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Abstract: A large pore size Poly(vinylidene fluoride) (PVDF) membrane was prepared by the V-NIPS
method using PVDF/N, N-dimethylacetamide (DMAc)/Polyvinyl pyrrolidone (PVP)/Polyethylene
glycol (PEG) system. Firstly, the effect of different additive ratios on the membrane morphology and
pore size was studied, and it was found that when the PVP:PEG ratio was 8:2, PVDF membranes with
a relatively large pore size tend to be formed; the pore size is about 7.5 µm. Then, the effects of different
exposure time on the membrane morphology and pore size were investigated, and it was found that
as the vapor temperature increased, the pores on the surface of the membrane first became slightly
smaller and then increased. Finally, the effects of different vapor temperatures on the membrane
properties were discussed. The results showed that the as-prepared membrane exhibited suitable
capillary flow rate and similar performance compared with a commercially available membrane in
colloidal gold tests. The likely cause is that the amount of negative charge is less and the capillary
migration rate is too fast. This paper provides a reference for the preparation of PVDF colloidal gold
detection membrane.

Keywords: Poly(vinylidene fluoride); vapor non-solvent-induced phase separation; detection of
colloidal gold; capillary flow rate

1. Introduction

Lateral flow assays (LFAs) first emerged in the late 1960s, for monitoring serum
proteins. In 1976, LFA was first used to detect human chronic gonadotropin (HCG) in
urine [1]. From that time on, it has been widely used for rapid detection of biomarkers of
infections and various diseases, such as human immunodeficiency virus (HIV), malaria
and dengue virus [2]. As shown in Figure 1, the lateral flow test strip is composed of
several parts: a sample pad, a conjugate pad, a reaction membrane (usually nitrocellulose
membrane) and an absorbent pad, of which nitrocellulose (NC) membrane is the most
critical material.

NC membranes used for lateral flow testing require the two most relevant parameters:
(1) protein-binding capacity, and (2) protein capillary flow rate along the long axis [3].
Firstly, the strong dipole of nitrate interacts with the peptide bond of the antibody, which
immobilizes the antibody on the NC membrane through electrostatic interaction; usually,
these peptide bond cannot be fixed directly on NC membrane due to their small molecular
weight. Therefore, small molecules are often chemically coupled to large molecules such
as bovine serum albumin (BSA) and then fixed on NC membrane. BSA was used as the
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basis to evaluate the adsorption capacity of protein. Secondly, the NC membrane itself is
a hydrophobic material, but a surfactant is added during its membrane formation, and
the prepared membrane has a large pore size, so it can ensure that the sample to be tested
moves along the NC membrane through capillary action [1]. However, NC membrane
is a dangerous chemical and is extremely flammable, so special attention should be paid
during transportation and storage. Moreover, with the development of LFA, the mechanical
strength and protein adsorption capacity of NC membrane can no longer meet the current
application requirements. Therefore, it is necessary to develop new membrane materials
for LFA.
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Figure 1. Schematic diagram of immunochromatographic diagnostic strip.

Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer with -(CH2-CF2)n-
repeating units. It presents high thermal, chemical and aging resistance [4,5]. PVDF
membranes have been used in many application fields, including ultrafiltration (UF),
microfiltration (MF), membrane bioreactor (MBR), membrane distillation (MD) and so
on [4]. In addition, PVDF membranes also have some applications in biology. Ideris et al.
reported the effect of solvent dissolution temperature in the casting solution on PVDF
membrane protein binding. When the dissolution temperature was below 40 ◦C, the crystal
structure of PVDF had a greater influence on its protein-binding ability, and the lower the α
form, the stronger the protein-binding ability. However, above 40 ◦C, protein binding was
more affected by porosity, with more protein retained at higher porosity [6]. Furthermore,
additives are also important factors affecting membrane structure and properties. The
most common polymer additives are hydrophilic polymers, such as polyvinylpyrrolidone
(PVP) and polyethylene glycol (PEG). In the film-forming process, hydrophilic additives
can promote the formation of pores, improve the connectivity of pores, increase the water
flux of the membrane, and improve the hydrophilicity and pollution resistance of the
membrane. Li et al. studied the effect of PVP as an additive on the structure and properties
of PVDF hollow fiber membranes, and found that when using lower molecular weight PVP,
the permeability and retention performance of the membrane were improved, whereas the
higher molecular weight PVP would make the membrane structure dense, thereby reducing
its permeability [7]. Lin et al. found that when polyethylene glycol (PEG) was used as an
additive to make PVDF membrane, the surface pore size of the membrane increased with
the increase in PEG molecular weight, and the flux and retention rate were the opposite,
but increased with the increase in PEG content [8]. In this paper, PVP and PEG were
selected as additives, and their molecular weight, concentration and proportion parameters
were adjusted to improve the flatness, pore size uniformity and capillary migration rate
of the film. However, there is no literature on the preparation of large-pore-size PVDF
membranes and their application in LFA. Therefore, this paper discusses the conditions
for the preparation of large-pore-size PVDF membranes, such as the ratio of additives,
exposure time and temperature, etc. In addition, this paper used the prepared membrane
in LFA.

Non-solvent-induced phase separation (NIPS) is a common method for preparing
PVDF membranes. It involves pouring a polymer solution onto a suitable carrier and
then immersing it in a coagulation bath containing a non-solvent. The exchange of the
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solvent in the polymer solution with the non-solvent from the coagulation bath leads to
phase separation. Vapor-induced phase separation (VIPS) is a process in which the wet
membrane is first exposed to a gaseous non-solvent at a given temperature and humidity
for a period of time, and then immersed in a non-solvent solidification bath. If exposure
time is moderate, the phase transformation mechanism will be a combination of VIPS and
NIPS (i.e., N-VIPS).

2. Experimental Procedure
2.1. Material

PVDF 6010 (Mw = 600,000) powder was purchased from Shanghai Solef Co., Ltd.,
Shanghai, China. Dimethylacetamide (DMAc) (>99.8%) used as solvent was purchased
from Shanghai Aladdin Reagent Co., Ltd., Shanghai, China. Polyvinylpyrrolidone (PVP
K90, Mw = 360,000) was purchased from TCI Co., Ltd. Shanghai, China. Polyethylene
glycol (PEG 600) was purchased from Beijing OKA Biological Technology Co., Ltd., Beijing,
China. Bovine albumin (BSA, A1933-5G) was purchased from Anhui Senrise Technology
Co., Ltd. Fuyang, China.

2.2. PVDF Membrane Preparation

A quantity of PVDF 6010 and additives (PVP K90 and PEG 600) was dissolved in
DMAc in a flask, with the temperature set at 60 ◦C to promote full dissolution, and stirred
for 12 h, in order to obtain a homogeneous casting solution. The mass fraction of PVDF
was 16%, the mass fraction of DMAc was 74% and the total mass fraction of additives was
10%. The solution was then degassed until it became clear of bubbles. A desktop coater
(with the knife height adjusted to 250-µm and speed set to 1.0 m·min−1) was used to scrape
the membrane. Both glass and nascent membrane were then placed on a water bath at 90%
humidity at 60 ◦C and exposed for a while. The exposure was aimed at exchanging the
solvent with water vapor. Then the glass was placed in ambient deionized water (DI water)
for further solvent exchange. Finally, the resulting membranes were washed several times
with DI water to remove residual DMAc, and then dried in air. The detailed process is
shown in Figure 2 and Table 1.
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Table 1. Membrane codes for different additive ratios, exposure times and vapor temperatures.

Membrane Code Additive Ratio
(PVP:PEG) Exposure Time (min) Vapor Temperature (◦C)

M1 4:6 5 60
M2 6:4 5 60
M3 8:2 5 60
M4 8:2 0.25 60
M5 8:2 0.5 60
M6 8:2 1 60
M7 8:2 3 60
M8 8:2 5 60
M9 8:2 10 60

M10 8:2 5 50
M11 8:2 5 60
M12 8:2 5 70

2.3. PVDF Membrane Characterization

The surface and cross-sectional morphologies of the prepared PVDF dry membranes
were observed by cold field emission scanning electron microscope (FESEM, S-4800, Hitachi
Limited, Tokyo, Japan). All samples were freeze-fractured in liquid nitrogen and sputtered
with gold membranes.

A X-ray diffractometer (XRD, Miniflex 600, Rigaku Corporation, Tokyo, Japan) with
a Cu target was used to determine the crystallinity of the prepared PVDF membranes.
Operating parameters included tube current and acceleration voltage of 15 mA and 40 kV,
respectively; angle range of 5–60◦; and scan speed of 5◦·min−1.

The functional groups in the prepared membranes were analyzed using a Fourier
Transform infrared spectrometer (FTIR, Nicolet 8700, Thermo Fisher Scientific, Waltham,
MA, USA). In this section, a diaphragm of a certain size was placed on the sample rack and
scanned 32 times in attenuated total reflection (ATR) mode with a resolution of 4 cm−1 and
a test wave number ranging from 500 to 4000 cm−1

An electrokinetic analyzer (SurPASS 3, Anton-Paar, Graz, Austria) was used to deter-
mine the surface charge of the membranes. Prior to analysis, the membrane was air-dried
and the machine was cleaned with DI water. Then, 0.015 g potassium chloride (KCl) was
dissolved in 250 mL deionized water to prepare KCl electrolyte solution. The streaming
potential was determined by using 0.1 M HCl and NaOH to adjust the pH.

The porosity of PVDF membrane was measured by the gravimetric method. The
sample was soaked in kerosene for 24 h until the membrane was completely wetted, and
then the kerosene on the surface of the membrane was wiped away, leaving only the
kerosene remaining in the membrane holes. The weight of the dry membrane and the wet
membrane were recorded as m0 and m1, respectively. The following formula was used to
calculate the porosity of the membrane:

ε =

m1−m0
ρk

m1−m0
ρk

+ m0
ρp

× 100% (1)

Here, ρk and ρp are the density of kerosene (about 0.81 g/cm3) and PVDF (about
1.78 g/cm3), respectively.

A tensile testing instrument (HLD 1000, Handpi, Jinhua, China) was used to measure
the mechanical properties of prepared membranes. Each sample was first cut into 5 cm
long and 1 cm wide strips using a Japanese knife mold. The thickness of each sample was
measured by an electronic digital membrane thickness meter before the test. Both ends of
the sample were fixed and stretched at a constant rate of 5 mm/min (25 ◦C). The electronic
tension meter was set to zero and the original length of the sample L0 (cm) was recorded.
It was slowly stretch until the test sample broke. The sample length L (cm) at this time
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and the tension data F (N) shown by the tension meter were recorded. The formula for
calculating the elongation at break and tensile strength of the membrane are as follows:

θ =
L − L0

L0
× 100% (2)

σ =
F
A

(3)

The pore size of prepared PVDF membranes was determined using a Liquid–Liquid
Pore Size Distribution Meter (GaoQ-PSMA-10, GaoQ, Nanjing, China).

The capillary migration rate of the prepared membrane was measured by the following
steps. The sample was cut into 2 cm wide by 6 cm long pieces and DI water was used as the
migration medium. Experiments were performed at room temperature (27 ◦C) and ambient
pressure. The measurement started when the membrane was in contact with deionized
water and the water migrated along the membrane surface for about 5 mm, and stopped
when the water migrated to the membrane surface for 4 cm. The experimental process is
shown in Figure 3.
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The membrane-binding ability was evaluated by a model protein BSA. Each sample
was cut into 1 cm wide by 2 cm long membrane strips and put into a conical beaker
containing 4 mL of BSA solution (1 mg/mL). The mixture was incubated at 37 ◦C for 5 h
with a shaking speed of 100 rpm. Each membrane was measured three times and averaged.

3. Results and Discussion
3.1. Additive Ratios

The morphologies of the membranes prepared with different additive ratios are shown
in Figure 4a. The morphologies of membranes M1 and M2 are relatively similar, with
a sponge-like structure in cross section, whereas M3 has a large micron-scale cavity in
the cross section. This is because when the PVP content is low, the liquid–liquid phase
separation occurs mainly in the casting liquid, and it is easier to form spongy pores [9,10].
It is also because the addition of PEG will increase the flatness of the membrane and the
uniformity of the membrane. As shown in Table 2, with the increase in PVP content, the
viscosity of the casting liquid increases, which slows down the exchange of solvent and
non-solvent [11]. At this time, PVP is a high-molecular-weight additive, which increases
viscosity, and delays the phase separation. After partially aggregated PVP is eluted, a large
cavity shape appears [12,13].

The pore size distributions of membranes prepared with different additive ratios are
shown in Figure 4b. When the ratio of PVP to PEG is 4:6 and 6:4, the pore sizes of the
prepared membranes are about 1.3 microns and 1.2 microns, respectively; when the ratio
reaches 8:2, the pore size of the prepared membrane is about 7 microns, which is consistent
with the SEM photos. This is because when the ratio of PVP and PEG is relatively close,
the viscosity of the casting solution is not much different, but when the ratio of PVP and
PEG reaches 8:2, the viscosity of the casting solution increases significantly, hindering the
phase separation kinetics. The hydrophilicity significantly improves the thermodynamics
of phase separation. For the polymer-solvent-non-solvent ternary system, hydrophilic PVP
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with larger molecular weight can replace part of the polymer and increase the miscible
region; the affinity with polymers and solvents is changed, increasing the thermodynamic
in-stability of the casting film; and the binodal curve becomes closer to the (polymer)–
(solvent/non-solvent) axis. PEG with smaller molecular weight can be regarded as a weak
non-solvent. When replacing part of the solvent in the casting solution, the difference in
the composition of different parts of the casting solution caused by the diffusion rate in
the film-forming process can be reduced. The effect is to reduce the time difference in the
phase-separation process and improve the uniformity of the membrane aperture.
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Figure 4. (a) SEM images of PVDF membranes prepared with different additive ratios of (A,B) 4:6,
(C,D) 6:4 and (E,F) 8:2. (b) Pore size distribution of PVDF membranes prepared with different
additive ratios.

Table 2. Viscosity of casting solution with different additive ratios.

Additive Ratio (PVP:PEG) Viscosity (cp)

4:6 7230 ± 42
6:4 12,660 ± 85
8:2 21,930 ± 127

The combined effect of PVP K90 on thermodynamic and kinetic phase-separation
mechanisms can explain the significant increase in membrane pore size. Due to the expan-
sion of the molecular chain, the fluidity of the PVP K90 chain is limited, so the outflow
rate of PVP in the solidification bath is slower. However, the presence of a large amount
of PVP in the solution increases the phase conversion rate, resulting in a large pore size.
In addition, some of the retained molecules of PVP K90 leave the primary membrane and
dissolve in water after delamination, forming further pores within the polymer membrane.
In addition, the significant increase in pore size is due to the slow rate of non-solvent
exchange during the VIPS process, and nucleation plays a crucial role in the dilute phase of
the polymer, contributing to the formation of large-pore-size membranes [14].
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3.2. Exposure Time

The morphologies of membranes prepared with different exposure times are shown in
Figure 5a. When the exposure time was 15 s, the membrane showed a finger-like structure
with a dense layer on top. Due to the short exposure time, the casting liquid quickly
entered the NIPS process. Rapid exchange occurs because of a high affinity between non-
solvent and solvent. Therefore, the solvent flowing out into the coagulation bath brought
the polymer chains to the top surface of the membrane, resulting in a higher polymer
concentration on the top surface of the membrane, forming a dense skin layer [15]. When
the exposure time was 30 s, pores began to appear on the surface, finger-like pores still
appeared on the cross section, and large cavities began to appear. When the exposure
time was 1 min, macropores began to appear on the surface of the membrane, and the
cross-section showed a micron-scale cavity structure. With the increase in exposure time,
the number of pores on the surface of the membrane increased, and the exposure time of
3–10 min had little effect on the cross section, and all showed micron-scale cavity structure.
This is because as the exposure time increases, especially when the exposure time is greater
than three minutes, the casting film solution enters the NIPS process from the previous
state very quickly, and thus it first goes through a longer VIPS process and then enters the
NIPS process; therefore, the solvent and non-solvent exchange rates slow down, and pores
begin to appear on the membrane surface. The cross-sectional structure changes from a
finger-like macroporous structure to a sponge-like structure [16,17]. However, due to the
high molecular weight of PVP, agglomeration occurs with the increase in VIPS time, so a
large amount of PVP is eluted during the NIPS process, resulting in large cavities in the
cross-sectional structure.
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Figure 5. (a) SEM images of PVDF membranes prepared with different exposure time of (A,B) 15 s,
(C,D) 30 s, (E,F) 1 min, (G,H) 3 min, (I,J) 5 min and (K,L) 10 min. (b) Pore size distribution of PVDF
membranes prepared with different exposure times.

The effect of exposure time on the membrane pore size distribution is shown in
Figure 5b, which also includes the morphologies of the membranes after drying. It can
be seen from the figure that the pore size distribution of the membranes prepared with
different exposure times is narrow, and from the morphologies of the membranes after
drying, it can be seen that the membranes prepared with the exposure time of 15 s−1min
are all curled. The reason is that when the exposure time is short, the PVP in the casting
solution does not aggregate and may diffuse out in a large amount during the phase
separation process, whereas with the increase in the exposure time, the PVP aggregates
and participates in the membrane formation. Because PVP is a hydrophilic additive [18],
the membrane flatness is high after drying. The change of exposure time not only changes
the composition of the casting solution, but also changes the aggregated structure of the
polymer in the casting solution. The influence of humidity is obvious. Chen et al. found that
at low humidity, the membrane aperture changed little with the increase in exposure time,
whereas at high humidity, the membrane aperture increased with the increase in exposure
time [19]. Dehban et al. reported that in the indoor environment, the membrane aperture
showed a trend of first increasing and then decreasing and then increasing with the increase
in exposure time [20]. Therefore, there is no specific relationship between exposure time
and aperture and the effect of exposure time on the pore size of the membrane is unclear.

3.3. Vapor Temperature

The morphologies of membranes prepared at different vapor temperatures are shown
in Figure 6. The cross sections of membranes prepared at different vapor temperatures are
not very different, and all of them are partially sponge-like and contain larger micron-scale
cavities, but the surface of the prepared membrane is slightly different. As the vapor
temperature increases, the pores on the surface of the membrane first become slightly
smaller and then increase. This may be because when the solvent evaporation temperature
is lower than the dissolution temperature, the mass transfer rate of the VIPS process is slow,
so that a large amount of PVP is eluted on the membrane surface. When the evaporation
temperature is higher than the dissolution temperature, the phase-transition mechanism is
mainly the combination of VIPS and NIPS, which also leads to the elution of a large amount
of PVP.
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Figure 6. SEM images of PVDF membranes prepared at different vapor temperatures. (A,B) 50 ◦C;
(C,D) 60 ◦C and (E,F) 70 ◦C.

Figure 7a shows the pore size distribution of PVDF membranes prepared at different
vapor temperatures. It can be seen from the figure that the pore size distribution of the
membrane prepared at the vapor temperature of 60 ◦C is the most concentrated, around
8 microns. In addition, the membranes prepared at 50 ◦C and 70 ◦C are concentrated at
around 16 and 20 microns, respectively. This is consistent with the SEM photo results.
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Figure 7. (a) Pore size distribution, (b) XRD spectra, (c) FT-IR spectrum, (d) zeta potential, (e) capillary
flow rate and porosity, (f) tensile strength and elongation at break and (g) protein adsorption capacity
of PVDF membranes prepared at different vapor temperatures.
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Figure 7b shows the result of XRD study of the prepared membranes. The crystallites
of the membranes prepared at different vapor temperatures are a mixture of α and β
forms. The XRD patterns of the prepared membranes show that the PVDF crystallites
have three characteristic peaks at ca. 18.3◦ (α), 20.1◦ (β), and 26.56◦ (α). Polarized FTIR
spectra (Figure 7c) were used to characterize the crystalline characteristic peaks of the PVDF
membranes. The characteristic peaks appear at 762, 796, 876, 1070, 1178 and 1423 cm−1,
which are similar to those observed on PVDF membranes mainly containing α phase,
whereas other crystal characteristic peaks at 840 and 1402 cm−1 can be attributed to the β
phase [21,22].

Figure 7d shows the zeta potentials of PVDF membranes prepared at different vapor
temperatures. At pH = 7, the surface of the membrane prepared at 60 ◦C had the greatest
negative charge. Since the pore size of the membrane prepared at 60 ◦C is relatively small,
it indicates that more PVP was involved in the membrane formation on the membrane
surface. PVP is a hydrophilic material [15], which reduces the absorption of negative ions
on the membrane surface in the electrolyte solution, thereby reducing the negative zeta
potential of the membrane surface [23].

The capillary flow time and porosity of membranes prepared at different vapor tem-
perature are shown in Figure 7e. With the increase in the vapor temperature, the capillary
flow time shows a gradually decreasing trend. The porosity of several membranes is not
very different, but due to the increase in temperature, the mass-transfer rate increases [24],
and the exchange rate of solvent and non-solvent increases during the VIPS process,
which improves the internal connectivity of the membrane, thereby decreasing its capillary
flow time.

The tensile strength and elongation at break of membranes prepared with different
vapor temperatures are shown in Figure 7f. As the vapor temperature increases, the tensile
strength shows a slightly increasing trend, which is similar to the findings of Zhao et al. [25].
This may be because the formation of spherulites in the PVDF membrane is inhibited with
increasing vapor temperature, resulting in increased membrane strength. The elongation at
break shows a trend of first increasing and then decreasing.

Figure 7g shows the protein-binding capacity of PVDF membranes prepared at dif-
ferent vapor temperatures. It can be seen from the figure that there is little difference in
the protein adsorption capacity of several membranes, at about 15 µg/cm2. The protein
adsorption capacity of the membrane is related to many factors, such as pore size, porosity
and crystal form [6]. The protein adsorption capacity of these membranes is low and close,
because the porosity of the membranes is similar and the pore size is larger, and the protein
cannot be fixed in the pores of the membranes.

Figure 8 shows the application of PVDF membranes prepared at different vapor
temperatures in the actual colloidal gold test strips. As can be seen from the figure,
compared with the commercially available NC membrane, the test line T of the self-made
membrane did not develop color, and the quality-control line C developed a light color.
This may be because the protein adsorption capacity of these membranes was low, and the
surface had less negative charge, and could not form stable binding with the antibodies
immobilized on the surface. The capillary flow rate is too fast, making it difficult for
unadsorbed antibodies to be firmly anchored on the membrane surface. It is easily washed
away by the sample to be tested, resulting in an inconspicuous line display [3].
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4. Conclusions

In this paper, we proposed a method to prepare large-pore-size PVDF membranes,
and use them for immunoassay. The morphologies of the membranes prepared at different
additive ratios, exposure times and vapor temperatures were explored. The results showed
that when the ratio of PVP to PEG was 8:2, the pore size of the membrane was the largest,
because the high-molecular-weight additives of PVP agglomerated and formed larger
cavities after elution. As the exposure time increased from 10 s to 1 min, the membrane
surface gradually changed from dense to porous because solvent and non-solvent exchange
became slower; however, the effect of exposure time on the pore size of the membrane is
unclear. Membrane morphology and structure are similar at different vapor temperatures,
and they exist as a mixture of α and β forms. When the vapor temperature was 60 ◦C,
the membrane had the most concentrated pore size distribution and the greatest negative
charge. As the vapor temperature increased, some other properties also changed. The
capillary flow rate decreased and the strength and elongation at break increased. Finally,
the PVDF membrane we prepared has a certain capillary flow rate and protein adsorption
performance, which proves to be effective for colloidal gold tests. The protein adsorption
capacity of the membrane can be improved by surface modification, and the influence of
humidity should be further investigated. In addition, the surface flatness of the self-made
membrane is lower than that of the commercial membrane. Therefore, it is necessary to
optimize the formula and improve the overall uniformity of the PVDF membrane.
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