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Abstract: Chabazite (CHA)-type zeolite membranes are a potential material for CO2 separations
because of their small pore aperture, large pore volume, and low aluminum content. In this study,
the permeation and separation properties were evaluated using a molecular simulation technique
with a focus on improving the CO2 separation performance. The adsorption isotherms of CO2 and
CH4 on CHA-type zeolite with Si/Al = 18.2 were predicted by grand canonical Monte Carlo, and
the diffusivities in zeolite micropores were simulated by molecular dynamics. The CO2 separation
performance of the CHA-type zeolite membrane was estimated by a Maxwell–Stefan equation,
accounting for mass transfer through the support tube. The results indicated that the permeances
of CO2 and CH4 were influenced mainly by the porosity of the support, with the CO2 permeance
reduced due to preferential adsorption with increasing pressure drop. In contrast, it was important
for estimation of the CH4 permeance to predict the amounts of adsorbed CH4. Using molecular
simulation and the Maxwell–Stefan equation is shown to be a useful technique for estimating the
permeation properties of zeolite membranes, although some problems such as predicting accurate
adsorption terms remain.

Keywords: CO2 separation; zeolite membrane; chabazite; grand canonical Monte Carlo; molecular
dynamics; Maxwell–Stefan equation

1. Introduction

Zeolite membranes separate via molecular sieving and selective adsorption, which
makes them a promising candidate technology for energy-efficient separations. Geus et al.
successfully formed polycrystalline MFI-type zeolite layer on a porous substrate and
investigated the permeation properties of hydrocarbons [1–5]. In the 1990s, Kita and
coworkers developed a commercially available LTA-type zeolite membrane and applied it
to dehydration of ethanol [6–8].

Although it is well known that polymeric membranes are currently employed [9–12],
zeolite membranes exhibit excellent dehydration performance. FAU, DDR, AEI, and CHA-
type zeolite membranes show high CO2 separation performance [13–28]. Kusakabe et al.
developed the FAU-type zeolite membranes, and the influence of the membrane composi-
tion and cations species on the adsorption and diffusion properties of CO2 in the zeolite
were investigated to improve the CO2 separation performance [13–16]. As a result, the CO2
permeance and CO2/N2 permeance ratio were ca. 10−6 mol m−2 s−1 Pa−1 and 40–100, re-
spectively. Noble and coworkers investigated a SAPO-34 membrane and applied it to CO2
separation from CH4 [17–19]. The CO2 permeance and CO2/CH4 permeance ratio were
ca. 10−6 mol m−2 s−1 Pa−1 and 80–170, respectively. DDR-type zeolite membranes [20,21]
exhibited a higher CO2/CH4 permeance ratio of 200–2000, although the CO2 permeance
was lower than those of FAU and CHA-type zeolite membranes. Recently, we have devel-
oped a high-silica CHA-type zeolite membrane (Si/Al = 18) for CO2 separation [26–28].
The CO2 permeance and CO2/CH4 permeance ratio were ca. 5 × 10−7 mol m−2 s−1 Pa−1
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and 200, respectively. This is important for improving the CO2 separation performance to
understand the permeation mechanisms in zeolite membranes.

There are many reports about the permeation and separation mechanisms in zeo-
lite membranes [3–5,14–16]. Since CO2 and hydrocarbon molecules adsorb onto zeolite
strongly, the adsorbed molecules move to a neighboring adsorption site according to the
concentration gradient across the membrane. The permeation phenomenon due to the
surface diffusion is quantitatively described by the Maxwell–Stefan equation [3–5]. Many
studies have predicted the permeation and separation properties of zeolite membranes
from the adsorption and diffusion properties of single gases. Bakker et al. checked that
the equation is suitable for expression of the single gas permeation properties through
a silicalite-1 membrane [4]. Additionally, van den Broeke et al. applied the equation to
separation of binary hydrocarbon mixtures [5], and the gas permeation properties for binary
mixtures could be described using the adsorption and diffusion parameters obtained by
single component gases.

The permeation and separation properties of zeolite membranes are explained by
adsorption of molecules on zeolite and diffusion in zeolite channels. Both the adsorption
and diffusion properties can be predicted by molecular simulation such as grand canonical
Monte Carlo and molecular dynamics, respectively [29–34]. Vujic et al. reported the
potential parameters applicable to many zeolites [33].

In this study, the CO2 separation performances of CHA-type zeolite membranes with
Si/Al = 18 were predicted using the molecular simulation technique and Maxwell–Stefan
equation to understand the permeation behavior in CHA-type zeolite membranes.

2. Theory
2.1. Molecular Simulation

The interaction between adsorbate and adsorbent atoms is described as the sum of
interactions between bonded and nonbonded atoms as [33]:

Φt = Φbond + Φnon−bond. (1)

The interaction between bonded atoms is calculated as the sum of bond-stretching
and angle-bending as:

Φbond = Φbond−stretch + Φangle−bend, (2)

Φbond−strech =
1
2

kb(r− r0)
2, (3)

Φangle−bend =
1
2

kθ(θ − θ0)
2, (4)

where kb and kθ are the force constants for bond-stretching and angle-bending, respectively.
The interaction between nonbonded atom pair is calculated as the sum of van der Waals
and coulomb interactions as:

Φnon−bond = ΦvdW + Φcoulomb, (5)

ΦvdW = 4φij

(σij

rij

)12

−
(

σij

rij

)6
, (6)

Φcoulomb =
1

4πε0
·

QiQj

rij
, (7)

where the depth of interaction φij and zero-interaction distance σij for the pair of different
atoms are calculated as:

φij =
√

φiφj, (8)
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σij =
1
2
(σi + σj). (9)

When two atoms are in the same structure and separated by three covalent bonds
(known as a 1–4 interaction), the interaction is treated as a nonbonded interaction with
scaling factor of 0.5. Nonbonded interactions are ignored for directly bonded atoms
(1–2 interaction) and two atoms separated by two bonds (1–3 interaction) since they are
included in the bond-stretching and angle-bending interactions.

2.2. Gas permeation through Zeolite Layer

Zeolite membranes are often prepared on porous supports, as shown in Figure 1. The
molecules are transferred by the concentration gradient across the membrane.
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Figure 1. Schematic illustration of concentration gradient across the zeolite membrane supported by
porous substrate. Cf is the concentration in the feed, Cp is the concentration in the permeate, and Ci

is the concentration at the interface of the zeolite and support layers.

In the zeolite layer, molecules adsorbed on the adsorption sites within zeolite chan-
nels, and then move to a neighboring site according to the concentration gradient. The
permeation flux is described as [3–5]: J1

...
Jn

 = −ερ

a1 · · · 0
...

. . .
...

0 · · · an


B11 · · · B1n

...
. . .

...
Bn1 · · · Bnn


−1Γ11 · · · Γ1n

...
. . .

...
Γn1 · · · Γnn


∇Θ1

...
∇Θn

. (10)

The elements of matrix B are calculated by:

Bii =
1

Di
+

n

∑
j = 1
j 6= i

Θj

Dij
, Bij = −

Θi
Dij

, (11)

where the mutual diffusivity can be approximated as:

Dij = D
Θi/(Θi+Θj)

i D
Θj/(Θi+Θj)

i . (12)
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When the adsorption isotherm is described by a Langmuir Equation (13), the elements
of matrix Γ are described using Equation (14).

qi = aiΘi =
aibi pi

1 + ∑ bi pi
, (13)

Γij = δij +
Θi

1−
n
∑
i

Θi

, (14)

where δij = 1 for i = j, and δij = 0 for i 6= j. The adsorption and diffusion parameters are
summarized in Tables 2 and 3, respectively.

2.3. Mass Transfer in the Support Tube

In the porous support tube, the overall permeation flux is:

Jt =
n

∑
i

Ji = D
dC
dL

, (15)

where L is the thickness of the support, and C is the concentration shown by:

C =
εp
RT

, (16)

where ε is the porosity of the support. The diffusivity in the porous support is estimated by
the Fuller equation [4,35]:

D =
1.01× 10−5T1.75(M−1

i + M−1
j )

1/2

p(V1/3
i + V1/3

j )
2 , (17)

where Mi is the molecular mass of component i and Vi is the diffusion volume of com-
ponent i. The diffusion volumes of CO2 and CH4 were taken as 26.9 cm3 and 25.1 cm3,
respectively [35].

3. Methods
3.1. Adsorption on Zeolites

The adsorption isotherms of CO2 and CH4 on the CHA-type zeolite were simulated by
a grand canonical Monte Carlo (GCMC) technique using software (Biovia, Materials Studio
2021 Sorption). For the GCMC simulation, fugacity was applied to the canonical ensemble,
and the number and location of molecules with the lowest potential energy were calculated
probabilistically. The cutoff distance of the van der Waals interaction was 1.25 nm, and the
Ewald summation method was used for the integration of the coulomb interaction. The
total number of Monte Carlo cycles were 106, and the average of the final 105 steps were
used as the simulation result. The fugacity was assumed to be equal to the pressure in this
study since the difference between fugacity and pressure is less than 5% below 1 MPa.

Figure 2 shows the atomistic models of CO2, CH4, and CHA-type zeolite. The model
of the CO2 molecule reported by Harris et al. [36] was used. This model can describe the
gas–liquid coexistence curve including the critical point region. The carbon atom was
connected to two oxygen atoms by chemical bonds 0.1149 nm long, and the bond-stretching
was ignored (kb = 0). The original angle of O=C=O was 180◦, and the force constant was
kθ = 1236 kJ mol−1 rad−2. For CH4, the model reported by Siepman et al. [37] was used.
The carbon atom was connected to four hydrogen atoms with bond lengths of 0.11 nm,
and each H-C-H angle was 109.5◦. Although the bond-stretching and angle-bending are
ignored in this model (kb = kθ = 0), the gas–liquid coexistence curve can be expressed. The
crystal structure of the CHA-type zeolite was imported from the IZA zeolite database [38].
The CHA-type zeolite model with a composition of Si91Al5Na5O192 was prepared by
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substituting Si atoms with Al atoms followed by introduction of Na+ cations by GCMC
simulation. Table 1 lists the non-bonding interaction parameters for CO2, CH4, and zeolite.
Vujic et al. reported that the adsorption of gases such as CO2 on CHA-type zeolite can be
predicted with high accuracy by using these parameters [33].
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Figure 2. Atomistic models of CO2, CH4, and CHA-type zeolite used in this study.

Table 1. Nonbonding interaction parameters of CH4, CO2, and zeolite.

Molecule Element σ (nm) ε/k (K) q (e) Ref.

CH4 C 0.3730 148.0 0 [33]
H — — 0

CO2 C 0.2757 28.1 0.6512 [32]
O 0.3033 80.5 −0.3256

Zeolite Si 0.2970 32.0 1.413 [29]
Al 0.3140 24.0 1.072

O(Si–O–Si) 0.3011 52.0 −0.7065
O(Si–O–Al) 0.3011 55.0 −0.8712

Na 0.3230 234.1 1.000

3.2. Diffusion in Zeolite

The self-diffusivities of CH4 and CO2 in CHA-type zeolite channels were also sim-
ulated by a molecular dynamic technique (Biovia, Materials Studio 2021 Forcite Plus).
CH4 and CO2 molecules were adsorbed at 1 MPa by GCMC, and the molecular dynamic
simulation was conducted with a time step of 2 fs. The total simulation time was 1 ns, and
the mean square displacement every 10 ps was plotted against the simulation time. The
self-diffusivity was calculated using the slope by the Einstein equation. The procedure was
repeated 5 times and the average value taken as the diffusivity.

4. Results and Discussion
4.1. Adsorption Isotherms

Figure 3 shows the adsorption isotherms of CO2 and CH4 on the CHA-type zeolite with
Si/Al = 18.2 at 253–473 K. The amounts of adsorbed CO2 at 253 K increased significantly
at low pressures and was 6.0 mol kg−1 at 100 kPa. At higher pressures, in contrast, the
increment became small, with 7.1 mol kg−1 adsorbed at 1000 kPa. This isotherm is typical
for adsorption in micropores, and the relationship is described by the Langmuir equation
(Equation (13)). The adsorption isotherms of CO2 became linear as temperature increased.
A similar trend was observed for CH4. The estimated isotherms were calculated for
each temperature using the simulated points by Equation (13) and are shown as lines in
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Figure 3. The agreement between simulated points and estimated isotherm suggests the
Langmuir equation is applicable at 253–473 K. Furthermore, the adsorption isotherms
of CO2 and CH4 on CHA-type zeolite have been reported by several groups [39,40] and
our simulated isotherms agree well with their experimental data, which suggests that the
potential parameters are reasonable for simulating the adsorption and diffusion behaviors
of CO2 and CH4 for CHA-type zeolite.
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Si/Al = 18.2 at 253–473 K. Symbols describe the simulated data, and lines are calculated values
by Equation (13) and Table 2.

Table 2. Pre-exponential factors and activation energies of CO2 and CH4 for the adsorption on
CHA-type zeolite with Si/Al = 18.2.

Unit CO2 CH4

ai
* mol kg−1 1.24 1.92

Ea kJ mol−1 3.8 1.6
bi

* kPa−1 5.53 × 10−6 3.57 × 10−6

Eb kJ mol−1 20.0 15.0

Figure 4 shows the effect of temperature on the adsorption amounts at saturation
and Langmuir constants of CO2 and CH4. Both the saturated adsorption amounts, a, and
Langmuir constants, b, decreased with increasing temperature. An Arrhenius dependence
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was observed, as is typical for adsorption isotherms, with the temperature dependencies
described by:

ai = a∗i exp
(
− Ea

RT

)
, (18)

bi = b∗i exp
(
− Eb

RT

)
. (19)
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and CH4 for the adsorption on CHA-type zeolite with Si/Al = 18.2.

The pre-exponential factors and activation energies are listed in Table 2. Assuming
the heat of adsorption is equal to −(Ea + Eb), the heats of adsorption for CO2 and CH4 are
23.8 kJ mol−1 and 16.6 kJ mol−1, respectively. Maghsoudi et al. experimentally measured
the heats of adsorption of CO2 and CH4 to be 21.0 kJ mol−1 and 17.1 kJ mol−1, respec-
tively [40], which shows good agreement with the current work and further justifies the
proposed methods for simulating the adsorption and diffusion behaviors of CO2 and CH4
in CHA-type zeolite.
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4.2. Diffusivities

Figure 5 shows the time courses in the mean square displacement of CO2 and CH4 at
298–473 K. Because the mean square displacements were linearly proportional to simulation
time before 1 ns, longer diffusional times were not required. The diffusivities of CO2 and
CH4 in the CHA-type zeolite were calculated as 1/6 of the slope [33], which resulted in
temperature dependencies as reported in Figure 6. The diffusivities of CO2 and CH4 at
298 K were 3.9 × 10−10 m2 s−1 and 1.2 × 10−11 m2 s−1, respectively. The pore diameter of
the CHA-type zeolite is 0.38 nm [38], which is identical to the molecular diameter of CH4
(0.38 nm [41]). In contrast, the molecular diameter of CO2 (0.33 nm [41]) is smaller than the
pore diameter, which results in molecular sieving behavior with a CO2 diffusivity nearly
an order of magnitude higher than CH4.
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Vujic et al. compared to the simulated CO2 diffusivities with those obtained by
experiments [33], and the simulated diffusivities were twice higher than the experimental
values for high silica zeolites. Krishna et al. [42] also simulated the diffusivities of CO2
and CH4 in all-silica CHA-type zeolite at 300 K. When the fugacities of CO2 and CH4 were
1 MPa, their diffusivities were ca. 4 × 10−10 m2 s−1 for CO2 and 8 × 10−11 m2 s−1 for CH4.
The similarity in diffusivity measurements with the current work suggests aluminum and
sodium do not have a significant effect on gas diffusivity. This is considered reasonable
because only one aluminum and sodium atom are incorporated per cavity for a Si/Al ratio
of 18.2, as shown in Figure 2.

The effect of temperature on the diffusivity is also described by the Arrhenius equation
as follows:

Di = D∗i exp
(
− Ed

RT

)
. (20)

The diffusivities at infinite temperature and activation energies of CO2 and CH4 are
listed in Table 3. Sladek et al. [43] investigated the relationship between the diffusivity and
heat of adsorption for physical and chemical adsorption species and concluded that the
activation energy for diffusion was 0.45 times the heat of adsorption. This compares well
with the current work wherein the activation energy of CO2 diffusivity is 0.48 times the
heat of adsorption.

Table 3. Diffusivities at infinite temperature and activation energies of CO2 and CH4 within CHA-
type zeolite with Si/Al = 18.2.

Unit CO2 CH4

Di
* m2 s−1 3.8 × 10−8 7.2 × 10−9

Ed kJ mol−1 11.4 4.8

4.3. CO2 Separation Performance

Figure 7 shows the influence of accounting the material transfer in porous sup-
port on the calculated permeation properties of CO2 and CH4 for the equimolar mix-
ture at 323 K. When the polycrystalline zeolite layer was not supported by a sub-
strate (self-standing membrane), the permeances of CO2 and CH4 were predicted to
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be 2.3 × 10−6 and 1.7 × 10−8 mol m−2 s−1 Pa−1, respectively. The permeances were re-
duced to 6.3 × 10−7 mol m−2 s−1 Pa−1 for CO2 and 5.0 × 10−9 mol m−2 s−1 Pa−1 for
CH4 by supporting with the porous support (porosity = 35% and thickness = 0.3 mm).
The reduction of CO2 permeance could be explained by the porosity of the support tube
and pressure drop across the support (3.9 kPa). The calculated permeance of CO2 was
almost identical to the experimental data [28]. However, the calculated CH4 permeance
was higher than the experimental value. Since the amounts of adsorbed CO2 and CH4 were
calculated using the extended Langmuir Equation (13) in this study, it is considered that
the concentration gradient of CH4 across the polycrystalline zeolite layer was estimated to
be high. As a result, the higher CH4 permeance was obtained compared to the experiment.
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Figure 7. Comparison of simulated permeation properties of the CHA-type zeolite membrane
with Si/Al = 18.2 to experimental results [28]. The permeation properties were calculated at CO2

concentration = 50 vol%, total pressure = 300 kPa, and temperature = 323 K. The thickness of zeolite
layer was 5 µm, and the pore size, porosity and thickness of the support tube were 150 nm, 35% and
0.3 mm [24].

Figure 8 shows the effect of temperature on the estimated permeation properties of
CO2 and CH4 for an equimolar mixture. The permeances of CO2 and CH4 at 253 K were
3.3 × 10−7 and 1.8 × 10−9 mol m−2 s−1 Pa−1, respectively, with a resultant CO2/CH4
permeance ratio of 190. The CO2 permeance increased with increasing temperature until
reaching a maximum at 323 K and then decreasing with further rising temperatures. As a
result, the CO2 permeance decreased to 1.5 × 10−7 mol m−2 s−1 Pa−1 at 473 K, with the
permeance ratio also decreasing to 38. Notably, the simulated permeances followed similar
trends as the experimental data and the permeances at 473 K were nearly identical. This
convergence is because the effect of preferential adsorption was marginal at 473 K com-
pared to lower temperatures, which suggests accurate prediction of permeation properties
requires accurate estimates of adsorption amounts.
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Figure 8. Effect of temperature on the permeation properties of the CHA-type zeolite membrane with
Si/Al = 18.2. The permeation properties were calculated at CO2 concentration = 50 vol% and total
pressure = 300 kPa, experimental data were taken from [28].

Figure 9 shows the influence of the CO2 concentration on the permeation prop-
erties of CO2 and CH4 at 303 K. The pure gas CO2 permeance was estimated to be
3.8 × 10−7 mol m−2 s−1 Pa−1 and slightly increased with decreasing CO2 concentration
until around 40%. However, below 40% CO2 the CO2 permeance increased significantly.
This was due to a relative change in the permeance versus partial pressure difference
between feed and permeate streams. At 40% CO2, the partial pressures of CO2 on the
feed and permeate sides were 120 kPa and 96 kPa, respectively, with a permeate flux of
1.5 × 10−2 mol m−2 s−1. At 30% CO2 concentration, the partial pressures and permeate
flux were 90 kPa, 84 kPa, and 6.0 × 10−3 mol m−2 s−1, respectively. This means the relative
permeate flux at 30% CO2 compared to 40% CO2 was 1/2.5, whereas the partial pressure
difference was 1/4. As a result, the CO2 permeance increased below 40% CO2. For all con-
ditions, the estimated CH4 permeance was higher than the experimental data, as discussed
in Figures 7 and 8, which is the cause of the lower CO2/CH4 permeance ratio.
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Figure 9. Influence of the CO2 concentration on the permeation properties of the CHA-type zeolite
membrane with Si/Al = 18.2 at 303 K. The permeation properties were calculated at the total pressure
of 300 kPa, and experimental data were taken from [28].
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Figure 10 shows the influence of the total pressure on the permeation properties of
CO2 and CH4 at 303 K. When the total pressure was 200 kPa, the estimated permeances
of CO2 and CH4 were 6.8 × 10−7 and 5.8 × 10−9 mol m−2 s−1 Pa−1, respectively, with a
CO2/CH4 permeance ratio of 120. The permeances decreased with increasing total pressure
and at 1000 kPa were 2.9 × 10−7 for CO2 and 2.4 × 10−9 mol m−2 s−1 Pa−1 for CH4. The
decrease was calculated to be similar for both gases so the permeance ratio was nearly
independent of total pressure.
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5. Conclusions

In this study, the permeation and separation properties of a CHA-type zeolite mem-
brane were evaluated for improving the CO2 separation performance. The adsorption
isotherms of CO2 and CH4 on CHA-type zeolite with Si/Al = 18.2 were predicted by grand
canonical Monte Carlo, and the diffusivities in zeolite micropores were simulated by molec-
ular dynamics. The CO2 separation performance of the CHA-type zeolite membrane was
estimated by a Maxwell–Stefan equation, accounting for mass transfer through the support
tube. In this study, the influences of the support tube, temperature, CO2 concentration, and
total pressure on the permeation properties were calculated, and the estimated permeation
properties were compared with experimental data [24]. The estimated CO2 permeance
agreed well with the experimental results due to the inclusion of the effect of the support
tube. However, the estimated CH4 permeance was slightly overestimated, suggesting that
better predictions of the amount of adsorbed CH4 on both the sides of the membrane must
be made to obtain more accurate results.
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Nomenclature

a Amount adsorbed at saturation (mol kg−1)
b Langmuir constant (Pa−1)
B Mobility as defined by Equation (11)
C Concentration (mol m−3)
D Diffusivity (m2 s−1)
E Activation energy (kJ mol−1)
J Permeation flux (mol m−2 s−1 Pa−1)
kb Force constant for bond-stretching (kJ mol−1 m−2)
kθ Force constant for angle-bending (kJ mol−1 rad−2)
L Thickness (m)
M Molecular mass (g mol−1)
p Partial pressure (Pa)
Q Partial atomic charge (e)
q Amount of adsorbed (mol kg−1)
r Distance (m)
R Gas constant (=8.314 J K−1 mol−1)
T Temperature (K)
V Diffusion volume (cm3)
Symbols
Γ Thermodynamic factor defined by Equation (14)
δ Kronecker delta (dimensionless)
ε Porosity (dimensionless)
ε0 Vacuum permittivity (=8.85 × 10−12 F m−1)
Φ Interaction potential energy (kJ mol−1)
φ Depth of potential (kJ mol−1)
θ Binding angle (rad)
Θ Surface coverage (dimensionless)
ρ Density of zeolite (kg m−3)
σ Distance at zero-potential energy (m)
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