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Abstract: Membrane distillation (MD) is a thermal desalination technique proposed for the val-
orization of residual brines that other operations such as reverse osmosis cannot treat. Previous
studies have shown that vacuum-assisted air gap (V-AGMD) operation in commercial multi-envelope
modules improves the performance of MD noticeably. However, the permeate quality at pilot scale
has not been thoroughly characterized so far. The aim of this study is, therefore, to assess and model
the effect of the main operating conditions (feed flow rate, inlet temperatures, and feed salinity) on
the permeate quality. Results from different steady-state experiments allowed to estimate descriptive
metrics such as the salt rejection factor (SRF) and the membrane leak ratio (MLR). Given their non-
linear behavior, these metrics were subsequently modeled using artificial neural networks (ANN) to
estimate the permeate quality in the whole scope of operating conditions. Acceptable SRF results
with MLR values lower than 0.2% confirmed the validity of MD as an operation for the treatment of
concentrated brines, although the salinity of the resulting permeate does not comply in all cases with
that permitted for human consumption.

Keywords: membrane distillation; brine treatment; experimental; zero-liquid discharge; machine
learning; modeling

1. Introduction

Water scarcity is a major problem nowadays in both coastal and inland areas [1]. Desali-
nation of sea and brackish water has become the most widespread solution to alleviate this
issue [2]. Membrane technologies are the most used at industrial scale. Reverse osmosis (RO)
is the most well-assessed technology for decades. Results obtained at both laboratory and
industrial scale have allowed the development of new membranes and modules, and also
numerous performance and costs models. All this experience throughout the time leads to
RO being the most economically competitive sea- and brackish water desalination operation
so far [3,4]. RO plants produce 70% of the total permeate worldwide, followed by thermal
desalination operations such as multi-stage flash (MSF) and multi-effect distillation (MED) [5],
with 16% and 7%, respectively. However, with the increasing freshwater demand worldwide,
the disposal of concentrated brines to the sea or to wells could be an environmental problem
with major relevance in the near future [6]. This fact brings to light the need of alternative
desalination technologies able to deal with the concentrated brines that RO cannot handle
because of the increased osmotic pressure [7,8]. Apart from producing more freshwater, a
proper brine management will also give the opportunity of recovering valuable minerals from
that residue and thus establish a circular economy scheme with zero liquid discharge (ZLD)
as the final goal [9–11]. Among these novel brine concentration technologies, membrane
distillation (MD) is proposed to supplement RO [9,12].
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MD is a thermal desalination technique implemented at pilot scale for two decades
and driven by the vapor pressure gradient between both sides of a hydrophobic microp-
orous membrane, not by osmotic pressure [13]. This fact makes possible the treatment of
brines that cannot be handled by RO due to their high salinity. However, the main issue
reported in high-salinity MD is pore wetting induced by salt ions, which occurs when
the hydrophobicity of the membrane pores (related to the diameter of the pores and the
surface tension of the feed) is reduced, facilitating thus the pass of salts through the mem-
brane and hence worsening the permeate quality [14]. Moreover, in the worst case, crystal
growth can occur and cause severe irreversible membrane damage [11,15]. Membranes
made of different materials and with different structures have been tested at a laboratory
scale [16–18]. However, only a few studies have assessed the performance of MD at high
salinity up to date. Several studies about the treatment of brines with concentrations up
to 240 g L−1 and with membrane areas below 0.02 m2 have been published, considering
the MD operational modes direct contact (DCMD) [19,20], air gap (AGMD) [21,22], and
vacuum (VMD) [23]. A minor upscaling up to almost 0.2 m2 membrane area was later made.
Valuable information about the treatment of real RO brine was provided in these studies
carried out in DCMD [24] and VMD [25] operational modes. However, these results at a lab
scale can hardly be extrapolated to bigger MD modules, therefore experimental evaluations
in commercial-scale devices are mandatory to cover the current lack of knowledge [18].

One of the first assessments of pilot-scale MD modules in which permeate quality was
considered in detail was published by Minier-Matar et al. [26]. Permeate electrical conduc-
tivity of <10 µS cm−1 was measured in the treatment of brine with concentration 70 g L−1

using two commercial plate-and-frame vacuum multi-effect MD (VMEMD) modules with
membrane areas of 6.4 and 4.6 m2. This value is in the range of those obtained by Andrés-
Mañas et al. [27] in a similar 6.4-m2 VMEMD module but operated with real Mediterranean
seawater, which means a salt rejection factor (SRF) of above 99.98%. Regarding pilot-
scale spiral-wound modules, values of permeate electrical conductivity up to 370 µS cm−1

(two orders of magnitude higher than those of lab-scale studies) were reported.
These results can be explained by the fact that the membrane pore diameter follows a

Gaussian distribution, and hence as the membrane size increases, so does the number of
pores with excessive size to maintain the hydrophobicity, increasing the liquid flow through
the membrane. Winter et al. [28] evaluated a permeate gap (PGMD) single-envelope module
with a membrane area of 10 m2 under feed salinities between 0 and 100 g L−1, but their
work was not focused on permeate quality, although they presented values of permeate
electrical conductivity. Soon after, Ruiz-Aguirre et al. [29] carried out a thorough analysis of
the permeate electrical conductivity along the treatment time of a feed with 35 g L−1 marine
salts in a similar PGMD module. The authors demonstrated that in the very beginning of
the operation, the permeate itself acts rinsing the permeate channel, removing the liquid
feed that has leaked through the membrane pores by microfiltration during the stand-
by period, and therefore the permeate quality improved with time and stabilized below
20 µS cm−1. An alternative method to rinse the gap and maintain good permeate quality in
a longer term was proposed by Schwantes et al. in a bench-scale single-envelope air-gap
(AGMD) module [15]. Blowing air into the gap increased the absolute pressure on it, which
is detrimental for vapor diffusion through the pores. The final result was a significant
reduction of the permeate electrical conductivity when treating hypersaline feeds with up
to 240 g kg−1 regarding the same tests performed without air sparging.

The subsequent development of multi-envelope AGMD modules increased the perfor-
mance of the MD since higher feed flow rates with larger membrane area could be treated
without an excessive hydraulic pressure drop inside the module [30]. This improvement in
permeate flux and specific thermal consumption was characterized by Ruiz-Aguirre et al. [31].
Two multi-envelope modules named AS7 and AS24 were used, comprising 12 internal chan-
nels, but of different lengths (1.5 m in the former and 5 m in the latter). A multi-objective
optimization of the trade-off between permeate flux and heat recovery was proposed for
each one, but without taking into account the permeate quality.
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Up to date, air suction from the gap and the membrane pores of multi-envelope
AGMD modules has demonstrated to be the most successful solution to increase the
MD performance. The vacuum-assisted air-gap MD (V-AGMD) operation is based on
reducing the absolute pressure in the gap enough to improve vapor diffusion through
the membrane pores, but without affecting the condensation inside the module. Values
of permeate productivity reported in a module AS7 were up to 8.7 L h−1 m−2, similar to
those obtained with the vacuum multi-effect technology (VMEMD). Besides, permeate
electrical conductivity figures were in the same range (below 50 µS cm−1) [32], although
the effect of vacuum on permeate quality must be thoroughly evaluated, especially in
brine concentration processes. The only detailed study so far on this topic in pilot-scale
modules was published by Ruiz-Aguirre et al. [33]. The authors showed that the SRF
values of the modules AS7 and AS24 were worsened up to 2% by increasing the feed
salinity up to 140 g L−1, and up to 1.5% when the absolute pressure in the gap was about
200 mbar, compared to experiments carried out in AGMD mode. On the contrary, the
permeate quality in the single-envelope PGMD module remained almost unchanged and
close to 100%. This suggests that the combined effect of high salinity and vacuum promotes
membrane wetting. To quantify it, a performance parameter named membrane leak ratio
(MLR) was introduced by the authors in the same study, which is defined as the ratio
of feed that passes through the membrane pores in operation. In the worst case of SRF
reported (97.2%), values of MLR < 0.12% were calculated, which brings to light the extreme
dependence of permeate quality on the hydrophobicity of the membrane pores.

Subsequently, the performance of three V-AGMD modules AS7, AS24, and AS26 was
compared, having the latter twice as many channels as the AS24 but with around half the
length, which also reduces the circulation velocity by half, and thus the hydraulic pressure
inside the channels. Experiments showed that the module AS26 outperformed the AS7 and
the AS24, and provided the lowest specific thermal consumption reported to date in the MD
literature: 40 kWhth m−3, equivalent to GOR = 16.4. Therefore, the multi-envelope module
AS26 is the strongest candidate to be part of a potential upscaled MD facility competitive
with those of other technologies [34]. The authors provided SRF results higher than 98.2%
and maximum membrane leak ratio (MLR) of 0.19% for several operating conditions, but
no conclusive modeling of the effect of each variable on these quality parameters was
performed on the module AS26.

Since permeate quality is subject to unknown defects on the membrane, the use of arti-
ficial neural networks is justified for modeling under different operating conditions [35,36].
Artificial Neural Networks (ANN) have emerged as a promising modeling tool in the
realm of MD systems, especially for flux and thermal efficiency prediction [37] and fouling
prediction [38,39]. One of the primary advantages of this methodology is its capability
to effectively capture and fit almost all nonlinear processes. Furthermore, the inherent
structure of the model enables retraining with additional experimental data, offering the
potential for further enhancing prediction accuracy.

Multi-envelope modules operated in V-AGMD mode have been fully characterized
due to their improved results. Concretely, the module AS26 has been modeled in depth in
terms of heat recovery and permeate productivity, and operating conditions that optimize
the performance have been established [40]. However, there are no studies focused specifi-
cally on assessing and modeling the permeate quality of the operation. This work presents
for the first time the application of ANN to model and simulate the permeate quality of
a pilot-scale MD system as a function of the operating conditions, providing a machine-
learning framework for the application at hand. To do that, a comprehensive experimental
campaign has been carried out at the solar MD facilities of CIEMAT-Plataforma Solar de
Almería, using a pilot-scale multi-envelope module AS26 operated in V-AGMD mode. Out-
puts of the model are the key quality indicators salt rejection factor (SRF) and membrane
leak ratio (MLR), whereas inputs are the operating conditions: evaporator channels inlet
temperature (TEI), cooling channels inlet temperature (TCI), feed flow rate (FFR), and feed
salinity (S). Finally, operating limits have been established, and techno-economical aspects
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of the operation in a wide range of conditions are discussed, focusing mainly on how both
the permeate quality and the thermal efficiency are affected.

2. Materials and Methods
2.1. Materials: Experimental Facility

Experiments were carried out at the solar MD facilities of CIEMAT-Plataforma Solar
de Almería (Spain). An MD unit manufactured by the Dutch company Aquastill was used.
Figure 1 shows a scheme of the system which includes its main constituents.

Figure 1. Layout of the MD system used in this work.

The unit includes a multi-envelope spiral-wound module named AS26, with air gap
configuration, and also provided by Aquastill. Table 1 shows its main features. It is
internally designed alternating membrane sheets, condensation plates, and spacers, which
delimit 12 evaporation channels, 12 cooling channels, and 24 permeate channels. Internal
circulation of evaporation and cooling flows is countercurrent.

Table 1. Characteristics of the MD module used in this study.

Feature Value

Membrane area [m2] 25.92
Number of evaporation channels 12
Number of cooling channels 12
Channel length [m] 2.7
Mean pore diameter [µm] 0.32
Channel height [cm] 40
Channel width [mm] 2
Channel spacers porosity [%] 86.5
Air gap width [mm] 0.7–0.8
Air gap spacers porosity [%] 92.9
Membrane material Low-density PE
Spacers material PP
Condensation sheets thickness [µm] 80
Condensation sheets material PET + Al

The module is integrated into the structure shown in Figure 2. It also bears two plate-
and-frame heat exchangers, each one with a three-way valve that regulates the heating
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and cooling flows from external sources to maintain the two inlet temperatures around the
desired setpoints. To measure the temperatures, four Pt-1000 sensors are installed at the
inlet and outlet pipes of the module. The saline feed solution is contained in a 150-L tank
and is pumped into the module through the inlet of the cooling channels. Its flow rate is
measured and controlled by using a flowmeter, and its concentration is calculated from
measurements of an electrical conductivity meter placed just before entering the module.
Hydraulic pressure must be monitored to avoid surpassing the maximum recommended
by the manufacturer (600 mbar in the case of the AS26 module). To do that, two pressure
sensors are installed at the inlet of the evaporation and cooling channels. Vacuum is
generated by Venturi effect using a narrowing tube inserted into the external cooling circuit,
which sucks out air from the permeate tank and the gap of the module to the outside with
no additional energy consumption than that of the cooling pump. Liquid permeate goes out
of the module to a sealed vessel and is then intermittently discharged back to the feed tank
to maintain the feed concentration. An electrical conductivity sensor in the permeate outlet
allows monitoring the permeate quality. A system of solenoid valves allows discharging the
permeate vessel without losing the vacuum inside the module. Finally, the data required to
characterize the module are recorded by an Esaware PLC.

Figure 2. Commercial MD system used in the experimental campaign.

2.2. Methods
2.2.1. Performance Metrics

In order to evaluate the permeate quality in MD, it is common in literature the use of
the salt rejection factor (SRF), which represents the percentage of salts in the feed that are
retained by the membrane:

SRF [%] = 100 ·
(

S f eed − Spermeate

S f eed

)
, (1)

where S f eed is the salinity of the feed solution and Spermeate is the salinity of the permeate.
To estimate these values, the electrical conductivity at 20 ◦C is measured, and conversion to
salt concentration is then made using the correlation given in [33].
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Pore diameter in polymeric membranes follows a Gaussian distribution around a
mean value (0.32 µm in the case of the AS26 module). The pores with larger size will be less
hydrophobic and, consequently, more prone to allow the pass of liquid saline feed to the
permeate. Apart from salinity, as it will be thoroughly explained in Section 3.3, hydraulic
pressure inside the module channels conditions the permeate quality critically. In this sense,
the membrane leak ratio (MLR), initially described by Ruiz-Aguirre et al. [33]), takes into
account both the feed flow rate (FFR) and the permeate flow rate (PFR), and is defined as
the fraction of the liquid feed that passes through the membrane pores and contaminates
the permeate (Equation (2)). Besides feed salinity, as this performance metric considers the
hydraulics inside the module, it should be used to characterize the permeate quality in a
more precise way than only using the SRF.

MLR [%] = 100 ·
(

PFR
FFR

)(
Spermeate

S f eed

)
= 100 ·

(
PFR
FFR

)(
1 − SRF

100

)
. (2)

2.2.2. Experimental Procedure

The experimental steady-state tests carried out in the present campaign were main-
tained for at least 30 min, with 10–15 min of stand-by between them to ensure that operating
conditions were stable after a change. Each experiment was replicated for a better unifor-
mity of the results.

The feed in the tank is pumped through the cooling heat exchanger to cool it down
up to the desired TCI by means of an external cooling source. Before entering the cool-
ing channels of the module, the salinity of the feed is estimated using a Burkert in-line
conductivity meter. This current is used for condensing the vapor inside the module and
is separated from the evaporation channels by an air gap and a condensation sheet. The
feed circulating along the cooling channels is preheated by the latent heat of condensation
of the vapor passing through the membrane pores and, in a lesser extent, by the sensible
heat of the permeate. After leaving the cooling channels, the feed is heated using external
thermal energy up to the required temperature TEI, before re-entering the module through
the evaporation channels. The resulting brine leaves the module and returns back to the
feed tank, where it is mixed with the feed solution to maintain the steady state, avoiding
temperature and concentration gradients inside them.

After condensation, the liquid permeate falls into a sealed two-chamber tank. It has a
system of solenoid valves to close the upper chamber while the discharge is being made,
so that the vacuum inside the module is not lost. Every time that 3.5 L of permeate are
produced, the tank is emptied, being the activity of the permeate pump governed by the
signals of a couple of level sensors. During the discharge, the electrical conductivity of the
permeate is measured. To maintain the steady state, the permeate is also returned back to
the feed tank.

Finally, performance metrics related to the permeate quality presented in Section 2.2.1
are calculated with the data recorded by the PLC. Table 2 summarises the ranges of the
different input variables (TEI, FFR, TCI, and S) used in the experiments. Temperature
ranges are the most commonly reported in pilot-scale MD literature, taking into account
that TEI of 80 ◦C is the maximum limit established to avoid damaging the membrane
structure, the spacers and the condensation sheets [41–43]. Moreover, this temperature is
in the optimal range of operation with low-grade heat sources that can be coupled to MD,
such as solar or waste heat [30,44]. FFR setpoints have been chosen to work at maximum of
400 mbar hydraulic pressure, far from the maximum limit allowed by the module.
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Table 2. List of setpoints used in the MD tests.

TEIsp [◦C] FFRsp [L h−1] TCIsp [◦C] Ssp [g L−1]

60 400 20 35.1
65 500 25 70.1
70 600 30 105.2
75 750 140.3
80 800 175.3

900 210.4
1100 245.5

2.2.3. Artificial Neural Networks

ANNs are mathematical operators composed of interconnected elements intended
to process data when exposed to external stimuli. Their primary purpose is to mimic the
functioning of biological neural networks [45]. The elements composing an ANNs, com-
monly referred to as neurons, demonstrate computational behavior similar to a processor,
involving three essential operations, as depicted in Figure 3. These operations can be
described as follows:

1. The inputs (u1, u2, . . . , un) undergo a multiplication process with the corresponding
weights (w1,1, w1,2, . . . , w1,n).

2. At the summing junction, the bias b0 is added to the weighted inputs, resulting in:

a = u1 · w1,1 + u2 · w1,2 + . . . + um · w1,m + b0. (3)

3. The value of a is transformed into a scalar output Y using a function f . This function
can adopt different forms, including linear (Purelin) or sigmoidal (Logsig), among
other possibilities. The computed outputs of neurons using these functions can be
represented as follows:

Purelin : Y = f (a) = a, (4)

Logsig : Y = f (a) =
1

1 + ea . (5)

Figure 3. Schematic diagram of a neuron.

Neurons can be flexibly organized and combined in various ways, resulting in the
topology or architecture of the ANN model. Typically, neurons are arranged into multiple
layers, including input, hidden, and output layers. In the field of MD, one commonly used
architecture is the multi-layer feed-forward perceptron (MLP) ANN [46]. In this type of
ANN, the quantity of neurons in the input and output layers depends on the number of
inputs and outputs in the system being studied. On the other hand, the designer has the
flexibility to choose the number of hidden layers and the number of neurons within each
hidden layer, as these parameters are adjustable.

After establishing the network architecture, the weights and biases are adjusted using
a training algorithm. The back propagation (BP) algorithm is widely used for training
MLP networks, as was detailed in [37]. The primary goal of this algorithm is to minimize
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a performance function by iteratively modifying the network’s weights and biases. The
performance function used in this study is the root mean square error (RMSE), which is
defined as follows:

RMSE =

√
∑M

i=1 ∑N
j=1(Yi,j − Ŷi,j)2

M · N
, (6)

where M represents the number of network outputs, N is the number of data points used
for training, and Yi,j and Ŷi,j denote the experimental and predicted responses, respectively.
Therefore, in each iteration, the BP algorithm adjusts the weights and biases in the direction
that leads to a decrease in RMSE. The formula for one iteration of this algorithm is given by
Demuth et al. (2014) [45] as:

λk+1 = λk − δ∆k, (7)

where λk represents a vector containing the current network weights and biases, δ is the
learning rate, ∆k denotes the current gradient of the RMSE function, and k corresponds to
the iteration number.

3. Results and Discussion
3.1. Experimental Results

Data registered by the MD unit were used to calculate the performance metrics SRF
and MLR presented in Section 2.2.1. The reader can find in the Appendix A at the end of
this manuscript the results obtained in the complete set of experiments.

3.2. Neural Network Model
3.2.1. ANN Model Structure

The ANN-based model was developed using TEI, FFR, TCI, and S as inputs, while
SRF and MLR were considered as outputs. The range considered for each variable was
according to the setpoints used in the experimental campaign, see Table 2. The experimental
data set was partitioned into three distinct subsets: (i) a training subset, comprising 70% of
the samples, (ii) a validation subset, comprising 15% of the samples, and (iii) a test subset,
consisting of 15% of the samples. In order to prevent overfitting problems through the
training procedure, normalization of both the input and output model’s variables was
conducted within the range of 0.1 to 0.9, using the normalization expression previously
presented in [37,47]:

Yn = (1 − BLow − BUp) ·
Yk − Ymin

Ymax − Ymin
+ BUp. (8)

In this expression, the parameter Yn stands for the normalized sample, Yk represents
the real sample value, while Ymin and Ymax denote the minimum and maximum values
of the variable to be normalized, respectively. Moreover, BUp and BLow are the lower and
upper bounds of the normalized output, which, in this work, are fixed at BLow = BUp = 0.1,
according to the normalization range commented above.

The training process of the ANN model was conducted through the Levenberg-
Marquardt BP algorithm, available in the ANN Toolbox of MATLAB [48]. To find the
optimal architecture, various ANN configurations were tested, varying the number of hid-
den layers from 1 to 2 and the number of neurons in each layer from 1 to 10. The function
“Logsig” was applied in the hidden layer, while the “Purelin” function was employed in
the output layer. The selection of the most appropriate architecture to characterize the MD
module was based on the performance function (RMSE, see Equation (6)). The obtained
optimal ANN model consists of four inputs, two hidden layers with four and two neurons,
respectively, and an output layer with two neurons, as depicted in Figure 4.
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Figure 4. Schematic diagram of the obtained neural network. Ŷ1 and Ŷ1 are the SRF and MLR,
respectively, while u1, u2, u3, and u4 are S, FFR, TCI, and TEI, respectively.

This specific feed-forward neural network architecture can be represented as MLP (4:2:2).
Please note that the training process of this model was conducted iteratively, as mentioned
in Section 2.2.3, until achieving a sufficiently small RMSE-value in the validation subset.
For the optimal network, the training process was stopped after 7 iterations, resulting in an
RMSE of 0.017 for the validation data subset, see Figure 5. The mathematical representation
of the obtained ANN model can be expressed as follows:

Ŷ = fO(WO · fH2(WH2 · fH1(WH1 · u + bH1) + bH2) + bO), (9)

where WH1 and WH2 represent the matrices for hidden layer 1 and 2, respectively, whereas
bH1 and bH2 are the corresponding bias vectors. fH1 and fH2 are the function of the hidden
layers (“Logsig”). WO, bO, and fO are the weigh matrix, bias and function (“Purelin”) of
the output layer. The values of all the weights and biases are presented in Table 3. Note
that, in this representation, u is the vector of inputs of the model.
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Figure 5. Evolution of the RMSE during the training procedure.
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Table 3. Optimal network weights and bias.

Weights and Biases of the ANN Model

Input weight matrix
WH1 =

∣∣∣∣∣∣∣∣
0.0899 0.5702 −2.4336 0.1007
1.4668 −0.7317 −0.0480 −0.4964
2.0210 0.0258 −0.0138 0.1180
−1.5128 −1.3960 −0.7155 0.5511

∣∣∣∣∣∣∣∣
Input bias vector

bH1 =

∣∣∣∣∣∣∣∣
−2.2644
−0.9952
0.5478
−1.3550

∣∣∣∣∣∣∣∣
Hidden weight matrix WH2 =

∣∣∣∣ 0.1747 −2.0185 −0.7157 −0.1915
0.7798 −1.9531 0.7289 0.5311

∣∣∣∣
Hidden bias vector bH2 =

∣∣∣∣ −1.5172
1.9947

∣∣∣∣
Output weight matrix WO =

∣∣∣∣ 0.1073 1.2991
−0.4037 0.8154

∣∣∣∣
Output bias vector bO =

∣∣∣∣ −0.4125
−1.3375

∣∣∣∣
3.2.2. ANN Model Prediction Performance

Figure 6 illustrates the agreement between the experimental data utilized during the
training, validation, and test processes and the predicted values generated by the ANN
model. As can be observed, the coefficient R is used as a performance indicator. In the
case of the training subset, the value of coefficient R was higher than 0.95, the one of the
validation tests was around 0.89, whereas the R-value of the test subset was 0.97. The
closeness to one in all cases shows the good performance of the model. In particular, the
value obtained in the test subset should be highlighted, since this subset includes data that
has not been taken into account during the training process, and therefore data that are not
known by the neural network.
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Additionally, the error histogram of the training and test procedures is shown in
Figure 7. As observed, the majority of the data used in the training and test procedures are
concentrated around zero, with an error of around 0.002. On the contrary, the number of
data concentrated on major errors is low, which again indicates that the model is capable of
accurately estimating the behavior of the system.

Figure 7. Error histogram.

3.3. Response Analysis

The neural network model developed in this work for the pilot-scale V-AGMD module
AS26 allows to thoroughly assess the effect of the four inputs TEI, FFR, TCI, and S, on the
outputs SRF and MLR.

Figure 8 shows the influence of TEI and FFR on the SRF for feed salinities between
35.1 and 245.5 g L−1. For each operating point, the SRF decreases with increasing salinity,
since the leaked liquid is more saline. This affects negatively the hydrophobicity of the
membrane pores, which act as microscopic water doors, therefore promoting the pass of
feed as leak to the permeate [15]. Moreover, results bring to light a relationship between
the SRF and the permeate productivity. Operation with high TEI improves not only the
volume of permeate produced but also the separation performance. On the other hand,
as salinity increases, the SRF has a more significant reduction the worse the operating
conditions are to maintain the driving force. For TEI = 60 ◦C and FFR = 400 L h−1, the SRF
is reduced from 99.92% at 35.1 g L−1 to even below 80% when the salinity is equal to or
higher than 175.3 g L−1. This is equivalent to a permeate quality loss of 58.9 µS cm−1 to
more than 58.6 mS cm−1, respectively. When the driving force improves with salinities up
to 175.3 g L−1, TEI has no noticeable influence on the SRF if the FFR is maintained above
750 L h−1. Likewise, within that salinity range, the SRF gets almost independent of TEI
when the FFR is maximum (1100 L h−1).
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Figure 8. Response surfaces showing the influence of TEI and FFR on SRF, considering TCI = 25 ◦C,
and S = 35.1 g L−1 (a), S = 105.2 g L−1 (b), S = 175.3 g L−1 (c), and S = 245.5 g L−1 (d). Experimental
results below the x − y plane are missing because of unfeasible operating conditions.

The observation that SRF is related to permeate productivity, i.e., to driving force,
is confirmed by assessing the influence of TCI experimentally. TCI is the variable that
affects the driving force the least because temperature changes within the range of 20–30 ◦C
cause little variation in the vapor pressure of the feed, according to Antoine’s law [40].
The effect of TCI on the SRF is, therefore, small, as shown in Figure 9. Overall, for every
salinity, lowering the TCI favors the vapor condensation and thus increases the permeate
productivity, which leads to a slight increase of the SRF, but not higher than 1% in any case.

In the operation of commercial V-AGMD modules such as that studied in this work,
the permeate quality is not only determined by the feed salinity but also by the internal
design of the module and the membrane features. SRF is a useful parameter to measure the
separation performance in an MD module, but not sufficient for a complete characterization
of it. For a better quantification of permeate quality, the MLR takes into account the salinities
of both currents and their flow rates.

The pore size of commercial polymeric membranes follows a Gaussian distribution,
which implies the presence of pores with larger diameter than the average, commonly
named pinholes. These hardly maintain the liquid-vapor boundary layer within them and
have a greater propensity to let saline feed pass into the permeate. In an initial approach,
the presence of these pinholes should result in constant leakage. However, in practice, the
leaked feed is diluted by the pure permeate produced (with total absence of salts), all the
more so the higher the permeate productivity is. Accordingly, the operating conditions also
influence the product quality. Figure 10a,b clearly show this dilution effect: for salinities
up to 105.2 g L−1, as FFR and TEI increase (thus favoring the driving force of the process)
the estimated MLR values decrease up to 0.04% compared to low flow rate operation. It is
also observed that at high FFR, the MLR remains constant at 0.035% and 0.06%, for feed
salinities of 35.1 and 105.2 g L−1, respectively. According to Figure 8, these correspond to
the highest SRFs, higher than 99.2%.
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Figure 9. Response surfaces showing the influence of TEI and TCI on SRF, considering
FFR = 750 L h−1 and S = 35.1 g L−1 (a), S = 105.2 g L−1 (b), S = 175.3 g L−1 (c), and S = 245.5 g L−1 (d).
Experimental results below the x − y plane, and those of holes on the surfaces, are missing because of
unfeasible operating conditions.

When estimating the permeate quality in V-AGMD operation, besides the dilution
related to permeate flux, the hydraulic pressure and the vacuum level applied must also
be considered. Their effect on the membrane performance can be significant. As a matter
of fact, it has been experimentally observed that a higher SRF is not necessarily related to
a lower MLR, since the latter also depends on the ratio between the permeate and feed
flow rates (see Equation (2)). Inherently, a larger salt load promotes the pass of liquid
feed through the pores with reduced hydrophobicity. A high hydraulic pressure drop
into the internal channels of the module, corresponding to high feed flow rates, increases
the inflow of thermal energy and therefore the permeate productivity, but also fosters
the formation of those microscopic water doors. Figure 10 shows the opposing effects of
hydraulic pressure and leaked feed dilution. For salinities up to 105.2 g L−1 (Figure 10a,b),
the detrimental effect of hydraulic pressure at high flow rates is masked by permeate
productivity, and thus the leaked feed is diluted by the pure permeate produced, even with
low TEI. As feed salinity increases up to 175.3 g L−1, a competitive effect between the two
aforementioned phenomena is established (Figure 10c). When TEI is equal to or less than
70 ◦C, an increasing FFR leads to higher MLRs because the dilution of the permeate affects
that parameter in lesser extent than the leakage through the water doors. Contrarily, for
TEI = 80 ◦C, the experimental results show some improvement in the MLR due to dilution
as the FFR is increased, although values are still 3 times higher than those obtained at the
lower TEI and the lower FFR (0.15% and 0.05%, respectively).

Considering the highest salinity assessed (245.5 g L−1), Figure 10d shows that the
permeate quality is mainly affected by the hydraulic pressure drop into the channels, since
vapour flux is reduced by the low water activity at that concentration. The SRF is reduced
to 80% when FFR and TEI are lowered, but the MLR is also reduced to 0.1% or less. Since
the volume of vapor produced is small, there is practically no dilution of the leaked feed,
which leads to a small production mainly due to microfiltration, and with low quality
(i.e., very low SRF), but still maintaining a high feed retention in the membrane (i.e., very
low MLR).
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Figure 10. Response surfaces showing the influence of TEI and FFR on MLR, considering TCI = 25 ◦C,
and S = 35.1 g L−1 (a), S = 105.2 g L−1 (b), S = 175.3 g L−1 (c), and S = 245.5 g L−1 (d). Experimental
results below the x − y plane are missing because of unfeasible operating conditions.

Furthermore, applying strong vacuum levels in the gap of the module causes a detri-
mental additional suction force, although its use is justified by the remarkable increase in
the performance of the pilot-scale MD module assessed in this study, regarding conven-
tional AGMD operation [34]. The whole experimental campaign has been carried out with
an absolute pressure in the gap of around 200 mbar, which is low enough to improve the
permeate productivity, but high enough not to affect vapor condensation [32].

It must be highlighted that the MLR values remain below 0.21% in all cases, which
indicates that, in the worst case, only 0.21% of the circulating feed will contaminate the
permeate. This provides an evidence of the excellent hydrophobicity of the membrane
used, even in the most unfavorable operating conditions.

3.4. Permeate Quality in a Thermally-Optimized V-AGMD Operation

Results in this work have confirmed that pilot-scale MD is a suitable technology
for the desalination of hypersaline water sources and the valorization of saline residues
from other technologies such as RO, in the context of ZLD. However, the high energy
consumption of the operation up to date hinders the mass production of modules and
thus their commercialization at a large scale. In the vast majority of scenarios, energy-
related costs mean the largest fraction of CAPEX and OPEX. Therefore, it is difficult from a
techno-economical point of view to propose an optimal operation of the process with other
operating conditions than those that lead to the maximum thermal recovery, unless a free
or very low-cost source of thermal energy could be exploited.

Previous studies about batch V-AGMD operation for brine concentration demonstrated
that a gradual increase in the feed flow rate in time, as salinity increases, is required to
maintain a sufficient thermal inflow that allows the maximum vapor diffusion through the
pores, and thus the maximum heat recovery [40,49]. Table 4 summarises the optimal feed
flow rates that maximize the thermal efficiency of the operation with the AS26 module, for
each salinity assessed.
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Table 4. Values of permeate concentration, SRF, and MLR at the optimal FFR that maximizes the
thermal efficiency. In all cases, TEI = 80 ◦C, TCI = 20 ◦C. Values of optimal FFR taken from [40]).

Sfeed [g L−1]
Optimal FFR

[L h−1] Spermeate [g L−1] Actual SRF [%] Actual MLR [%]

35.1 400 0.27 99.2403 0.0502
70.1 400 0.76 98.9212 0.0679
105.2 421 1.90 98.1915 0.1035
140.3 639 2.98 97.8741 0.1252
175.3 840 4.65 97.3455 0.1531
210.4 1030 6.28 97.0145 0.1691
245.5 1100 7.62 96.8964 0.1768

Experimental results of this campaign have brought to light a clear influence of the
operating conditions on the permeate quality in the AS26 module (see Figures 8 and 10).
However, the effects were conflicting: both working at a reduced feed flow rate at low
salinity, and increasing it at high salinity are beneficial actions for thermal consumption,
but detrimental to the integrity of the membrane, since the leak of saline feed through
the membranes is fostered. As shown in Table 4, permeate salinity increased from 0.27 to
7.62 g L−1 within the feed salinity range studied, whereas SRF reduced at about 97% and
MLR increased consequently up to almost 0.18%. It is important to highlight that when
working at the optimal feed flow rate for salinity of 35 g L−1 (400 L h−1), the salt rejection
achieved in V-AGMD outperforms that of RO, which is commonly below 98% [50]. Besides,
that permeate fulfills the salinity value of 0.35 g L−1 established by the WHO for human
drinking water [51]. This would give V-AGMD the chance of being exploited as a seawater
desalination operation, as long as the specific cost of water could be reduced up to the
current RO levels.

For the rest of feed salinities, this threshold is, however, surpassed. As depicted in
Figure 11, from S = 70.1 g L−1 up, the required value of SRF (Figure 11a) corresponding to
a permeate of 0.35 g L−1 is up to 3% higher than the actual experimental values estimated
in each case. Similarly, actual values of MLR are even one order of magnitude higher
than those necessary for satisfying the aforementioned requirement (Figure 11b), although
with such low feed leak percentage (lower than 0.2%), the salt concentration in the most
contaminated permeate does not exceed 8 g L−1. Therefore, besides its improved thermal
efficiency, these figures make V-AGMD a suitable operation for the treatment of concen-
trated brines, even when operating conditions are not the most favorable to optimize the
permeate quality.
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Figure 11. Values of (a) SRF and (b) MLR estimated for each feed salinity at the optimal operating
conditions that maximize thermal efficiency, summarized in Table 4. Blue columns represent the
actual values of each metric, whereas the orange dotted lines show the values they would have in
each case considering the threshold of Spermeate = 0.35 g L−1.
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4. Conclusions

V-AGMD operation on a commercial multi-envelope air gap module AS26 has been
described in previous studies as the most energy efficient up to date. This makes MD
technology a great candidate for the valorization of concentrates from other desalination
operations that are less tolerant of high salinity, such as RO. However, no detailed studies
about permeate quality in V-AGMD with this module and considering the feed salinity
as a variable have been carried out so far. The present study is intended to fill the lack of
information in the MD literature on this topic.

The experimental campaign comprised tests with different setpoints of inlet tempera-
tures, feed salinity, and feed flow rate. With these results, two performance metrics that
allow quantifying the quality of the permeate were calculated: SRF and MLR. The variables
TEI, FFR, and S had a very noticeable influence on these two metrics, whereas TCI had a
negligible effect.

Owing to the non-linearity of the experimental results, machine learning techniques
were applied to characterize the two responses in relation to the aforementioned inputs,
rather than common regression methods. Thus, the SRF and the MLR were modeled
with an artificial neural network comprising two hidden layers with 4 and 2 perceptrons,
respectively. Model validity was demonstrated by R-values close to one in the train (0.95),
validation (0.89), and test (0.97) datasets.

Analysis of the experimental results showed two competing effects on permeate
quality: the dilution of the feed leaked through the membrane pores and the hydraulic
pressure. Under operating conditions that favor the driving force, i.e., TEI higher than
70 ◦C, FFR higher than 750 L h−1 and S up to 175.3 g L−1, their influence on permeate
quality was little. Thus, the SRF values were within 99.99% with S = 35 g L−1 and 98.54%
with S = 175.3 g L−1. These are equivalent to MLRs among 0.007% and 0.084%, respectively.
In these cases, the vapor flux through the membrane pores is much larger than that of the
feed leaked through the pinholes, so the dilution effect of the leak through the potential
water doors allows maintaining high quality in the permeate. However, from an energy
point of view, it must be taken into account that, in this salinity range, operating costs are
optimized by reducing the feed flow rate.

When operating conditions hinder a high vapor diffusion through the membrane
pores, the effect of hydraulic pressure surpasses that of leaked feed dilution. For feed
salinity up to 70.1 g L−1, working with low TEI and FFR had a negative effect on both the
SRF and the MLR, since the dilution effect diminished. However, at higher feed salinity,
increasing productivity meant improving the SRF by up to 96%, but also worsening the
MLR by up to 0.2%, since the reduced volume of permeate did not balance out the effect
of the hydraulic pressure in the channels, together with the reduced hydrophobicity of
the membrane due to the high salt load in the feed. Despite the aforementioned permeate
quality values, no evidence of irreversible wetting or scaling was observed during the
experimental campaign because the percentage of leaked feed in operation was very low.

This study has demonstrated the great tolerance to salinity of the pilot-scale V-AGMD
module AS26 and the great hydrophobicity of the membranes currently used, which
maintain their integrity even under conditions of high hydraulic pressure within the
module channels, without signs of wetting or scaling. The main drawback identified was
that the salinity requirement demanded by the WHO for drinking water (0.35 g L−1) was
only met in the treatment of feed with marine concentration, although the separation of
salts was very efficient.

In conclusion, considering both the thermal and the permeate quality performance,
the V-AGMD module AS26 can be competitive for brine concentration. In any case, if the
production of drinking water is seeked when using the modules for brine concentration,
improved salt rejection by using superhydrophobic membranes must be considered in
future works to maintain the permeate quality in a wider range of feed concentrations.
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DCMD Direct contact membrane distillation
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RO Reverse osmosis
sp Setpoint
S Feed salinity [g L−1]
SRF Salt rejection factor [%]
TCI Cooling channels inlet temperature [◦C]
TEI Evaporation channels inlet temperature [◦C]
VMD Vacuum membrane distillation
V-AGMD Vacuum-assisted air gap membrane distillation
VMEMD Vacuum multi-effect membrane distillation
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Appendix A

Table A1. Experimental results of SRF and MLR for different operating conditions.

TEI [◦C] FFR [L h−1] TCI [◦C] Sfeed [g L−1] SRF [%] MLR [%]

60.0 1100 29.8 34.7 99.914 0.0310
70.0 400 25.1 35.0 99.699 0.0153
70.0 800 19.9 35.2 99.964 0.0210
59.7 400 20.0 35.2 99.894 0.0490
60.0 1100 20.0 35.3 99.950 0.0220
70.0 750 20.0 35.3 99.796 0.0117
80.0 400 25.0 35.4 99.896 0.0750
80.1 400 20.0 35.4 99.789 0.0750
79.8 800 20.0 35.5 99.979 0.0500
79.9 750 25.0 35.6 99.865 0.0900
70.0 1100 25.1 35.6 99.866 0.0680
60.0 750 24.9 35.7 99.704 0.0116
80.0 1100 20.1 35.8 99.977 0.0160
69.5 400 20.0 35.8 99.788 0.0127
80.0 800 25.0 35.9 99.969 0.0210
59.3 1100 25.4 36.0 99.984 0.0600
80.0 400 30.0 36.1 99.870 0.0830
70.0 750 30.0 36.1 99.758 0.0614
68.8 1100 21.3 36.1 99.986 0.0801
69.7 800 25.2 36.1 99.980 0.0118
59.3 800 20.0 36.2 99.981 0.0900
60.0 800 25.0 36.2 99.899 0.0424
80.0 1100 30.0 36.2 99.932 0.0435
60.0 400 25.2 36.2 99.819 0.0731
60.0 800 29.8 36.3 99.963 0.0342
69.0 1100 30.1 36.4 99.986 0.0708
79.6 1100 25.4 36.4 99.990 0.0745
79.0 800 30.0 36.4 99.979 0.0630
60.0 400 30.1 36.6 99.610 0.0726
69.0 400 30.8 36.9 99.884 0.0055
80.1 400 20.1 67.9 99.851 0.0960
60.0 600 19.9 68.3 99.776 0.0890
70.0 750 24.9 68.8 99.893 0.0524
70.0 600 30.0 68.8 99.867 0.0564
80.0 600 25.0 69.2 99.911 0.0575
80.0 750 20.0 69.3 99.878 0.0803
59.9 400 25.0 69.6 99.776 0.0683
69.8 400 20.1 69.7 99.794 0.0996
60.0 750 29.9 69.7 99.828 0.0506
59.8 1100 25.0 69.7 99.836 0.0598
79.7 400 25.1 70.3 99.809 0.0109
69.7 1100 20.4 70.4 99.919 0.0224
80.0 750 30.0 70.4 99.880 0.0195
60.0 750 19.9 70.5 99.704 0.0617
69.8 1100 30.0 70.5 99.902 0.0439
59.7 800 19.8 70.6 99.950 0.0206
79.6 1100 25.0 70.6 99.930 0.0432
69.8 400 30.1 70.7 99.754 0.0912
79.5 800 20.6 71.0 99.976 0.0161
79.1 400 29.9 71.2 99.899 0.0522
69.4 800 25.0 71.8 99.955 0.0223
59.9 800 29.5 72.0 99.936 0.0207
79.3 800 30.3 72.7 99.938 0.0358
60.0 750 19.8 104.2 99.650 0.0116
70.0 400 20.1 104.5 99.320 0.0236
70.0 750 25.0 104.6 99.552 0.0177
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Table A1. Cont.

TEI [◦C] FFR [L h−1] TCI [◦C] S f eed [g L−1] SRF [%] MLR [%]

60.0 1100 24.9 104.9 99.649 0.0109
69.4 800 25.0 105.0 99.934 0.0271
79.9 400 25.0 105.0 99.440 0.0232
60.0 400 25.0 105.3 99.074 0.1539
69.9 1100 20.4 105.4 99.805 0.0937
80.0 800 20.8 105.4 99.795 0.0511
70.0 400 30.2 105.8 99.205 0.1376
60.0 800 29.9 105.8 99.910 0.0229
80.1 750 30.0 105.8 99.776 0.0110
80.2 750 20.0 105.9 99.830 0.0991
69.9 1100 30.0 105.9 99.748 0.0938
60.2 800 19.4 106.1 99.945 0.0209
60.0 750 30.0 106.3 99.304 0.0140
79.7 800 29.8 106.7 99.942 0.0292
80.0 1100 25.1 106.7 99.911 0.0509
70.0 600 20.2 139.5 99.023 0.0272
60.0 900 30.0 139.7 98.496 0.0201
60.0 1100 24.9 139.8 98.539 0.0311
70.0 750 24.9 139.8 98.902 0.0298
69.9 1100 20.3 140.1 99.370 0.0229
80.0 400 25.0 140.2 98.031 0.0455
80.0 1100 20.4 140.2 99.568 0.0209
60.0 750 30.0 140.5 96.735 0.0339
80.0 500 30.0 140.6 98.717 0.0296
80.0 750 20.0 140.6 99.236 0.0337
60.0 402 20.1 140.7 96.707 0.0363
60.0 400 25.0 140.7 90.657 0.0596
80.1 1100 25.0 140.7 99.451 0.0246
70.0 400 19.9 140.7 97.045 0.0542
75.0 600 20.0 140.9 99.165 0.0300
70.0 900 25.1 140.9 99.344 0.0193
70.0 400 30.0 140.9 93.901 0.1195
60.1 1100 29.8 141.0 98.663 0.0220
79.9 750 30.0 141.0 98.969 0.0340
60.0 750 20.1 141.1 98.257 0.0355
70.0 1100 29.9 141.3 99.019 0.0275
70.0 600 30.0 141.6 98.602 0.0229
80.1 800 30.0 142.1 99.451 0.0189
65.0 600 30.0 142.4 97.584 0.0270
65.0 800 29.9 142.5 98.574 0.0231
80.0 400 25.0 173.7 98.938 0.1521
60.0 750 20.1 173.8 99.018 0.1681
69.9 1100 20.8 174.3 99.670 0.1082
70.0 750 25.0 174.3 99.414 0.1322
80.0 750 20.0 174.8 99.721 0.1122
60.0 750 30.0 175.0 98.539 0.1842
60.0 1100 25.0 175.1 99.470 0.1908
70.0 400 20.0 175.5 98.585 0.1733
70.0 1100 29.9 175.8 99.661 0.1425
80.1 1100 25.1 176.7 99.808 0.1096
80.0 750 30.0 176.7 99.535 0.1215
60.0 750 30.0 209.9 95.080 0.1383
60.0 1100 25.0 210.3 98.113 0.1970
70.0 400 20.0 210.3 97.298 0.1201
80.0 400 25.0 210.6 97.036 0.1881
60.0 750 20.0 210.8 99.640 0.0398
70.0 1100 29.9 210.8 95.102 0.1678
80.0 750 20.0 210.8 98.360 0.1439
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Table A1. Cont.

TEI [◦C] FFR [L h−1] TCI [◦C] S f eed [g L−1] SRF [%] MLR [%]

80.0 1100 25.3 211.1 99.385 0.1952
70.0 750 19.6 211.3 99.319 0.1394
80.0 750 29.9 211.7 98.260 0.1695
70.0 750 24.9 211.8 98.333 0.1215
70.2 1100 20.9 213.3 99.450 0.1404
80.0 400 20.0 234.9 99.992 0.1065
70.0 750 20.1 243.7 97.520 0.1160
60.0 750 25.0 245.1 87.449 0.0670
60.0 1100 20.4 245.2 97.248 0.1770
70.0 750 30.0 245.5 94.799 0.1329
80.0 750 25.0 245.7 97.650 0.1807
69.9 1100 25.2 247.4 95.999 0.1810
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