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Abstract: The adoption of Proton Exchange Membrane (PEM) fuel cells (FCs) is of great significance
in diverse industries, as they provide high efficiency and environmental advantages, enabling
the transition to sustainable and clean energy solutions. This study aims to enhance the output
power of PEM-FCs by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) and modern
optimization algorithms. Initially, an ANFIS model is developed based on empirical data to simulate
the output power density of the PEM-FC, considering factors such as pressure, relative humidity, and
membrane compression. The Salp swarm algorithm (SSA) is subsequently utilized to determine the
optimal values of the input control parameters. The three input control parameters of the PEM-FC
are treated as decision variables during the optimization process, with the objective to maximize the
output power density. During the modeling phase, the training and testing data exhibit root mean
square error (RMSE) values of 0.0003 and 24.5, respectively. The coefficient of determination values
for training and testing are 1.0 and 0.9598, respectively, indicating the successfulness of the modeling
process. The reliability of SSA is further validated by comparing its outcomes with those obtained
from particle swarm optimization (PSO), evolutionary optimization (EO), and grey wolf optimizer
(GWO). Among these methods, SSA achieves the highest average power density of 716.63 mW/cm2,
followed by GWO at 709.95 mW/cm2. The lowest average power density of 695.27 mW/cm2 is
obtained using PSO.

Keywords: PEM fuel cell; fuzzy modeling; ANFIS; power density; Salp swarm algorithm; root mean
square error; particle swarm optimization; evolutionary optimization; grey wolf optimizer

1. Introduction

The world is facing an urgent and critical need to transition away from fossil-based
energy sources. This pressing concern is primarily motivated by the harmful environmental
consequences associated with fossil fuels and the alarming rate at which their reserves
are being depleted [1]. Furthermore, there are other crucial factors that reinforce the
need to transition to clean energy sources. Firstly, the prices of fossil fuels are subject
to fluctuations, making them economically unstable. Additionally, regions where these
resources are extracted often experience political tensions and conflicts, posing ongoing
risks and instability. In contrast, embracing clean energy solutions not only provides a
more sustainable and stable path forward, but also plays a crucial role in significantly
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mitigating greenhouse gas emissions, which is essential for addressing climate change and
ensuring a sustainable environment for future generations [2,3]. However, it is essential
to consider the distinctive challenges associated with renewable energy sources such as
wind and solar power. These sources exhibit intermittent generation patterns due to
their dependence on weather conditions, resulting in temporal and spatial disparities
between energy generation and end-user consumption [4,5]. This intermittent and unstable
nature presents significant obstacles in maintaining a dependable and stable power system.
In contrast to renewable energy sources, which require energy storage technologies to
bridge these gaps and ensure a continuous energy supply, proton exchange membrane
fuel cell (PEM-FC) technology based on hydrogen energy boasts a distinct advantage. As
long as there is an adequate hydrogen source and a continuous air supply, PEM-FCs can
continuously produce electricity [6]. This distinctive attribute makes hydrogen energy
an appealing option for achieving a stable and efficient power supply, particularly in
scenarios where uninterrupted power generation is critical. Furthermore, hydrogen is
widely recognized as an ideal clean energy source for power generation due to its high
calorific value and lower carbon emissions. As a result, there is increasing interest and focus
on hydrogen FC technologies within the current energy landscape [7]. The United States is
currently actively promoting and advocating for the adoption of hydrogen FC technology,
primarily due to its potential to significantly improve air quality and address the urgent
need to decarbonize the automotive sector coupled with the intermittency associated with
renewable energy solutions such as wind and solar. The Made in China 2025 strategy,
as outlined in reference [8], aims to achieve a dual objective in China: improving air
quality in urban areas and sustaining economic growth. Countries such as Japan are
placing a particular emphasis on energy security by focusing on improving the efficiency
of hydrogen systems as an alternative to conventional energy-harnessing methods. This
approach aims to ensure a stable and reliable energy supply while minimizing the negative
environmental impact [9]. According to Habib et al. [10], the transition towards a hydrogen
economy is outlined in three key steps. The initial step involves the production of hydrogen
from sustainable sources alongside the development of FCs for residential applications.
Subsequently, further advancements in FC technology are crucial to enable the integration
of FC electric vehicles into the transportation sector. The second step focuses on integrating
hydrogen supply chains within the broader energy system by the year 2030. Finally,
the ultimate objective is to establish carbon-neutral methods of hydrogen production by
2040. Europe places significant emphasis on the utilization of hydrogen in both industrial
and transportation strategies, underscoring its pivotal role in achieving sustainable energy
goals [11]. Wang et al. [12] highlighted that the transport sector in the United States accounts
for approximately 37% of the total energy consumption. Therefore, the application of PEM-
FCs in the automotive sector can significantly reduce energy consumption with minimal
impact on the environment. In the Gulf region, countries such as the United Arabian
Emirates (UAE) and the Kingdom of Saudi Arabia are increasingly considering investments
in vehicle electrification. They are even categorizing hybrid vehicles based on their energy
sources, such as battery, FC, etc. [13]. This indicates a growing interest in alternative
energy technologies in the region. Figure 1 illustrates the correlation between the hydrogen
industry chain and hydrogen FCs in the automotive sector. The hydrogen industry chain
encompasses hydrogen production, transportation, refueling, and usage. On the other
hand, the FC vehicle industry chain focuses on achieving high FC performance, including
individual cell components. These considerations highlight the importance of developing
an efficient and integrated hydrogen infrastructure, as well as advancing FC technology, to
drive the growth of hydrogen-powered vehicles in the automotive industry.
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1.1. Principles and Literature Review of Proton Exchange Membrane Fuel Cells (PEM-FCs)

FCs have emerged as highly recommended energy conversion devices due to their
numerous advantages. FCs have emerged as highly recommended energy conversion
devices due to their numerous advantages. These advantages encompass a notably higher
efficiency, typically ranging from 40% to 60%, in contrast to the efficiency of internal
combustion engines, which generally falls between 20% and 35%. Additionally, FCs
boast excellent energy density and are renowned for their high reliability. Furthermore,
they produce minimal noise since they lack moving parts, making them environmentally
friendly [15,16]. However, it is imperative to clarify that when assessing the efficiency
of PEM-FCs, it becomes evident that their efficiency is indeed lower than that of lithium
batteries, which often exceeds 90% [17].

In recent years, research efforts have focused on enhancing FC performance for various
applications. FCs operate through the conversion of chemical energy into electrical energy,
resulting in the production of heat and water as by-products of the reaction [18,19]. Basically,
FCs harness electric power from the chemical energy stored in a fuel. As long as there is
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a constant supply of fuel and oxidant, FCs will continue to generate electricity. A typical
FC consists of a membrane, an anodic electrode, and a cathodic electrode [20,21]. Figure 2
provides a diagram illustrating the various layers within PEM-FCs. The PEM-FC is among
the most recommended FC types for the automotive industry due to its fast start-up times,
compact size, and suitability for mobile applications.
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License number: 5527130868865).

Figure 2a illustrates the process of hydrogen gas oxidation at the anodic electrode,
particularly within the catalyst layer. During this process, electrons and protons are
generated. By connecting an external circuit to the cell, the electrons can easily flow from
the anode to the cathode. At the cathode, the electrons combine with oxygen gas and the
protons to produce water. The classification of FCs is primarily determined by the type of
membrane used in the development of the cell, as well as its operational range [23]. The
membrane plays a crucial role in facilitating the movement of ions between the anode and
cathode, thereby enabling the electrochemical reactions within the FC. Different types of
membranes offer various characteristics and suitability for different applications, leading to
the classification of FCs based on their specific membrane technologies. FCs encompass a
variety of types, including high-temperature PEM-FCs [24,25], direct methanol FCs [26,27],
solid oxide FCs [28,29], alkaline FCs [30,31], microbial FCs [32,33], direct ethanol FCs [34,35],
phosphoric acid FCs [36,37], molten carbonate FCs [38], regenerative FCs [39,40], direct
alcohol FCs [41,42], enzymatic FCs [43,44], direct ethylene glycol FCs [45], direct carbon
FCs [46,47], and more. PEM-FCs are particularly preferred in the automotive sector due
to the characteristics of the membrane used in their construction. Polymer electrolyte
membranes (PEM) employed in PEM-FCs offer several advantages. They facilitate higher
FC performance by enabling efficient ionic transport, minimizing hydrogen crossover, and
serving as a barrier between the anode and cathode, allowing for the movement of electrons
through the external circuit. The PEM also acts as a support for the electrocatalyst, which
enhances the chemical reaction process [48]. Positioned between the anodic and cathodic
electrodes, the PEM facilitates the transport of protons between the electrodes. Cation
exchange membranes have been found to be particularly effective in ion transport. Figure 3
depicts two mechanisms by which protons move through the membrane: the Grothus
mechanism and the vehicular mechanism. These mechanisms illustrate the pathways
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through which ions are transported within the PEM, contributing to the overall functionality
of the FC system.
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In low-temperature PEM-FCs, the electrolytes play a crucial role and are expected to
exhibit specific characteristics. These include good proton conductivity, the effective sup-
pression of hydrogen crossover, thermal and mechanical stability, and cost-effectiveness [50].
Ideally, low-temperature FCs operate at around 100 ◦C. Most electrolytes for these FCs
consist of -SO3H groups. Among the various polymeric materials, perfluorosulfonic acid
(PFSA) polymer membranes, particularly Nafion, have been extensively used due to their
stability and high protonic conductivity [51]. Currently, there are several types of PFSA
membranes available, distinguished by the length of the side chains. In addition to the
widely used Nafion, other PFSA membranes include Aquivion®, Asiplex, Neosepta-F
Flemion, and 3M ionomer [52]. These membranes offer alternative options with varying
properties, allowing for customization based on specific application requirements. Despite
the merits of PFSA-type membranes, such as Nafion, there are limitations associated with
their manufacturing process, resulting in high costs. Additionally, these membranes exhibit
a reduced performance under low humidity conditions [53]. To overcome these limitations,
researchers have explored new types of membranes that can maintain cell performance
at elevated temperatures. One such example is polybenzimidazole (PBI) membranes,
which offer improved thermal and chemical characteristics. In addition to PBI membranes,
other novel membranes have been synthesized with superior ion exchange characteristics
and water absorption at 80 ◦C, as shown in Figure 4a [54]. The PBI membranes must be
acid-doped to become a PEM, typically with phosphoric acid. These membranes demon-
strated enhanced properties compared to the commercial Nafion 117 membranes. Beyond
polymer-based membranes, there are silicate-based thin films that have shown promise for
hydroxonium ion transport, making them suitable for use as PEMs. However, their appli-
cation in FCs is limited due to their high cost and brittleness [55]. Other researchers have
introduced polyimide nonwoven fabrics to enhance the characteristics of silicate-based
PEMs. These PEMs were treated with 3-glycidylox-ypropyl trimethoxysilane (GPTMS),
followed by sol–gel synthesis to create sulfonic acid functionalized silicate structures [56].
This approach results in PEMs with improved mechanical properties and enhanced cell
performance, even under lower humidity and temperature conditions. The ratio of GPTMS
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used directly impacts proton conductivity through the membranes. Another novel type of
membrane is the quasi-solid kalium polyacrylate hydrogel membrane [57]. This flexible
membrane is particularly beneficial in direct methanol fuel cells (DMFCs), as it effectively
prevents methanol penetration, enhancing the overall flexibility and performance of the FC.
However, there are concerns about the mass production and performance issues associated
with these novel membranes, particularly in PEM-FCs.
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1.2. Research Gap, Objectives, and Originality

While previous research by Hamidi et al. [58] placed the foundation for investigating
the performance of the Nafion 112 membrane in low-temperature FCs, there is still a
research gap regarding the utilization of advanced techniques to optimize the power density
of the FC. The current study aims to address this gap by employing ANFIS and the Salp
swarm algorithm (SSA) to enhance the performance of the FC. The main objective of this
study is to maximize the output power density of PEM-FCs. The specific objectives include:

• Developing an ANFIS model based on empirical data to simulate the output power
density of the PEM-FC.

• Applying the SSA to identify optimal values for the input control parameters.
• Treating the three input control parameters of the PEM-FC as decision variables during

the optimization process.
• Maximizing the output power density of the PEM-FC.

The originality of this research lies in the utilization of ANFIS and the SSA to optimize
the power density of PEM-FCs. By employing these advanced techniques, the study aims
to enhance the FC’s performance and contribute to the existing body of knowledge in the
field. Additionally, the comparison of the results obtained from different optimization
algorithms (PSO, EO, and GWO) adds originality to the study by providing insights into
the effectiveness of the SSA for maximizing power density.

2. Experimental Approach

The experimental data gathered [54] focused on evaluating the performance of PEM-
FCs under varying conditions, including reactant pressure, electrolyte compression percent-
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age, and humidity. The membrane electrode assembly structure for the Nafion 112 mem-
brane consists of the anodic and cathodic regions, along with the electrolyte. For this specific
experiment, the anodic region comprised carbon paper Ballard, 20% platinum-carbon cata-
lyst, 27% weight Nafion solution, alcohol (80 mL), water (20 mL), and a platinum loading
of 0.39 mg.cm−2. The cathodic region included carbon paper Ballard, 20% platinum–carbon
catalyst, 25% weight Nafion solution, alcohol (80 mL), water (20 mL), and a platinum
loading of 0.39 mg.cm−2. The operating temperature of the FC was set at 75 ◦C, with
the anode temperature measured at 80 ◦C. The experimental procedure involved several
stages of voltage application. It began with applying a constant voltage of 0.6 V for 1800 s,
followed by 0.2 V for 600 s and 0.7 V for 60 s. Subsequently, a constant voltage of 0.6 V
was maintained for 3600 s, and then 0.5 V for 2400 s. Additional details regarding the
experimental procedure can be found in [54]. The study investigated the impact of vary-
ing the percentage of the Nafion membrane and its correlation with relative humidity
at different levels of membrane compression. It is worth noting that the “percentage of
Nafion membrane” refers to the proportion or concentration of Nafion material within
the membrane’s composition. In the context of FC technology and PEM-FCs, Nafion is
a commonly used polymer electrolyte material known for its excellent proton conductiv-
ity. The percentage of Nafion in the membrane composition indicates how much of the
membrane’s structure is made up of Nafion polymer. This parameter can have a significant
impact on the performance and properties of the membrane, as it influences factors such
as ion conductivity, mechanical strength, and water retention. In experiments or studies
related to PEM fuel cells, researchers often vary the percentage of Nafion in the membrane
to investigate how changes in its concentration affect the fuel cell’s performance. This
variation allows for a better understanding of how different membrane compositions can
impact factors such as proton conductivity, water management, and overall efficiency in
the fuel cell system. Typically, the percentage of Nafion is controlled by adjusting the for-
mulation of the membrane material during its fabrication process. Researchers may change
the concentration of Nafion and other additives to optimize the membrane’s properties
for specific applications, such as improving fuel cell performance under varying operating
conditions. For more comprehensive information on the experimental procedure, refer to [54].

3. Methodology

The methodology employed in this study consists of two levels: ANFIS modeling and
parameter identification through modern optimization techniques.

3.1. ANFIS Modeling

The ANFIS system, which stands for Adaptive Neuro-Fuzzy Inference System, em-
ploys membership functions within the fuzzification layer to establish a nonlinear mapping
of inputs. This mapping process generates fuzzy rules in the inference engine phase. The
outputs of these rules are evaluated, and the activated rules are aggregated in the normal-
ized layer to produce the final fuzzy output. This fuzzy output is then converted from
its fuzzy representation to a crisp value in the defuzzification layer. Gaussian-shaped
membership functions and weighted-average defuzzification are commonly utilized in
this process [59]. The ANFIS model is governed by IF-THEN rules, which define the
input–output mapping. These rules represent the logical relationships between the input
variables and the resulting output. An example of ANFIS rules is provided below:

IF x is A1 and y is B1 then f 1 = g1(x, y) (1)

IF x is A2 and y is B2 then f 2= g2(x, y) (2)

where the As and Bs are the membership functions of the two inputs x and y, respectively.
However, the final output f is calculated based on the two rules’ outputs, f 1 and f 2,
as follows:

f =
∼
ω1 f1 +

∼
ω2 f2 (OutputLayer) (3)
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Evaluating
∼
ω1g1(x, y) and

∼
ω2g2(x, y) (DefuzzificationLayer) (4)

∼
ω1 =

ω1

ω1 + ω2
and

∼
ω2 =

ω2

ω1 + ω2
(NLayer) (5)

ω1 = µA1 ∗ µB1and ω2 = µA2 ∗ µB2(πLayer) (6)

µA1 , µA2 , µB1 and µB2aretheMFvaluesofthetwoinputs (FuzzificationLayer)

3.2. Salp Swarm Algorithm (SSA)

The SSA, developed by Mirjalili et al. [60], is a nature-inspired metaheuristic optimiza-
tion algorithm (MOA). It takes inspiration from the distinctive behavior of salp swarms,
which organize themselves into long chains led by a leader. Since its introduction, SSA has
demonstrated effectiveness in various applications. In the optimization process of SSA, the
salps form a chain where one salp serves as the leader, while the others, called followers,
synchronize their movements with the preceding salp’s location. The leaders, or first salps,
adjust their positions in response to the location of food sources or desired objectives. The
updating equation for SSA can be described as follows:

xL(t + 1) =
{

xFP(t) + c1((ub− lb)c2 + lb) c3 < 0.5
xFP(t)− c1((ub− lb)c2 + lb) c3 > 0.5

xi
F(t + 1) = 0.5(xi

F(t) + xi−1
F (t))

(7)

where xL, xF, and xFP indicate the leaders’, followers’, and food’s positions, respectively;
i denotes the ith salp, c1 is a decay factor, and c2 and c3 are random numbers. The SSA
flowchart is presented in Figure 5.
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4. Results and Discussion
4.1. Modeling Phase

The construction of the ANFIS model involved the utilization of a dataset comprising
36 data points, which were split into two sets: a training set consisting of 28 points and a
testing set for the remaining data points. To train the model, a hybrid approach combining
the least squares estimation (LSE) method in the forward path and the backpropagation
algorithm in the backward path was employed. The subtractive clustering (SC) technique
was employed to generate the system’s rules, resulting in a total of 26 rules for this study.
The models were trained iteratively until a lower root mean square error (RMSE) value
was achieved, indicating improved performance and accuracy. The statistical metrics
derived from the trained ANFIS model, including RMSE and other relevant indicators,
are presented in Table 1. These metrics provide an assessment of the model’s predictive
capability and its overall effectiveness.

Table 1. RMSE and coefficient of determination values of ANFIS model of power density.

RMSE Coefficient of Determination (R2)

Train Test All Train Test All

0.0003 24.5 11.5535 1.0 0.9598 0.9914

Table 1 presents the evaluation results of the ANFIS model for power density. The
RMSE values obtained for the training and testing data are 0.0003 and 24.5, respectively. The
coefficient of determination (R-squared) values are 1.0 for the training data and 0.9598 for
the testing data. Overall, the coefficient of determination for all the data is 0.9914, indicating
a successful modeling phase. Figure 6 depicts the construction of the ANFIS model, which
consists of three input variables and a single output variable. This figure provides an
overview of the model’s architecture, showcasing the input–output relationship captured
by the ANFIS model. Additionally, Figure 7 illustrates the outlines of the Gaussian-shaped
membership functions used in the ANFIS model. These membership functions define the
fuzzy sets and their associated linguistic labels, which play a crucial role in the inference
process of the ANFIS model.
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Figure 8 offers a three-dimensional perspective, illustrating the contours of the input–
output function of the system. The figure showcases the relationship between the system’s
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inputs and the corresponding output by displaying the contours for each combination of
two inputs at a time.
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The developed ANFIS model effectively captures the intricate relationship between
the input and output parameters of the PEM-FC, resulting in accurate predictions of the
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output power density. This is evident from the comparison between the fuzzy model’s
predicted outputs and the corresponding experimental data, as depicted in Figure 9. The
plot clearly shows a close alignment between the estimated and measured data points,
indicating a high degree of agreement and validation of the ANFIS model. To further
evaluate the performance of the model, Figure 10 illustrates the predictions plotted around
the one-hundred percent precision line for both the training and testing stages. The data
points clustered around this line indicate a high level of precision and accuracy in the
model’s predictions.
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4.2. Parameter Identification Process

The optimization algorithm can play a significant role in improving the power density
of PEM-FCs in practical applications. Its primary function is to provide a precise assess-
ment of PEM-FC performance, assessing their suitability for specific applications, and
identifying any limitations. In practical terms, this algorithm functions as a diagnostic
tool, pinpointing specific deficiencies within the cell. The objective of this section is to
optimize the output power of the PEM-FC by identifying the optimal values for the control
parameters of pressure, relative humidity, and membrane compression. To achieve this, we
first constructed a robust ANFIS model that accurately captures the relationship between
the input parameters and the output power. Subsequently, we utilized SSA to solve the
optimization problem and determine the optimal values for the control parameters. It is
important to highlight that Yan et al. [61] tackled crucial factors, including flooding and
membrane drying, which play a pivotal role in improving PEM-FC performance. In this
study, the problem statement for the objective function can be summarized as follows:

x = arg
x∈R

max (y) (8)

where x is the three controlling input variables and y is the power density of the PEM-FC.
Table 2 presents the optimal parameters and the corresponding maximum power den-

sity of a PEM-FC, as determined through experimental data and the SSA. The results demon-
strate a notable agreement between the experimental data and the suggested approach.

Table 2. Optimal parameter values using measured data and proposed strategy.

Method Pressure Relative
Humidity

Membrane
Compression

Power Density
mW/cm2

Measured 25 80 5 716

ANFIS and SSA
1.0 (N *) 0.82 (N *) 0.308 (N *)

717.9625 82 5.544
* N means normalized.

To evaluate the effectiveness of the SSA compared to other optimization algorithms,
namely particle swarm optimization (PSO), evolutionary optimization (EO), and grey wolf
optimizer (GWO), we conducted a comparative analysis. To ensure a fair comparison,
we maintained a consistent number of particles (5) and a maximum number of iterations
(50) across all optimizers. To eliminate the influence of random results, each optimizer
was run 30 times. The statistical analysis of these 30 runs is presented in Table 3. The
results demonstrate that SSA outperformed the other algorithms in terms of average power
density, achieving a value of 716.63 mW/cm2. GWO is closely followed with an average
power density of 709.95 mW/cm2. In contrast, PSO exhibited the lowest average power
density, measuring only 695.27 mW/cm2. The standard deviation values, which indicate
the variability of the results, ranged from 1.72 to 40.63. Both SSA and GWO exhibited
lower standard deviations, with values of 25.77, while PSO demonstrated a higher standard
deviation of 40.63. For more detailed information about the cost function values and
optimal parameters obtained in each run, refer to Table 4 and Figure 11. These resources
provide a comprehensive overview of the optimization process and further support the
superior performance of SSA in achieving higher power density values.
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Table 3. Statistical evaluation of PSO, EO, GWO, and SSA.

PSO EO GWO SSA

Maximum 717.97 717.97 717.97 717.97
Minimum 614.05 614.04 613.39 714.38
Average 695.27 706.27 709.95 716.63
STD 40.63 30.78 25.77 1.72
median 714.38 717.51 717.87 717.97
variance 1651.05 947.67 663.86 2.94
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Table 4. Detail of 30 runs.

Run PSO EO GWO SSA Run PSO EO GWO SSA

1 717.96 614.06 717.94 714.38 16 717.96 717.96 714.34 717.97
2 614.06 717.7 717.95 717.97 17 714.38 717.58 717.87 717.97
3 717.97 714.33 714.38 714.38 18 714.38 717.96 717.26 717.97
4 714.38 614.04 717.93 717.38 19 614.06 717.95 714.38 717.97
5 717.95 714.36 717.95 717.97 20 714.38 717.63 717.76 714.38
6 614.05 714.3 714.37 714.38 21 714.38 717.96 613.39 717.97
7 614.06 714.33 717.87 714.38 22 714.37 717.93 717.96 717.97
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Table 4. Cont.

Run PSO EO GWO SSA Run PSO EO GWO SSA

8 717.96 717.94 717.96 714.38 23 614.06 717.65 717.78 714.38
9 714.38 717.97 717.9 717.97 24 714.38 717.94 714.14 717.97

10 717.97 714.38 717.97 717.95 25 714.37 717.33 717.97 714.38
11 714.38 714.37 714.34 717.97 26 717.93 717.45 716.73 714.38
12 714.38 714.33 714.33 714.38 27 717.97 717.96 717.95 717.95
13 714.38 714.14 717.96 717.97 28 714.38 714.34 717.97 717.97
14 614.06 717.96 614.06 714.38 29 714.38 714.35 717.94 717.97
15 714.37 614.04 714.37 717.97 30 714.38 717.96 717.94 717.97

Figure 12 displays the convergence of particles throughout the optimization process.
The optimal values obtained for the normalized pressure (Figure 12a), normalized relative
humidity (Figure 12b), and normalized membrane compression (Figure 12c) are 1.0, 0.82,
and 0.308, respectively. These values represent the optimal settings for each parameter that
lead to the highest power density of the FC. Furthermore, Figure 13 showcases the variation
in the best cost function during the optimization process. The plot demonstrates how the
cost function, which represents the objective to maximize the output power density, evolves
over the iterations.
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To further validate the obtained results and solidify the findings, two additional tests,
namely ANOVA (Analysis of Variance) and Tukey tests, were conducted. Table 5 presents
the results of the ANOVA test, which confirms the significant differences in the outcomes
between the various optimization algorithms. The test examines the variations in the
performance of the algorithms and provides statistical evidence of the superiority of one
algorithm over the others. Figure 14 illustrates the ANOVA ranking, which highlights the
performance of each algorithm based on mean fitness and variations. The ranking confirms
that the SSA exhibits superior performance compared to the other algorithms, as it yields
higher mean fitness values and variations.

Table 5. ANOVA results.

Source df SS MS F Prob

Columns 3 7188.6 2396.2 2.84 0.014

Error 116 97,965.7 844.5

Total 119 105,154.3
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Figure 14. ANOVA ranking.

The Tukey test was conducted to validate the results obtained from the ANOVA
analysis, providing further insights into the differences among the optimization algorithms.
Figure 15 presents the results of the Tukey test, which reveals significant differences in
the mean values between the various groups. Specifically, the mean of the PSO group
is significantly different from the SSA group. This indicates that the performance of
PSO differs significantly from that of SSA. Moreover, the EO and GWO groups exhibited
relatively good performance compared to the SSA group.
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Figure 15. Tukey test.

The optimal input parameters for pressure, relative humidity, and membrane compres-
sion were determined to be 25, 82, and 5.544, respectively, as previously mentioned. In order
to further explore the impact of these parameters, an extension of 5% and 10% were tested
for the upper and lower values. Table 6 presents the optimized results with the extended
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input parameters. It can be observed that the optimal values for relative humidity and
membrane compression remained unchanged at 82 and 5.544, respectively, indicating that
the proposed extensions had little to no effect on these parameters. However, the pressure
value showed an increase with the increase in the extension percentage. For instance, with
a 5% extension, the power density improved from 717.96 mW/cm2 to 730.27 mW/cm2, rep-
resenting an enhancement of approximately 1.715%. Figure 16 illustrates the convergence
of particles with the parameter extension. It provides a visual representation of how the
optimization algorithm adapted to the extended input parameters during the optimization
process. The convergence of the particles indicates the algorithm’s ability to find improved
solutions as it progresses.

Table 6. Optimized results with extension of the input parameters.

Method Pressure Relative
Humidity

Membrane
Compression

Power Density
W/cm2

5%
1.05 0.82 (N *) 0.308 (N *)

730.2726.5 82 5.544

10%
1.1 0.82 (N *) 0.308 (N *)

742.9327.5 82 5.544
* N means normalized.
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5. Conclusions

This study aimed to enhance the output power of PEM-FCs through the use of the AN-
FIS and optimization algorithms. The study successfully developed a robust ANFIS model
based on experimental data, which accurately simulated the FC’s output power density
considering the parameters of pressure, relative humidity, and membrane compression. To
determine the optimal values of the input parameters, the SSA was employed. During the
optimization process, the three input parameters of the PEM-FC were treated as decision
variables, and the cost function was used to maximize the output power density of the
PEM-FC. The modeling stage demonstrated the effectiveness of the ANFIS model, with
RMSE values of 0.0003 and 24.5 for training and testing data, respectively. The coefficient
of determination values further confirmed the successful modeling, with values of 1.0 and
0.9598 for training and testing, respectively. To ensure the reliability of SSA, the results
were compared with other optimization algorithms, including PSO, EO, and GWO. Among
these algorithms, SSA exhibited the highest average power density of 716.63 mW/cm2,
followed closely by GWO at 709.95 mW/cm2. PSO yielded the lowest average power
density of 695.27 mW/cm2. These findings highlight the effectiveness of the ANFIS model
and the superiority of SSA in optimizing the output power density of PEM-FCs. The results
contribute to the advancement of clean energy generation by providing valuable insights
into the optimal parameters for maximizing the performance of FCs.

Author Contributions: Conceptualization, H.R., T.W. and A.A.; Data, T.W.; Methodology, H.R., T.W.
and R.M.G.; Software, H.R and A.A.; Formal analysis, H.R., A.A. and S.A.; Writing—original draft,
All.; Writing—review & editing, All; Visualization, A.A. and S.A. All authors have read and agreed to
the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R138), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: Data will be made available upon request.

Acknowledgments: The authors express their gratitude to the Middle East University in Amman, Jor-
dan for providing financial support to cover the publication fees associated with this research article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhuiyan, M.R.A. Overcome the Future Environmental Challenges through Sustainable and Renewable Energy Resources. Micro

Nano Lett. 2022, 17, 402–416. [CrossRef]
2. Wang, Z.; Liu, Z.; Fan, L.; Du, Q.; Jiao, K. Application Progress of Small-Scale Proton Exchange Membrane Fuel Cell. Energy Rev.

2023, 2, 100017. [CrossRef]
3. Al-Manea, A.; Al-Rbaihat, R.; Kadhim, H.T.; Alahmer, A.; Yusaf, T.; Egab, K. Experimental and Numerical Study to Develop

TRANSYS Model for an Active Flat Plate Solar Collector with an Internally Serpentine Tube Receiver. Int. J. Thermofluids 2022,
15, 100189. [CrossRef]

4. Zhang, H.; Sun, C.; Ge, M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries 2022, 8, 202.
[CrossRef]

5. Alahmer, A.; Ajib, S. Solar Cooling Technologies: State of Art and Perspectives. Energy Convers. Manag. 2020, 214, 112896.
[CrossRef]

6. Chen, L.; Xu, K.; Yang, Z.; Yan, Z.; Dong, Z. Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and
Circulation System. Energies 2022, 15, 5427. [CrossRef]

7. Rezk, H.; Olabi, A.G.; Abdelkareem, M.A.; Alahmer, A.; Sayed, E.T. Maximizing Green Hydrogen Production from Water
Electrocatalysis: Modeling and Optimization. J. Mar. Sci. Eng. 2023, 11, 617. [CrossRef]

8. Wen, H.; Zhao, Z. How Does China’s Industrial Policy Affect Firms’ R&D Investment? Evidence from ‘Made in China 2025’. Appl.
Econ. 2021, 53, 6333–6347.

9. Behling, N.; Williams, M.C.; Managi, S. Fuel Cells and the Hydrogen Revolution: Analysis of a Strategic Plan in Japan. Econ. Anal.
Policy 2015, 48, 204–221. [CrossRef]

10. HAbIb, M.D.S.; Arefin, P.; Situmeang, R. Adoption of Hydrogen Fuel Cell Vehicles and Its Prospects for the Future. Orient. J.
Chem. 2022, 38, 621. [CrossRef]

11. Farghali, M.; Osman, A.I.; Mohamed, I.M.A.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D.W. Strategies to Save Energy in the
Context of the Energy Crisis: A Review. Environ. Chem. Lett. 2023, 21, 2003–2039. [CrossRef] [PubMed]

https://doi.org/10.1049/mna2.12148
https://doi.org/10.1016/j.enrev.2023.100017
https://doi.org/10.1016/j.ijft.2022.100189
https://doi.org/10.3390/batteries8110202
https://doi.org/10.1016/j.enconman.2020.112896
https://doi.org/10.3390/en15155427
https://doi.org/10.3390/jmse11030617
https://doi.org/10.1016/j.eap.2015.10.002
https://doi.org/10.13005/ojc/380311
https://doi.org/10.1007/s10311-023-01591-5
https://www.ncbi.nlm.nih.gov/pubmed/37362011


Membranes 2023, 13, 817 19 of 20

12. Wang, Y.; Yuan, H.; Martinez, A.; Hong, P.; Xu, H.; Bockmiller, F.R. Polymer Electrolyte Membrane Fuel Cell and Hydrogen
Station Networks for Automobiles: Status, Technology, and Perspectives. Adv. Appl. Energy 2021, 2, 100011. [CrossRef]

13. Benhammou, A.; Tedjini, H.; Hartani, M.A.; Ghoniem, R.M.; Alahmer, A. Accurate and Efficient Energy Management System of
Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles. Sustainability 2023, 15, 10102. [CrossRef]

14. Pramuanjaroenkij, A.; Kakaç, S. The Fuel Cell Electric Vehicles: The Highlight Review. Int. J. Hydrogen Energy 2023, 48, 9401–9425.
[CrossRef]

15. Mayyas, A.; Omar, M.; Pisu, P.; Mayyas, A.; Alahmer, A.; Montes, C. Thermal Modeling of an On-board Nickel-metal Hydride
Pack in a Power-split Hybrid Configuration Using a Cell-based Resistance–Capacitance, Electro-thermal Model. Int. J. Energy Res.
2013, 37, 331–346. [CrossRef]

16. Zhao, G.; Zhao, H.; Zhuang, X.; Shi, L.; Cheng, B.; Xu, X.; Yin, Y. Nanofiber Hybrid Membranes: Progress and Application in
Proton Exchange Membranes. J. Mater. Chem. A 2021, 9, 3729–3766. [CrossRef]

17. Sazali, N.; Wan Salleh, W.N.; Jamaludin, A.S.; Mhd Razali, M.N. New Perspectives on Fuel Cell Technology: A Brief Review.
Membranes 2020, 10, 99. [CrossRef]

18. Rasheed, R.K.A.; Liao, Q.; Caizhi, Z.; Chan, S.H. A Review on Modelling of High Temperature Proton Exchange Membrane Fuel
Cells (HT-PEMFCs). Int. J. Hydrogen Energy 2017, 42, 3142–3165. [CrossRef]

19. Mayyas, A.R.; Omar, M.; Pisu, P.; Al-Ahmer, A.; Mayyas, A.; Montes, C.; Dongri, S. Comprehensive Thermal Modeling of a
Power-Split Hybrid Powertrain Using Battery Cell Model. J. Power Sources 2011, 196, 6588–6594. [CrossRef]

20. Yang, Z.; Liu, Q.; Zhang, L.; Dai, J.; Razmjooy, N. Model Parameter Estimation of the PEMFCs Using Improved Barnacles Mating
Optimization Algorithm. Energy 2020, 212, 118738. [CrossRef]

21. Ghoniem, R.M.; Alahmer, A.; Rezk, H.; As’ad, S. Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power
System. Sustainability 2023, 15, 12026. [CrossRef]

22. Thangarasu, S.; Oh, T.H. Progress in Poly (Phenylene Oxide) Based Cation Exchange Membranes for Fuel Cells and Redox Flow
Batteries Applications. Int. J. Hydrogen Energy 2021, 46, 38381–38415. [CrossRef]

23. Sadhasivam, T.; Palanisamy, G.; Roh, S.-H.; Kurkuri, M.D.; Kim, S.C.; Jung, H.-Y. Electro-Analytical Performance of Bifunctional
Electrocatalyst Materials in Unitized Regenerative Fuel Cell System. Int. J. Hydrogen Energy 2018, 43, 18169–18184. [CrossRef]

24. Liu, J.; Zhou, Z.; Yue, B.; Sun, Z.; Sun, Z. Chemical Looping Induced CH3OH–H2-PEMFC Scheme for Fuel Cell Vehicle: Parameter
Optimization and Feasibility Analysis. J. Power Sources 2020, 479, 228790. [CrossRef]

25. Li, S.; Peng, C.; Shen, Q.; Cheng, Y.; Wang, C.; Yang, G. Numerical Study on Thermal Stress of High Temperature Proton Exchange
Membrane Fuel Cells during Start-Up Process. Membranes 2023, 13, 215. [CrossRef]

26. Biswas, M.; Wilberforce, T. Dynamic Thermal Model Development of Direct Methanol Fuel Cell. Int. J. Thermofluids 2023,
17, 100294. [CrossRef]

27. Zaffora, A.; Giordano, E.; Volanti, V.M.; Iannucci, L.; Grassini, S.; Gatto, I.; Santamaria, M. Effect of TiO2 and Al2O3 Addition on
the Performance of Chitosan/Phosphotungstic Composite Membranes for Direct Methanol Fuel Cells. Membranes 2023, 13, 210.
[CrossRef]

28. Li, C.; He, Z.; Ban, X.; Li, N.; Chen, C.; Zhan, Z. Membrane-Based Catalytic Partial Oxidation of Ethanol Coupled with Steam
Reforming for Solid Oxide Fuel Cells. J. Memb. Sci. 2021, 622, 119032. [CrossRef]

29. Solovyev, A.; Shipilova, A.; Smolyanskiy, E. Solid Oxide Fuel Cells with Magnetron Sputtered Single-Layer SDC and Multilayer
SDC/YSZ/SDC Electrolytes. Membranes 2023, 13, 585. [CrossRef]
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