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Abstract: Inelastic (dissipative) effects of different natures in lipid bilayer membranes can lead to hys-
teresis phenomena. Early, it was shown that lipid bilayer membranes, under the action of a periodic
sinusoidal voltage, demonstrate pinched-hysteresis loops in the experimental capacitance–voltage
dependences and are almost the only example of the physical implementation of memcapacitance.
Here, we propose an equivalent circuit and mathematical framework for analyzing the dynamic
nonlinear current response of a lipid bilayer membrane as an externally controlled memcapacitance.
Solving a nonlinear differential equation for the equivalent circuit of a membrane in the form of a
parallel connection of a nonlinear viscoelastic capacitor and an active resistance using the small pa-
rameter method, we obtain explicit analytical dependences for the current response of the membrane
and pinched-hysteresis loops. The explicit solutions and their comparison with experimental data
allow us to identify the lumped equivalent circuit parameters that govern the memcapacitor behavior
of the membrane and hence the magnitude of the hysteresis. We quantify the memcapacitance
hysteresis in terms of negative work done by the control signal. An analysis of the formulas leads
to the conclusion that the determining factor for the appearance of pinched hysteresis is the type of
nonlinear dependence of the device capacitance on voltage.

Keywords: bilayer lipid membranes; non-linear capacitance; pinched hysteresis loops; memcapacitance;
negative conductance

1. Introduction

The electric properties of biomembranes play a pivotal role in cellular functions. The
parameters of electrical equivalent circuits of biological and model bilayer membranes—
capacitance and conductance and their dependence on external influences—have been
intensively studied over the past 50 years. The dependence of the capacitance of lipid
bilayer membranes with various solvents on the electric field was studied in early ex-
periments [1–6]. The increase in capacitance C under the action of an electric field was
described by the empirical formula C = C0

(
1 + βU2). The coefficient of the nonlinearity of

capacitance β for membranes with a solvent was estimated at 2–10 V−2, for membranes
without a solvent (“dry”) membranes 0.022 V−2 [1]. In studies of the nonlinear capacitance
of the droplet interface bilayer (DIB), the value of the coefficient of nonlinearity depended
on the type of solvent and was 25.8 V−2 for membranes of diphytanoylphosphatidylcholine
(DPhPC) in decane and 1.75 V−2 in hexadecane [7,8]. The value of the coefficient for cells
was estimated to be 0.108–0.135 V−2 [9]. The change in the capacitance of membranes
under the action of an electric field is associated with various processes—electrostriction, a
change in the thickness of the membrane as a result of solvent exclusion, membrane area
increase [1–6], and thermal fluctuations [10]. These processes have different relaxation
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times and, under the action of periodic electric fields, should manifest themselves in differ-
ent frequency ranges. The dynamic current response of the membrane and its equivalent
parameters must depend on the frequency of the alternating voltage. The nonlinearity coef-
ficient β is expected to be maximum at low frequencies, since in this case all the processes
occurring under the action of the electric field and responsible for the nonlinearity have
time to take place. Inelastic (dissipative) effects of various natures, causing a delay in the
polarization of the membrane and capable of causing hysteresis phenomena, should also
manifest themselves in different frequency ranges.

Hysteresis effects on the current responses of the membrane to a periodic triangular
voltage were noted in early experiments [5,6]. These phenomena are also discussed in
works where DIB is used as a biological membrane model and dynamic capacitive currents
in bilayer membranes with different solvents are studied [7,8,11]. It was shown in [11] that
the existence of hysteresis is associated with voltage-dependent changes in the geometry of
the bilayer, which depend on the viscosity of the solvent (decane and hexadecane were com-
pared), temperature and the frequency of the command sinusoidal voltage. The authors first
drew attention to a new aspect of studying the dynamic electrical characteristics of bilayer
lipid membranes, showing that lipid DIB membranes with a solvent under the action of a
periodic sinusoidal voltage exhibit the properties of memcapacitive (memory capacitive)
systems. The concept of memristic systems proposed in [12] was extended to capacitive
elements—capacitors, the properties of which depend on the state and history of the system.
A change in the capacitance of such systems under the action of an external control voltage
can be associated with geometric changes in the systems and the influence of inelastic (dis-
sipative) effects [13]. Memcapacitors exhibit narrowed hysteresis loops in charge–voltage
dependence. It is assumed that these systems can be used as synapses in artificial neural
networks [14–17]. DIB membranes showing pinched hysteresis loops in charge–voltage
coordinates, as well as in experimental capacitance–voltage dependences [11], are almost
the only example of the physical implementation of memcapacitance.

To evaluate the parameters characterizing the dynamic electrical properties of the
model and biological membranes, periodic command voltage of various types is applied to
them in voltage clamp mode: triangular or sinusoidal voltage, rectangular pulses, voltage
ramp stimulus, or combinations thereof [18]. Interpretation of experimental responses
to these signals depends on the choice of an adequate equivalent circuit that allows one
to estimate the characteristics of the membrane with varying accuracy. Traditionally, a
membrane is thought of as a parallel connection between a capacitor and a resistor. Series
resistance (access resistance) in the equivalent circuit of the membrane allows for a more
accurate estimation of membrane parameters [19,20]. However, there are few models
that describe the dynamic electrical behavior of membranes with non-linear capacitances.
Basically, for the theoretical description of nonlinear and transient processes in the current
response of the membrane, the capacitances of the classical equivalent circuit are assumed
to be exponentially dependent on time in an explicit form [21,22] or described by first-order
differential equations [10,11].

In this paper, we introduce a mathematical basis for interpreting experimental obser-
vations of the BLM input-output dynamics as memcapacitors with external control of a
triangular-shaped periodic signal. For an analytical description of memcapacitor properties,
we propose an equivalent circuit of a membrane in the form of a parallel connection of a
viscoelastic capacitor [23] and resistance modeling of the ion permeability of membranes.
The ion permeability can increase in the presence of protein or lipid channels and affect the
memcapacitance properties. Compiling a nonlinear differential equation for the equivalent
circuit and solving it using the small parameter method, we obtain explicit analytical
dependences of the current response of the membrane and pinched-hysteresis loops on
time and applied voltage.

A comparison of analytical expressions with experimental current recordings of mem-
branes confirms the adequacy of the equivalent circuit and the mathematical model. Explicit
solutions for the current–voltage characteristics and pinched-hysteresis loops in comparison
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with the experimental data make it possible to estimate the parameters of the equivalent
circuit and their dependence on the characteristics of the input signal and the properties
of the membrane. The resulting formulas allow us to determine how these parameters
control the memcapacitance behavior of the membrane and the amount of hysteresis in the
capacitance–voltage coordinates.

We also quantify pinched hysteresis in terms of the work done by the control voltage,
for which we obtain explicit formulas in terms of equivalent circuit parameters and control
signal characteristics. Interpretation of the properties of a lipid bilayer membrane in the
context of memcapacitance systems allows us to define a lipid bilayer membrane as an
active memcapacitive device. The nonlinearity of a capacitance of a certain type, combined
with viscous dissipative processes that cause a delay in membrane polarization, leads
to the appearance of an insertion negative conductance proportional to the width of the
hysteresis loop.

2. Materials and Methods
2.1. Electrical Model of a Viscoelastic Membrane: Solving a Nonlinear Differential Equation

The main processes leading to a noticeable non-linear change in the capacitance of a
planar bilayer lipid membrane under an electric field are deformation of the membrane
and a decrease in its thickness due to solvent extrusion, as well as an increase in the
area of the membrane. These processes proceed quite slowly (relaxation times of solvent
extrusion are proportional to its viscosity and amount to 5 ms–5 s [5,24–26]. When a cyclic
electric field of corresponding frequencies is applied, these processes affect the dynamic
behavior of the geometric dimensions of the membrane and, accordingly, its equivalent
electrical parameters.

To analytically describe the dynamic current response of the membrane (Figure 1) to
a periodic triangular voltage with frequencies corresponding to the relaxation times, we
consider the membrane as a viscoelastic capacitor [23]. Following the logic of this work, let
us expand the total current response of the membrane into that caused by a purely elastic
change in geometry and a non-linear current that depends on the prehistory of the process.
The circuit of this current imitates the viscoelastic response of a section of the membrane in
which the electrical displacement and polarization lag behind the field strength and depend
on its value at the previous time. This occurs when the electric polarization does not have
time to follow the changes in the electric field. The equivalent circuit of the membrane is
shown in Figure 2. The equivalent parameters of the membrane are the series connection
of resistance r, proportional to the viscosity of the solvent, and the nonlinear capacitance
C1 = (1−κ)C0(1 + βŨ2). The material parameter (1−κ) represents physically the frac-
tion of the membrane, which in a given time range has time-independent deformation
(solvent), β is the coefficient of capacitance nonlinearity for this part of the membrane,
C0 is the capacitance of the entire membrane at zero voltage, Ũ is the voltage across the
capacitance C1, physically proportional to the electrical displacement. Thus, the current
circuit i1 represents a part of the membrane; the deformation and the corresponding change
in capacitance are time-dependent processes due to viscous processes that prevent changes
in the membrane geometry. The corresponding equation for the current is given by:

i1 = (1−κ)C0(1 + βŨ2)
dŨ
dt

(1)
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The capacitance in the second branch C2 = κC0
(
1 + β′U2) is the capacitance of the

part of the membrane that gives a purely elastic response, the nonlinearity of which can
be neglected, since the coefficient of nonlinearity of “dry” membranes without solvent
β′ � β [1]. The membrane is purely elastic when κ = 1. The current in this branch is

i2 = κC0
dU
dt

(2)

where U is the command voltage proportional to the field strength across the membrane.
The third branch represents ionic currents through the membrane, which arise when

the ionic permeability of the membranes increases. In order to better agree with the experi-
mental data, this model provides the possibility of the appearance of nonlinear conductance
at high membrane voltages, which was observed in studies of both artificial [27] and cell
membranes [28]. Following [28], where the current–voltage profile of the cell was repre-
sented by a 9th order polynomial, we represent the ion current through the membrane as

i3(U) = gU + γU9 (3)

where g is the linear conductance of the membrane, γ is an empirical coefficient of nonlin-
earity of membrane conductance.

Series resistance Rs (access resistance) is introduced into the equivalent circuits of the
model and biological membranes to account for experimental artifacts of voltage clamp
measurements. The effects described by the access resistance are associated with the
experimental setup, the properties of the electrodes and electrolyte, as well as the relaxation
properties of the membrane itself in response to the applied voltage [19,20]. Since here
we take into account the relaxation properties of the membrane in the viscoelastic circuit
and the resistance of the electrodes and electrolyte is low, for simplicity, we neglect this
resistance in our analysis.

Let us write the Kirchhoff equations separately for the upward (up) and downward
(down) half-periods of the triangular voltage for the viscoelastic circuit.

ri1,up + Ũup = −Umax + kt 0 < t <
T
2

(4)

ri1,down + Ũdown = +Umax − kt′ 0 < t′ < T
2

(5)

The right-hand sides of Equations (4) and (5) represent the command triangular
voltage supplied from the generator, Ũup(t), Ũdown(t′) are voltages across capacitance C1
of the viscoelastic part of the membrane, causing an elastic response, for two half-cycles
of the command voltage, Umax is triangular voltage amplitude, k is sweep ramp. The
voltage on the right side is proportional to the field strength in the membrane, voltage Ũ
proportional to the electrical displacement, which, due to viscous processes, lags behind
the field strength.

Substituting (1) into Equations (4) and (5), respectively, we obtain two nonlinear differ-
ential equations for Ũup(t) and Ũdown(t′), corresponding to the upward and downward
the command voltage ramping

dŨup

dt

(
1 + βŨ2

up

)
+

Ũup

τ
= −Umax

τ
+

kt
τ

, 0 ≤ t ≤ T
2

(6)

dŨdown
dt′

(
1 + βŨ2

down

)
+

Ũdown
τ

=
Umax

τ
− kt′

τ
, 0 ≤ t′ ≤ T

2
(7)

where τ = (1−κ)rC0.
Solving Equations (6) and (7) using the small parameter method (see Supplementary Material,

Equations 3S–14S), we obtain expressions for the voltage across the capacitance C1 of the vis-
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coelastic branch for the upward and downward half-cycles of the command
triangular voltage

Ũup(t) = (−Umax − kτ + kt) + Aupexp
(
− t

τ

)
− βkτ

[
Umax

2 + 4Umaxkτ + 5(kτ)2
]
+ 2βkτ(Umax + 2kτ)kt− βkτ(kt)2 (8)

Ũdown(t′) = (Umax + kτ − kt′) + Adownexp
(
− t′

τ

)
+ βkτ

[
Umax

2 + 4Umaxkτ + 5(kτ)2
]
− 2βkτ(Umax + 2kτ)kt′+ βkτ(kt′)2 (9)

Figure 1a shows the command voltage U(t), voltages Ũup0(t) and Ũdown0

(
t = t′+ T

2

)
,

calculated by Formulas (S9) and (S10) in the zero linear approximation (β = 0) and nonlinear
voltages Ũup(t) and Ũdown

(
t = t′+ T

2

)
. Without taking into account transient processes,

we can write Ũ0(t) = U(t− τ), which is equivalent to the electrical displacement lagging
behind the field strength D(t)~E(t−τ). Thus, the use of series resistance in the equivalent
circuit describes a situation that occurs when the frequencies of electromagnetic fields
correspond to the frequencies characteristic for establishing the electric polarization of a
substance [29].

The currents in the viscoelastic circuit i1,up(t) and i1,down(t′) can be found from Equa-
tions (4) and (5), taking into account (8) and (9).

i1, up(t) = (1−κ)kC0{1 + β[Umax
2 + 4Umaxkτ + 5(kτ)2]} − 2βkC0(1−κ)(Umax + 2kτ)kt

+βkC0(1−κ)(kt)2 − 2kC0(1−κ)exp
(
− t

τ

) (10)

i1,down(t′) = −(1−κ)kC0{1 + β[Umax
2 + 4Umaxkτ + 5(kτ)2]}+ 2βkC0(1−κ)(Umax + 2kτ)kt′

−βkC0(1−κ)(kt′)2 + 2kC0(1−κ)exp
(
− t′

τ

) (11)

In order to find formulas for pinched hysteresis loops, we find expression for the
time inverted current response of the viscoelastic part of the membrane to the downward
half-period of the command voltage (Figure 1b), substituting t′ = T

2 − t into (11) and given
that kT

2 = 2Umax:

i1,down,inv(t) = i1 down

(
t′ = T

2 − t
)
= −k(1−κ)C0{1 + β[Umax

2 + 4Umaxkτ + 5(kτ)2]}+

2βkC0(1−κ)(Umax + 2kτ)(2Umax − kt)− βkC0(1−κ)(2Umax − kt)2 + 2kC0(1−κ)exp
(
− T/2−t

τ

) (12)

We express the time dependences of currents (10) and (12) as a function of com-
mand voltage by substituting kt = U + Umax. The currents (2), (3) are rewritten for
the upward and downward half-periods: i2,up(U) = κC0k, i2,down, inv(U) = −κC0k,
i3,up(U) = i3,down, inv(U) = gU + γU9.

Then, the total current response of the membrane to the upward and downward
half-period of command voltage:

I0,up(U) = kC0{1 + β(1−κ)[U2 + 5(kτ)2]}+ [g + γU8 − 4βkC0(1−κ)kτ]U − 2kC0(1−κ)exp
(
−U + Umax

kτ

)
(13)

I0,down(U′) = −kC0{1 + β(1−κ)[U′2 + 5(kτ)2]}+ [g + γU′8 − 4βkC0(1−κ)kτ]U′+ 2kC0(1−κ)exp
(
−Umax −U′

kτ

)
(14)

Total inverted current response to the downward half-period of command voltage

I0, down, inv(U) = −kC0{1 + β(1−κ)[U2 + 5(kτ)2]}+ [g + γU8 − 4βkC0(1−κ)kτ]U + 2kC0(1−κ)exp
(
−Umax −U

kτ

)
(15)

The hysteresis loop equations in the C, U coordinates are given by the expressions:

Cup =
I0up

k = C0{1 + β(1−κ)[U2 + 5(kτ)2]}
−2(1−κ)exp

(
−U+Umax

kτ

)
+ 1

k
[
g + γU8 − 4βkC0(1−κ)kτ

]
U

(16)

Cdown =
I0down,inv
−k

= C0{1 + β(1−κ)[U2 + 5(kτ)2]}
−2(1−κ)exp

(
−U+Umax

kτ

)
− 1

k [g + γU8 − 4βkC0(1−κ)kτ]U
(17)
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2.2. Experimental

Lipids and electrolytes. Azolectin and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (Avanti
Polar Lipids, Alabaster) were used for the formation of planar BLM. The bulk solution
contained 0.1 M KCl. The reagent was of analytical grade.
Planar lipid bilayer membranes. The BLMs were formed according to [30] over a 0.5 mm2

circular hole in a 1 mm thick wall of a Teflon chamber at room temperature of 21 ± 1 ◦C.
The wall separated two subchambers, each filled with 2.5 mL of the same electrolyte
solution. The membrane-forming solution contained 30 mg of lipids dissolved in 1 mL of
n-decane. Before each experiment, the vertical wall of the Teflon chamber was covered
with a thin layer of dried membrane-forming solution. Once a small droplet (~0.1 µL)
of lipid solution is placed below the hole, a bilayer is formed automatically in ~10 min.
The formation of the bilayer was followed by capacitance measurements. To estimate the
specific capacitance of the membrane, the area of the membrane formed on the hole was
determined using a microscope. The specific capacitances of the studied membranes were
in the range of 3–4 nF/mm2.
Nanoparticles. To change the membrane stiffness, hydrophobic cubic CoFe2O4 nanopar-
ticles dispersed in toluene were added to the membrane solution at a concentration of
70 µg/mL (synthesized at MISIS, Moscow, Russia). The average diagonal of the nanoparti-
cles was 14 nm.
Electrical measurements. Ag-AgCl STREF1 electrodes (OHAUS Corporation, Parsippany,
New Jersey, USA) were placed in both compartments of the chamber. Transmembrane
currents were detected with a VA-10X amplifier (NPI Electronics GmbH, Germany) in
voltage clamp mode. Currents were recorded with a sampling rate of 1 kHz in a 16-digit
ADC (L-Card, Moscow, Russia). The measurements were carried out in the voltage-clamp
conditions. An AKIP 3409/1 arbitrary waveform generator (PRIST, Russia) was used to
apply a triangular voltage to the membrane.
Description of the experiment. A periodic triangular voltage of various frequencies and
amplitudes was applied to the membrane in voltage clamping mode, and the current
responses of the membrane were recorded. Separately, the records of the current were
distinguished in response to the upward and downward half-periods of the command
voltage. The current responses to downward voltage ramping were inverted over time
(Figure 1b). The data were presented in the form I0,up(U), I0, down, inv(U). The experimen-

tal pinched-hysteresis loops were plotted using the curves
I0,up(U)

k and − I0, down, inv(U)
k in

absolute or relative capacitance units.
The measurements were carried out as follows: a triangular voltage with amplitudes of

50, 100, 130, 150, 175, 200, 225, 250, 275 and 300 mV was applied to the formed membranes;
measurements were carried out at frequencies of 0.01, 0.1, 0.2, 0.35, 0.5, 0.66, 0.73, 0.8, 0.88,
1, 1.33, 1.5 and 2 Hz. For each amplitude of the triangular voltage, a current response was
recorded with a duration of 20–30 periods. In each fragment, the current responses to
the upward and downward half-periods of the command voltage were distinguished. To
reduce the level of fluctuations at low frequencies, the signal was averaged over 30 ms. At
low frequencies (<0.35 Hz), the membranes, as a rule, could not withstand high voltage;
therefore, the results of measurements at the maximum amplitude before the membrane
rupture were processed.

At a frequency of 0.01 Hz, two membranes were measured (triangular voltage am-
plitude 100 mV), at a frequency of 0.1 Hz- 2 membranes (100 mV), 1 membrane (150 mV)
and 1 membrane (200 mV in the presence of particles). At a frequency of 0.2 Hz, 1 mem-
brane was measured at amplitudes up to 200 mV, 1 membrane (150 mV) and 2 membranes
(100 mV), at a frequency of 0.35 Hz—2 membranes (150 and 175 mV). At a frequency of
0.5 Hz, 4 membranes were measured at 130 mV and 2 membranes at 150 mV. A membrane
was studied for which the rate of the membrane voltage sweep k = 0.8 V/s was the same
for different frequencies and voltages: 0.66 Hz and 300 mV, 0.73 Hz and 275 mV, 0.8 Hz
and 250 mV, 0.88 Hz and 225 mV, 1.33 Hz and 150 mV. At a frequency of 1 Hz, more
than 20 membranes at 50 mV and 100 mV, 4 membranes at 150 mV and 14 membranes at
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200 mV were recorded and processed. The current responses to a triangular voltage with an
amplitude of 50 mV showed no nonlinearity or hysteresis, but we used them for transient
analysis (in these cases, the signal was not averaged). At a frequency of 1.5 Hz, the current
responses of the membrane were recorded at amplitudes up to 200 mV. At a frequency of
2 Hz, the currents of 4 membranes were recorded at command voltage amplitudes of up to
300 mV and of 6 membranes of up to 200 mV. The current responses to a triangular voltage
with a frequency of 0.1 Hz and 1 Hz and an amplitude of 200 mV were studied for two
membranes in the presence of nanoparticles.

3. Results
3.1. Calculation of the Parameters of the Equivalent Circuit According to Experimental Results

Consider the half-sum and half-difference of the current response to the upward (13)
and inverted downward (15) half-cycles of command voltage at −Umax < U < Umax.

1
2
[
I0,up(U)− I0, down, inv(U)

]
= kC0{1 + βexp[U2 + 5(kτ)2]} − kC0(1−κ)

[
exp

(
−U + Umax

kτ

)
+ exp

(
−Umax −U

kτ

)]
(18)

1
2
[
I0,up(U) + I0, down, inv(U)

]
= (g + γU8 − 4kβexpC0kτ)U − kC0(1−κ)

[
exp

(
−U + Umax

kτ

)
− exp

(
−Umax −U

kτ

)]
(19)

As can be seen from these formulas, without taking into account the exponents,
Formula (18) corresponds to the empirical formula for the current through the nonlinear
capacitance of the membrane with βexp = β(1−κ) and Cexp0 = C0

[
1 + 5β(kτ)2

]
with a

small correction associated with a viscoelastic part. Thus, jointly using the experimental
current responses to the upward and downward half-cycles of the triangular voltage, it
is possible to unambiguously determine the experimental parameters Cexp0 and βexp. It
should be noted that the idea of sharing current response data for two half-cycles of a
triangular voltage (a paired-ramp protocol) was used in [31–34] to measure the capacitance
of the model bilayer membranes and cells. In these works, to calculate capacitance, the
half-difference of the average values of the currents measured in a certain region in the
middle of the half-cycles of the command triangular voltage was used.

Figure 3a shows the experimental cyclic current–voltage characteristic, the upper
branch of which is the experimental response of the membrane to increasing voltage;
the lower branch is the temporal inversion of the current response of the membrane to
decreasing voltage.

Figure 3b shows the half-difference of the upper and lower branches of the cyclic
current–voltage characteristic divided by k (in pF) at the top and the half-sum (in pA) at
the bottom. The value of the parameter κ = 0.2, which determines the proportion of the
viscoelastic part of the membrane, is selected by the point separating the two exponents
of transient processes in response to a change in the sign of the slope of the triangular
voltage. Figure 3c shows the upper curve in Figure 3b in the region of low voltages and the
parabolic fit of this fragment. Comparison with Formula (18) makes it possible to uniquely
determine the parameters: C0 = 897 pF, βexp = 11 1/V2.

Formula (19), without taking into account transient processes, can be interpreted as
the membrane conduction current. It can be seen from the formula that, according to the
experimental data, only the value of the apparent conductance can be unambiguously
determined as the coefficient at U in Formula (13):

gapp = g− 4kβexpC0kτ (20)

The first component of apparent conductance is the ionic conductance of the mem-
brane. The second component is negative insertion conductance, the appearance of which
is associated with the combined action of the nonlinearity and viscoelasticity of the mem-
brane’s response to the applied voltage. The values of the parameters τ = 19 ms, g = 0.05 nS
are found from the best match of the shape of the experimental curve (Figure 3a) with the
calculation by Formulas (13) and (15) and the trend of the experimental half-sum (Figure 3d)
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with Formula (19). Theoretical curves, calculated by Formulas (13), (15), (18) and (19) with
these parameters are shown in Figure 3 (dotted lines).
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Figure 3. Experimental and theoretical curves of current responses of an azolectin membrane in
0.1 M KCl, to a triangular voltage with an amplitude 200 mV, a frequency 1 Hz (solid curves—
experiment, dotted curves—calculation by Formulas (13), (15), (18) and (19): (a)—cyclic current–
voltage characteristic of the membrane; (b)—half-difference/k—upper curve, half-sum—lower;
(c)—fragment of the capacitance curve and its parabolic fit, (d)—fragment of apparent negative
conductance and its linear fit.

As can be seen from Figure 3a,b at high applied voltages |U|> 150 mV, the current
sharply increases and the apparent conductance changes sign. In this voltage range,
the conductance sharply increases and, possibly, the coefficient of nonlinearity of the
capacitance decreases. For better agreement between the experimental and theoretical
curves, we take into account the possibility of the appearance of nonlinear conductance
at high voltages [27,28]. We approximate the conductance current by a ninth-degree
polynomial (3) with the parameter γ = 0.5 10−18 nS/mV8. It should be noted that we only
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indicated the trend of current growth at high voltages but did not set the problem and
could not adequately describe the experimental nonlinear conductance, since high currents
were often cut off by the amplifier.

3.2. Parameter κ and Transients

As can be seen from Figure 3a, the initial edge of the current curve is determined by
the transients that occur in response to the voltage jump Ũ when the sign of the slope of
the triangular voltage is reversed.

In some works [27,33], when analyzing the current response to the command voltage
in the form of a voltage step, relaxation processes are described by the sums of two
exponentials. The exponent with a shorter relaxation time is associated with the influence
of the setting. To refine the model and clarify the nature of the exponentials, we compared
the current response of the membrane to a periodic triangular voltage with that of a model
consisting of capacitance and resistance in parallel or only capacitance. Figure 4 shows the
results for two amplifiers with feedback resistances of 100 MΩ (a) and 5 GΩ (b).
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Figure 4. The initial phase of the jump in the amplifier output signal in response to a change in the
slope of the triangular command voltage with an amplitude of 50 mV and a frequency of 2 Hz for
model (1) and a membrane of azolectin in 0.1 M KCl (2), as well as their difference (3). The ordinate is
the ratio i/kC0 of the output current i to the steady-state capacitive current kC0, the abscissa is the
time since the beginning of the growing part of the command voltage. (a)—feedback resistance of the
amplifier is Rout = 100 MΩ, model capacitance is 3.14 nF and resistance is 680 MΩ, τ = 0.8 ms. (b)—the
feedback resistance of the amplifier is 5 GΩ, the leading edge does not depend on the capacitance
of the breadboard (measured for capacities of 1 and 1.89 nF, the curves in relative units coincide),
there was no resistance in the model, τ = 21 ms. (c)—calculated curves for different values of 1—κ: 1
(2), 0.4 (3), 0.15 (4), 0.1 (5), 1—experimental.
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Figure 4a,b show that the model’s initial current response is determined by the ampli-
fier’s feedback circuit and is independent of the capacitance in the amplifier’s input circuit.
The difference between the current responses of the model and the membrane shows the
exponential response of the membrane, strongly distorted by the amplifier with a large
time constant (Figure 4b). To refine the model, we take into account the feedback loop
of the amplifier (Figure 2). The voltage at the output of the amplifier Uout corresponding
to the current in the input circuit of the membrane I0, determined for the upward half-
cycles of the command voltage by (13) for an ideal amplifier, is described by the linear
differential equation:

dUout

dt
+

Uout

τout
=

I0Rout

τout
(21)

where τout = RoutCout; Rout is the resistance in the feedback circuit of the amplifier, Cout is
the parasitic capacitance.

With a command voltage amplitude of 50 mV, the nonlinearities of both conductance
and capacitance can be neglected; therefore, assuming β = 0 and γ = 0 and, for simplicity,
g = 0 in Formula (13), we obtain:

I0 = kC0 − 2(1−κ)kC0 exp
(
− t

τ

)
(22)

Substituting (22) into Equation (21) and solving it, we find the output current of
the amplifier

Uup,out(t)
Rout

= kC0 − (1−κ) 2kC0
1−τout/τ

[
exp

(
− t

τ

)
− exp

(
− t

τout

)]
−

2kC0 exp
(
− t

τout

) (23)

For τout/τ � 1 Formula (23) can be rewritten in the form

Uup,out(t)
Rout

= kC0 − 2(1−κ)kC0 exp
(
− t

τ

)
− 2κ0 exp

(
− t

τout

)
Figure 4c depicts the calculated initial current of the membrane response to the upward

cycle of command voltage for various values of the proportion of the viscous elastic part
in membrane 1 − κ. Thus, the presence of purely elastic and viscoelastic branches in the
equivalent circuit makes it possible to adequately describe the transient processes in the
current response of the membrane, which consists of two exponents. A value of 1 − κ in
the range of 0.1–0.2 is suitable for all considered experimental data.

3.3. Dynamical Responses and Pinched Hysteresis

To investigate the membrane memcapacitance, we plotted both experimental and
calculated hysteresis loops of the dynamic capacitance versus voltage (C-U). Pinched-
hysteresis loops are described in Formulas (16) and (17). The width of the hysteresis loop
in relative capacitance units is determined by the formula:

Cup − Cdown

C0
= (

g
kC0
− 4βexpkτ)U (24)

It is proportional to the apparent differential negative conductance and depends on
the sum of the values of the ionic conductance of the membrane and the insertion negative
conductance. Insertion negative conductance depends on the nonlinear capacitance charac-
teristics, the rate of growth of the triangular voltage and the parameter characterizing the
delay time of the membrane polarization from the electric field applied.

As can be seen from Formula (24), the width of the pinched hysteresis loops depends
on the parameters C0, β and τ, as well as the slope of the triangular voltage k.
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A set of representative results is presented in Figure 5. As can be seen from the
left column, in the studied frequency range, the parameters of the equivalent circuit, the
membrane nonlinearity, and the loop width also strongly depend on the frequency of the
periodic command signal. As the frequency decreases, k decreases, but the nonlinearity
coefficient β increases monotonically. The loop width proportional to the apparent negative
conductance is maximum at an intermediate frequency of 0.5 Hz. At a frequency of 0.01 Hz,
the hysteresis disappears and the apparent conductance becomes positive. At a frequency
of 1 Hz, the loop decreases; at 2 Hz, the current response of the membrane corresponds
to the current response of a linear capacitor. These frequency dependences are related
to the characteristic times of viscoelastic processes responsible for the delay of the true
field from the applied and dynamic capacitive response to a periodic triangular voltage.
At the amplitude of the triangular voltage 200 mV (Figure 5, middle column), the width
of the pinched hysteresis loops also strongly depends on the frequency of the command
voltage. At frequencies of 1 and 2 Hz, the apparent conductance is almost the same; at
a frequency of 0.2 Hz, the hysteresis disappears, and the apparent conductance becomes
positive. Unfortunately, at low frequencies, the membranes cannot withstand high voltage
and often break. An increase in amplitude (Figure 5, right column) at a constant frequency
of 2 Hz leads to an increase in apparent conductance and loop width in proportion to
increasing k. The nonlinearity of the capacitance practically does not change. The loop
width and, accordingly, the insertion conductance increase proportionally to k.
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(e,f,i) showing coefficient β values for membranes of azolectin, 0.1 M KCl depending on the character-
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0.01, 0.1, 0.5 and 1 Hz (β = 4, 11, 29, 47 V−2). Middle column (d–f): triangular voltage amplitude
200 mV, frequency 2, 1 and 0.2 Hz. Right column (g–i): frequency 2 Hz, triangular voltage amplitude
200, 250 and 300 mV.

Figure 6a shows the dependence of the apparent conductance of the membrane on the
frequency of a triangular voltage with an amplitude of 100 mV, as determined from the data
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in Figure 5c. The same figure shows the insertion conduction calculated by Formula (20)
with the parameters shown in Figure 6b. The frequency dependence of the nonlinearity
coefficient is determined as a calculated parameter from the experimental half-difference.
Figure 6b shows the values of the nonlinearity coefficients for various frequencies and
amplitudes of the triangular voltage. The same figure shows the frequency dependence
of parameter τ, chosen from the coincidence of the experimental and calculated current
responses to a triangular voltage of different frequencies and the slope of the apparent
negative conductance.
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Figure 6. (a): Dependence of apparent and insertion conductance calculated by Formula (20) with pa-
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did not take into account the ionic conductance of the membranes (g = 0). (b): Dependence of the
values of β and τ calculated from experimental data on the frequency of the triangular voltage.

In [35], an increase in BLM permeability in the presence of nanoparticles was shown.
Here, we decided to determine whether the current response of the membrane to triangular
voltage and the properties of the membrane change when particles are added. Figure 7
shows the change in the parameters of the nonlinear dynamic characteristics of the mem-
brane when hydrophobic nanoparticles of cobalt ferrite are added to the membrane solution.
As can be seen from Figure 7, the presence of particles changes the nonlinear dynamic
characteristics of the membrane: it leads to a noticeable decrease in the nonlinearity coeffi-
cient (from 8.3 to 2 V−2), a decrease in the width of the hysteresis loop and an apparent
negative conductance. The right side of the figure shows the effect of frequency on the
characteristics of a membrane with particles—as the frequency decreases from 1 to 0.1 Hz,
the nonlinearity coefficient increases from 2 to 6 V−2, while the hysteresis disappears, and
the apparent conductance is positive. Compared to particle-free membranes, the increase
in nonlinearity with decreasing frequency is approximately the same, but at a lower level.
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4. Discussion

All putative processes affecting the nonlinear dependence of capacitance on voltage
(electrostriction, solvent redistribution, thermal fluctuations) do not depend on the direc-
tion of the field and are approximated by an even degree polynomial. These effects are
dissimilar in physical origins and differ in the intensity of the action and different time
scales [1–5,10,25,26]. In the experiments we describe, which illustrate the adequacy of our
nonlinear mathematical model, the main reason for the nonlinear response of the membrane
to a triangular voltage at frequencies of 0.1–2 Hz and an amplitude of up to 300 mV is a
decrease in the thickness and, possibly, an increase in the area of the bilayer. These changes
in geometry arise due to the redistribution of the solvent between the microlenses and the
boundary and the electrostrictive compression of the monolayers.

It is known that bilayer lipid membranes with a solvent allow the electric field to create
large changes in geometry compared to “dry” membranes [1,7,11] and, accordingly, give
well-interpreted current responses to a periodic electrical stimulus. Although the solvent is
not part of biological membranes, an artificial membrane can serve as a model for studying
the influence of the characteristics of a periodic electrical field (amplitude, frequency, shape)
on the nonlinear electrical characteristics of the membrane and their correlation with the
properties of the membrane under various conditions.

In an equivalent circuit following the logic of work [23] related to modeling viscoelastic
dielectrics, we have divided the capacitive current of the membrane into two parts. The first
part is the current through the purely elastic linear part of the membrane. The second part
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is the current through the viscoelastic nonlinear part, the polarization of which lags behind
the command voltage. In the proposed equivalent circuit, this lag is provided by a resistance
in series with the viscoelastic part of the capacitance. As a result of solving a nonlinear
differential equation using the small parameter method, we obtain an analytical dependence
of the current response of a membrane with quadratic capacitance nonlinearity to a periodic
triangular voltage on time and membrane voltage. Already, the first approximation of
the method makes it possible to adequately describe the main effects observed in the
experiment. A comparison of the calculation with the experiment makes it possible to
determine the parameters of the equivalent circuit.

The nonlinearity coefficient β is maximum in the static mode and decreases with
increasing frequency due to a decrease in the number of processes that have time to follow
changes in the alternating field. For example, at a frequency of 125 Hz [10], the coefficient
of nonlinearity for the capacitance of BLM from azolectin in decane was 0.6 V−2, while in
our measurements, it varied from 47 to 5 V−2 in the range of 0.01–2 Hz (Figure 6).

The series resistance in our equivalent circuit is responsible for the relaxation of the
molecular processes occurring in the membrane under the action of an alternating electric
field. An analysis of the equation solution in comparison with the experiment shows that the
value of the equivalent series resistance enters the solution only through parameter τ, which
characterizes the membrane polarization delay with respect to the applied voltage. This
parameter, as well as the capacitance nonlinearity coefficient β, depend on the frequency of
the periodic command voltage (Figure 6) and on the relaxation times of capacitive processes
occurring in the membrane under the action of an electric field. The frequency range in
which we observe changes in the parameters corresponds to the relaxation times of the
solvent redistribution and expansion of the plato border 5 ms–5 s [4,5,24–26]. We use an
empirical formula for the nonlinear capacitance in our model without considering the
physical nature of the processes leading to nonlinearity. However, we believe that in our
particular experimental situation τ depends on the viscosity of the BLM solvent, which
is confirmed by studies of the capacitance characteristics for membranes with various
solvents [11].

A similarly shaped current response to a triangular voltage of higher frequencies and,
accordingly, associated with other physical processes with corresponding relaxation times
was discussed in [10]. To take into account time dependences, capacitance was introduced
into the model, which depends on time according to an exponential law in the same way
as in [22]. Since the processes preventing an instantaneous change in the polarization of
the membrane under the action of voltage are associated with energy losses, it seems more
physically adequate to use an equivalent circuit with a series of active resistance depending
on the frequency.

The existence of hysteresis phenomena in the current response of a nonlinear mem-
brane to a periodic triangular voltage was noted in early works [5,6]. These phenomena are
also discussed in works where DIB is used as a biological membrane model and dynamic
capacitive currents in membranes with different solvents are studied [7,8,11]. It was shown
in [11] that the existence of hysteresis is associated with voltage-dependent changes in the
bilayer geometry, which depend on the viscosity of the solvent (decane and hexadecane
were compared), temperature and the frequency of the command sinusoidal voltage.

In this context, in [11], it is proposed to consider DIB as the only variant of the physical
implementation of a memcapacitor with a geometry that changes under the action of an
electric field, where the effective distance between the capacitor plates or its area changes
in some way under the action of the applied voltage.

The authors believe that the presence of so-called pinched hysteresis in the charge–
voltage and capacitance–voltage coordinates makes it possible to assert that DIB with a
solvent is a realistic and physically justified model for passive memcapacitance in the
understanding of [12–14]. It is hypothesized that the non-conductive lipid bilayer of cells
(without ion channels) may also exhibit capacitive memory driven by voltage-dependent
changes of the dielectric, dominated by the hydrophobic core of the bilayer. In DIB ex-
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periments, pinched hysteresis in the capacitance–voltage planes results from dynamic
changes in interfacial area and hydrophobic thickness, each of which is nonlinearly de-
pendent on voltage. They believe that studies of bilayer lipid membranes can predict
new classes of biomimetic, low-power memelements based on soft, organic materials and
biomolecules, which, in turn, aid in exploring capacitive memory and susceptibility in
neuronal membranes.

We have shown that in the formula for the BLM current response to an applied trian-
gular periodic voltage, due to a combination of nonlinearity and polarization time delays,
insertion negative conductance appears, the effect of which is limited by the ion permeabil-
ity of the membranes. The total apparent conductance is a measure of pinched hysteresis.
When the negative insertion conductance is small or compensated for by the ionic con-
ductance of the membranes, the hysteresis and, correspondingly, the memcapacitance
properties disappear. Our model allows us to obtain analytical dependences of the curves
forming hysteresis loops (expressions (16), (17)) and to analyze the causes and features of
these loops.

Analyzing expressions (8, 9), we see that due to the presence of a series resistance
in the viscous branch of the equivalent circuit, the voltage Ũ lags from the command
triangular voltage U, proportional to the field strength (Figure 1). Because of this, hysteresis
appears on the experimental and theoretical curves I0 = f (U) in the presence of capacitance
nonlinearity. The general form of the formulas for the current of both half-cycles (13), (14)
corresponds to the condition memcapacitance Ic = A− BU + DU2 [17] at g < 4kβexpC0kτ.

The presence in the current of a term with a negative sign, proportional to the voltage,
is determined by the nonlinearity of the capacitance and the shift in the minimum of the
capacitive current relative to zero of the command voltage associated with the delay in the
polarization of the membrane. As a result (see Figure 8a), the part of the half cycle under
the left falling part of the parabola (the capacitor gives energy to the circuit) is greater than
the part when the capacitor is charged (energy is taken). The difference between these
energies is proportional to the negative insertion conductance, which reduces the losses in
the membrane. The calculated current curves of two half-cycles, forming pinched hysteresis
loops, are shown in Figure 8a–c for different values of the membrane ionic conductance.

When g + γU8 < 4βkC0kτ, the term in expression (13) proportional to U is negative
and the expression corresponds to the memcapacitance condition (Figure 8a). The current
minima in the upward and downward half cycles of the applied voltage are shifted to the
right (see Figure 8a). The energy released with a decrease in capacitance is greater than the
energy taken from the generator with an increase in capacitance; the apparent conductance
is negative, and hysteresis is observed.

When g + γU8 = 4βkC0kτ the current minima in the upward and downward half
cycles of applied voltage coincide and are observed at U = 0 (see Figure 8b). The energy
released when the capacitance decreases is equal to the energy taken from the generator
with an increase in capacitance; the apparent conductance and the loop width are zero.

When g + γU8 > 4βkC0kτ the term in expression (13) proportional to U is positive
and hysteresis is not observed (Figure 8c).

Thus, the observed pinched hysteresis is associated with nonlinear parametric capaci-
tance effects and is limited by membrane ionic conductance. In Figure 8a,c, for comparison,
experimental curves for membranes with low (a) and high (c) ionic conductance are shown.

Let us calculate the work of the source in a nonlinearly viscous system (without taking
into account transient processes), integrating over time over the period the product of
the total current and the command voltage. Assuming in Formulas (13) and (14) γ = 0,
βexp = (1−κ)β, U = −Umax + kt; U′ = Umax − kt, we get

W =
T
3

U2
max(g− 4βkC0kτ) (25)

Under the conditions of the existence of pinched hysteresis g < 4βkC0kτ the work is
negative and the memcapacitance process is active.



Membranes 2023, 13, 97 17 of 20
Membranes 2023, 13, x FOR PEER REVIEW  18  of  22 
 

 

 

Figure 8. Experimental (solid) and calculated (dotted lines) hysteresis curves  I ,   (red),  I , ,  

(blue) and their halfsum (green) and calculated ionic currents (dotted black lines) for three cases: 

with negative  (a), zero  (b) and positive  (c) apparent conductance. Experimental curves—current 

responses of the azolectin membrane in 0.1 M KCl with low (a) and high (c) conductance to a trian‐

gular voltage with a frequency of 2 Hz and an amplitude of 200 mV. Equivalent circuit parameters: 

C0 =  1120𝑝𝐹;  𝜏 10 𝑚𝑠; 𝛽 15 𝑉 ; 𝑓 2 𝐻𝑧; 𝑈 200 𝑚𝑉; γ = 0; g = 0 (a), 1.72 nS (b), 8 nS (c). 

Let us calculate the work of the source in a nonlinearly viscous system (without tak‐

ing into account transient processes), integrating over time over the period the product of 

the  total  current  and  the  command voltage. Assuming  in Formulas  (13)  and  (14)  𝛾
0, 𝛽 1 𝜘 𝛽, 𝑈 𝑈 𝑘𝑡; 𝑈 𝑈 𝑘𝑡, we get 

𝑊  𝑈 𝑔 4𝛽𝑘𝐶 𝑘𝜏     (25)

Under the conditions of the existence of pinched hysteresis 𝑔 4𝛽𝑘𝐶 𝑘𝜏  the work is 

negative and the memcapacitance process is active. 

Thus, the combination of nonlinear geometrical changes in the membrane under the 

action of an electric field and a delay in the polarization of the membrane due to viscous 

processes does not lead to energy losses, for example, in a ferroelectric, but leads to the 

appearance of  an  insertion negative  conductance. The  importance of  the  shape of  the 

curve of the nonlinear dependence of capacitance on voltage for viscoelastic effects was 

noted in [23] when analyzing a dielectric elastomer. Nonlinear charge–voltage character‐

istics for a membrane  𝑞 𝐶 𝑈 𝐶 𝑈   and a ferroelectric 𝑈 𝑞 𝑞  are inverse 

functions. 

Figure 8. Experimental (solid) and calculated (dotted lines) hysteresis curves I0,up (red), I0, down, inv
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responses of the azolectin membrane in 0.1 M KCl with low (a) and high (c) conductance to a
triangular voltage with a frequency of 2 Hz and an amplitude of 200 mV. Equivalent circuit parameters:
C0 = 1120 pF; τ = 10 ms; β = 15 V−2; f = 2 Hz; Umax = 200 mV; γ = 0; g = 0 (a), 1.72 nS (b), 8 nS (c).

Thus, the combination of nonlinear geometrical changes in the membrane under the
action of an electric field and a delay in the polarization of the membrane due to viscous
processes does not lead to energy losses, for example, in a ferroelectric, but leads to the
appearance of an insertion negative conductance. The importance of the shape of the curve
of the nonlinear dependence of capacitance on voltage for viscoelastic effects was noted
in [23] when analyzing a dielectric elastomer. Nonlinear charge–voltage characteristics for
a membrane q = C0U + β

3 C0U3 and a ferroelectric U = 1
C0

q + 1
C0

β
3 q3 are inverse functions.

The difference in the energetics of the processes can be shown by solving for a fer-
roelectric a similar nonlinear differential equation for q, (see Supplementary Material,
Equations 15S–20S). Current response to the upward half-cycle of the triangular voltage

I0up = kC0

(
1− βexpC2

0(U
2 + 5(kτ)2)

)
+
(

g + 4βexpkC3
0kτ
)

U (26)

Comparing this expression with Formula (13), one can see that, unlike the capacitance
of the membrane, the capacitance of a ferroelectric decreases with increasing voltage (in the
first approximation, along a parabola). This leads to the fact that the insertion conductance
in a circuit with ferroelectrics is positive and increases the losses in the system. There is
no pinched hysteresis in such a system. Thus, capacitive pinched hysteresis requires a
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combination of nonlinear capacitance vs. voltage at which the capacitance increases with
an increase in the electric field and a delay in the process of polarization of the dielectric,
leading to an increase in the fraction of energy given off by the capacitor to the circuit
during the upward half-cycle of the triangular voltage. Qualitatively, the energetics of the
processes are shown in Figure 9.
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Figure 9. Characteristics of membrane-memcapacitor (blue) and ferroelectrics (red): (a)—charge–
voltage characteristics, (b)—dependences of the nonlinear capacitance on voltage. For the membrane
in the absence of viscous effects in the first quarter of the period, the capacitor is discharged, the source
work is negative, in the second quarter it is charged, the source work is positive, the source work for
the half-cycle is zero, and the system is neutral. For a ferroelectric in the first quarter—charging, in
the second—discharging, the system is neutral. (c)—dependence of the dynamic capacitance of the
membrane (of the ferroelectric) on voltage. Due to the delay in polarization, part of the half-cycle
of the triangular voltage, when the capacitor is discharged, increases; as a result, there is a negative
insertion conductance. Delaying polarization with this type of nonlinearity reduces losses and results
in pinched hysteresis. The system is active. (d)—dependence of the dynamic capacitance of the
ferroelectric on voltage. Due to the delay in polarization, the part of the half-cycle of the triangular
voltage, when the capacitor is charged, increases; as a result—there is a positive insertion conductance.
Delaying polarization with this type of nonlinearity increases losses and does not show pinched
hysteresis. The system is passive.

5. Conclusions

We propose an equivalent circuit and mathematical framework for analyzing the
dynamic current response of a lipid bilayer membrane as an externally controlled mem-
capacitance. We apply our equivalent circuit to obtain analytical solutions for the current
response of a membrane to a triangular voltage without the need for numerical simula-
tions. Our explicit solutions and their comparison with the experimental data allow us
to identify the parameters of the equivalent circuit. These parameters control the mem-
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capacitor behavior of the membrane and, consequently, the amount of hysteresis in the
C-U characteristic.

We quantify the memcapacitance hysteresis in terms of the work done by the control
signal. We use the resulting analytical solutions to show that device hysteresis depends
on the negative conductance inserted by the non-linear capacitor, for which we obtain
explicit formulas in terms of the equivalent circuit parameters and characteristics of the
input signal.

The effects of the memcapacitance of membranes depend on the coefficient of non-
linearity of the capacitance and the parameter τ, which is associated with the relaxation
processes of capacitance change under the action of voltage. These processes can be of
a different nature and manifest themselves in different frequency ranges, depending on
the properties of the membrane (lipid, additives affecting the hydrophobic part of the
membrane). Memory effects may disappear with an increase in the ion permeability of
the membranes.
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