolarisTM, PolyActiveTM and PRISMTM modules [131].

PolarisTM, which was developed by Membrane Technology and Research (MTR)
(USA), has been broadly examined and assessed for capturing CO2 from flue gases of
coal-fired power plants. PolarisTM Gen 1, which presents a CO2 permeance of 1000 GPU
and a CO2/N2 selectivity of 50, has been tested commercially already [132–134]. During
the years 2012–2015, PolarisTM spiral-wound membranes exhibited prolonged membrane
performance (>111,000 h) and achieved >90% CO2 capture on a bench scale (0.05 MWe
or 1 tons of CO2/day). A larger pilot-scale system (1 MWe or 20 tons of CO2/day) also
presented stable operation (>6 months), achieving 90% CO2 capture. In this unit, a plate-
and-frame module with low-pressure drop, increased packing density and lower power
cost (~10 MWe saving) was successfully operated as well. Polaris Gen 2, with twice the CO2



Membranes 2023, 13, 898 20 of 27

permeance but similar CO2/N2 selectivity, showed higher CO2 separation performance
(60–70%), compared to Gen 1, and also exhibited stable performance for >40 h when it
was tested on a laboratory scale. These efforts from MTR have advanced this membrane
technology from TRL 2–3 to TRL 6. Aiming to capture 200 tons of CO2 per day from a coal-
fired power plant, a large pilot system is under design with an expected CO2 purity > 99%.
After the successful operation of such a plant, the commercial maturity of this membrane
technology for CO2 capture is expected to increase to TRL 8. Finally, PolarisTM membrane
performance exhibited high stability (>168 h) during real field tests in 2021 at Jiangyou
Power Plant (Jiangyou, China), which operated under dynamic conditions (power plant
load ranged between 54 and 84%). The aforementioned results confirm the efficiency of
PolarisTM modules under varying operating conditions [32,135].

Helmholtz-Zentrum Geesthacht (Geesthacht, Germany) developed PolyActiveTM mod-
ule, which showed high CO2 permeance, namely 3068 m3 (STP)/m2/h/bar (1136 GPU), and
high CO2/N2 selectivity (60), with a CO2 recovery of 42.7% and a CO2 purity of 68.2% [32,136].
Nowadays, PolyActive™ membranes are broadly applied. Brinkman et al. [137] showed
how temperature affects the transport properties of different multilayer PolyActive™ mem-
branes; temperature increased permeance but decreased selectivity. At the optimal temper-
ature (~40 ◦C), the permeance reached 2000 GPU and the CO2/N2 selectivity was almost 45.
More information about the mechanical properties of PolyActive™ membranes (structure
and thickness) is presented in the work by Schuldt et al. [138]. It was shown that when CO2
pressure is >8 bar, PolyActive™ swells with CO2, resulting in lower selectivity [13,138].

PRISM™ module, developed by the company Air Products (Allentown, PA, USA), was
employed by Scholes et al. [139] at a Victorian brown coal-fired power plant. Initially, the
pressure of the flue gas was increased to 150 kPa. The dried flue gas entered the membrane
at 45 ◦C and 3.5 kg/h. After the blower discharge of a direct contact cooler, the module
was placed under clean flue gas. However, water condensation on the membrane was the
most important drawback of the process. Both selectivity and permeance were greatly
reduced after a few hours of operation, which was attributed to membrane plasticization
and swelling by water. After some time of operation, they increased slightly, but not up
to the initial values. Apart from CO2, impurities of NOx and SO2 also passed through the
membrane. Scholes et al. [139] concluded that the main challenge was the fluctuations in
humidity and the challenging regulation of the experimental setup in terms of temper-
ature control. Due to humidity, significant changes can happen in membrane transport
properties [13].

7. Main Challenges and Future Perspectives

With the exception of some gas-sweetening membrane systems that are currently
commercialized, the widespread application of membranes is still limited, and a significant
gap is observed between lab-scale research and real field applications. Current commercial
membrane modules present low selectivity, and multiple stages are needed to achieve
the necessary CO2 purity [96,140]. Apart from the inevitable trade-off between selectivity
and permeability, which still remains an important limitation in membrane separation
technologies [14], a major challenge in coal-fired power plants is the low CO2 concentration
(10–15%) in the emitted flue gases [141]. For these flue gases, commercial membranes cannot
achieve the required CO2 selectivity and purity, illustrating the need for advanced, novel
membranes [10]. Regarding the application of mixed-matrix membranes (MMMs) for CO2
capture, the main challenges include potential interfacial defects between the polymeric
and inorganic phases, particle agglomeration, sedimentation and poor dispersion, which
can decrease membrane selectivity. Apart from the size and amount of the employed
particles, attention should be also given to chain rigidification, adhesion between particles
and the polymer phase, viscosity of dope-containing particles and the applied stress to
induce particle dispersion, which can influence the overall MMM performance [7,142].
The challenges that prevent the broad commercialization and application of membranes
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for carbon capture can be summarized into three categories, according to Olabi et al.
(2023) [143]: economic/financial, technical and social (Figure 14).
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capture (MGS: membrane gas separation, MC: membrane contactors) [143].

Nevertheless, the number of membrane technologies for CO2 capture is expected
to increase in the future in view of the benefits of low energy consumption, low capital
and operating costs, low space requirements, avoidance of chemicals/harmful wastes
and simple operation. Future research should focus on the improvement in separation
process efficiency and the reduction in capital and operating costs, which will facilitate
the use of membranes by interested stakeholders. To make membrane-based technologies
cost-effective during carbon capture, further advancements are required in membrane
fabrication with novel or composite materials (composed of two or more species), which will
enhance the intrinsic and surface properties and, therefore, the selectivity and permeability
of the produced membrane modules. It is also understood that the produced MMMs
should be compatible with different flue gas compositions, apart from their increased
selectivity. Although there are numerous studies concerning the use of MMMs for CO2
capture, industrial engineering is still in its infancy and the efforts to create new filler
materials will be continued. Finally, the industrialization of MMMs for carbon capture
will necessitate the utilization of low-cost, renewable and, if possible, naturally occurring
polymers; the manufacturing and reproducibility of thin, defect-free bio-polymeric MMMs
that will replace synthetic membranes is very challenging.

8. Conclusions

The most common post-combustion CO2 capture technologies are chemical absorp-
tion, adsorption, cryogenic separation and membrane separation. Membrane separation
is increasingly implemented in recent years due to low capital and operating costs, low
energy consumption and space requirements, easy operation, simple equipment, high flexi-
bility, safety and an absence of possibly toxic or harmful wastes. The latest advancements
in membrane technologies for CO2 capture emphasize primarily the fabrication of novel
membranes with enhanced properties that will achieve higher selectivity, permeability,
mechanical strength and potential for large-scale preparation. The majority of these mem-
branes are composite or mixed-matrix membranes (MMMs), which are fabricated via the
integration of novel inorganic materials (fillers) into the structure of polymeric membrane
materials. Among these materials, recent progress focuses mainly on the utilization of
metal–organic frameworks (MOFs), such as zeolitic imidazolate frameworks (ZIFs) and
carbon molecular sieves (CMSs), i.e., activated carbons with molecule-sized pores. Other
types of MMMs, which are increasingly examined for their potential to improve CO2
separation, include nanocomposite membranes, which employ nano-sized fillers of various
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materials; ionic liquid (IL)-based membranes, which employ ionic liquids as the continuous
phase in the fabricated MMM; and facilitated transport membranes (FTMs), where the gas
diffusion mechanism is based on facilitated transport.
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