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Abstract: Integrated wastewater treatment processes are accepted as the best option for sustainable
and unrestricted onsite water reuse. In this study, moving bed biofilm reactor (MBBR), membrane
bioreactor (MBR), and direct contact membrane distillation (DCMD) treatment steps were integrated
successively to obtain the combined advantages of these processes for industrial wastewater treat‑
ment. The MBBR step acts as the first step in the biological treatment and also mitigates foulant
load on the MBR. Similarly, MBR acts as the second step in the biological treatment and serves as
a pretreatment prior to the DCMD step. The latter acts as a final treatment to produce high‑quality
water. A laboratory scale integrated MBBR/MBR/DCMD experimental system was used for assess‑
ing the treatment efficiency of primary treated (PTIWW) and secondary treated (STIWW) indus‑
trial wastewater in terms of permeate water flux, effluent quality, and membrane fouling. The re‑
moval efficiency of total dissolved solids (TDS) and effluent permeate flux of the three‑step process
(MBBR/MBR/DCMD)were better than the two‑step (MBR/DCMD) process. In the three‑step process,
the average removal efficiency of TDS was 99.85% and 98.16% when treating STIWW and PTIWW,
respectively. While in the case of the two‑step process, the average removal efficiency of TDS was
93.83%when treating STIWW. Similar trends were observed for effluent permeate flux values which
were found, in the case of the three‑step process, 62.6% higher than the two‑step process, when treat‑
ing STIWW in both cases. Moreover, the comparison of the quality of the effluents obtained with
the analysed configurations with that obtained by Jeddah Industrial Wastewater Treatment Plant
proved the higher performance of the proposed membrane processes.

Keywords: industrial wastewater; moving bed biofilm reactor; membrane bioreactor; membrane
distillation; hybrid process

1. Introduction
The increased demand for freshwater has led to the increase in withdrawals of lim‑

ited nonrenewable water resources, leading to water scarcity [1,2]. This scarcity has led to
water and wastewater treatment innovations, and the need to follow better environmen‑
tal practices. Stringent water quality standards have helped the evolution of advanced
effluent treatment technologies, thereby preserving water quality [2,3]. The high water
demand and the environmental threat added more pressure on managing and recycling
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water. Water reuse through bioreactors can be considered an additional source of environ‑
mental sustainability. Recent trends have made the industries either minimize production
or recycle treated wastewater to reduce their effects and follow the concept of zero liquid
discharge [3]. The effluents of the industrial wastewater treatment plants are characterized
by the levels of their constituents, such as biological oxygen demand (BOD5), chemical
oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), oil, and
grease. Apart from these, industry‑specific effluents can include various organic matters,
toxins, heavy metals, phenols, dioxins, and furans. The degree of treatment required de‑
pends on the quality of effluent and its characteristics. Treatment can be done in aerobic,
anaerobic, and anoxic conditions to obtain the desired quality of treated water [4,5].

The wastewater treatment process is realized by chemical, physical, physio‑chemical,
and biological or a combination of these methods. Biological methods include biofilters,
trickling filters, biological contactors, Activated Sludge Process (ASP), Sequencing Batch
Reactor, Membrane Bio Reactor (MBR), and Moving Bed Biofilm Reactor (MBBR). Chemi‑
cal treatment includes aeration, chlorination, anddisinfectionmethods. Physical treatment
includes screening, sedimentation, filtration, and flotation. Physio‑chemical processes in‑
clude coagulation and flocculation. The advanced treatment includes carbon adsorption,
absorption, stripping, ion exchange, reverse osmosis, and disinfection. Hybrid treatment
plants include a combination of these processes for effective treatment [6]. The selection of
the suitable combination depends on the wastewater’s characteristics and on the required
quality of the obtained effluent.

In fact, a wastewater treatment process typically consists of four steps, namely pri‑
mary treatment, secondary treatment, tertiary treatment, and advanced treatment. The pri‑
mary treatment includes screening, neutralization, sedimentation, and flotation processes.
It is meant to remove contaminants such as debris, grit, sand, etc. Secondary treatment in‑
cludes aerobic and anaerobic treatments with sedimentation, and its function is to remove
organic contaminants and ammonia. Tertiary treatment includes adsorption, precipitation,
and disinfection; it is meant to remove nutrients and pathogens [7].

Membrane bioreactors (MBR) are used primarily in wastewater treatment. MBR in‑
volves the use of suspended mixed microbial cultures. MBR technology combines biolog‑
ical processes, such as ASP, with membrane filtration. The most common configuration is
called a submergedmembrane bioreactor [8]. Membrane bioreactors are configured by the
type of separation they are designed for. The separation is carried out by either pressure‑
driven membranes in side‑streamMBR’s or vacuum‑driven membranes submerged in the
reactor. In the side‑stream MBRs, the wastewater is pumped through the membrane and
returned to the bioreactor for further treatment; whereas, vacuum‑driven membranes are
submerged in the bioreactor [9]. The major advantage of MBR over conventional systems
is its smaller carbon footprint [10]. MBR is up to one‑third of the size of conventional ASP
systems with the same treatment capacity. Moreover, low sludge production and higher‑
quality degraded sludge are produced in the MBR system. This advantage of MBR con‑
tributes to the better competitiveness of MBRs compared to ASPs [9]. The disadvantages
of MBRs are their higher oxygen demand (requiring higher energy input when compared
to conventional systems), and the fouling of the membranes (requiring constant monitor‑
ing and maintenance) [9].

The moving bed biofilm reactor (MBBR) was developed in Norway between the late
1980s and early 1990s by Odegaard H. et al., 1994 [11]. The MBBR process involves utiliz‑
ing the entire volume of the reactor space for biomass growth. The process uses carriers
that move freely in the reactor, acting as a biomass growth medium. The carriers are re‑
tained in the reactor by a sieve arrangement at the outlet of the reactor. MBBR can be
used under aerobic, anaerobic, and anoxic conditions. For effective treatment, the biofilm
carriers are required to be in motion; under the aerobic condition, the movement of car‑
riers is caused by air movement, whereas in anaerobic and anoxic conditions, a mixer is
used for agitation of the carriers. The carriers are made from high‑density polyethylene
(PEHD) with a density of 0.96 g/cm3. The biomass grows on the surface of these carriers,
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and due to the shape of the carriers, they provide a higher surface area for the growth of
biomass. The ideal growth of biomass is thin and evenly distributed along the surface area
of the carrier, for which turbulence is a crucial factor. Turbulence provides movement of
the carriers andmaintains a thin biomass layer through the shearing force [12]. Sohail et al.
(2020) proposed the integration of MBBR with MBR for the mitigation of MBR membrane
fouling [13]. The MBBR has a superior performance in reducing the concentration of sus‑
pended solids due to the high biodegradation rate of the organic matter facilitated by the
biofilm carriers. They have concluded that theMBBMRwas a superior option with respect
to effluent rate, operation time, and sludge mass compared to stand alone MBR, MBBR,
or ASP.

Membrane Distillation (MD) is a water desalination technology comprised of a hy‑
drophobic membrane that only allows volatile components (and, therefore water vapor)
to pass through, not the liquid. MD operates on a temperature difference between the hot
feed, which is in contact with the upstream side of themembrane, and the cold condensate,
which is in contact with the downstream side of the membrane [14,15]. The configuration
can operate at relatively low temperatures of the feed, and has an excellent salts and pollu‑
tants rejection efficiency (close to 100%). However, MD is not as energy efficient as reverse
osmosis (RO) systems. Jeong et al. [16] conducted a feasibility study of the MD process for
the treatment of wastewater from sewage treatment plants for potable water reuse. It was
found that MD achieved treated water quality levels as required for drinking purposes,
most of the dissolved organic matter was rejected, and a few naturally found amino acids
such as tyrosine passed through themembrane. All pharmaceuticalswere removed in such
a way that their concentrations were below the quantification limits; however, membrane
fouling was found to be an issue [16].

The membrane distillation bioreactor (MDBR) combines the thermophilic biological
process with the MD process [17]. A vapor‑liquid interface is created in the MD process
and passes the same through a hydrophobic membrane. The influent wastewater vapor‑
izes at the vapor‑liquid interface close to the surface of the hydrophobic membrane, and
permeates under the effect of the vapor pressure gradient. Finally, it is condensed and the
distillate is removed. Conventional MBR system uses either microfiltration or ultrafiltra‑
tion microporous membranes to retain the biomass or mixed liquor within the reactor. In
comparison, MDBR has an MD membrane to retain the same. MDBR membranes can be
placed in a side‑stream, or submerged in the bioreactor. MDBRs are operated at 50–60 ◦C
to treat the influent wastewater. The average specific energy consumption (SEC) of the
DCMD system was calculated at around 500 kWh/m3 [18] which is much higher than the
SEC of the RO system. The high SEC of the MD process is attributed to the nature of the
driving force of the process which implies the necessity of a temperature gradient across
the membrane. For this reason, MD modules must have a heat sink on the permeate side
to induce a temperature gradient. This makes MD work as a heat exchanger where most
of the exergy of feed water is destructed and lost to the permeate side. In cases of the avail‑
ability of waste heat on the treatment site, which is a common feature of many industries,
the waste heat can be utilized suitably for MD operation [19]. Under such conditions, the
MD system can produce freshwater without any high energy costs [20]. The MDBR sys‑
tems, similar toMBR systems, are also prone to fouling. This can, however, be managed or
controlled to a certain extent by way of bubbling and cleaning the membranes [21]. MDBR
produces a higher quality of effluent than MBR and can be operated on the principle of
using waste heat produced by specific industries [21]. Goh et al. [17] noted that the inclu‑
sion of biomass in the MDBR system could result in a decline in flux and bio‑fouling. In
their study, they successfully delayed wetting by 1.7–3.6 times by just lowering the reten‑
tate organic and nutrient concentration. Fast flux decline was due to the thermal andmass
transfer resistance of the biofilm; however, the same cannot be controlled with periodic
membrane cleaning and process optimization. It was concluded that MDBR can be used
for the reclamation of industrial wastewater with low volatile organic content and can be
feasible if access to waste heat is readily available.
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Khaing et al. [22] conducted a study utilizing submerged MDBR for the treatment
of petrochemical wastewater. Membranes were found to be thermally stable and could
maintain the flux over 5.5 L/(m2 h) throughout the study period of 105 days; however,
flux decline was found due to inorganic fouling of the membrane. Leyva‑Diaz et al. [23]
tested a hybrid MBBR‑MBR system at two different scales of operation to analyze their
effect on municipal wastewater treatment. The configurations were reliable for organic
matter removal, with COD removal percentages of 90.97 ± 2.55% and 95.56 ± 2.01% for
hybridMBBR–MBRL and hybridMBBR–MBRP, respectively. Trapani et al. [24] compared
two pilot‑scale MB‑MBR andMBR systems by increasing salinity in feed wastewater. Pore
fouling tendency was noted to be higher in the MBR system. It was concluded that the
MB‑MBR system performed better and had potential for treatment of high strength or in‑
dustrial wastewater.

In this study, anMBBR combined with a UFmembrane is introduced before a DCMD
system to obtain the combined advantages of MBBR, MBR, and DCMD. The process was
analysed as a hybrid system for industrialwastewater treatment. Two configurations of the
hybridmoving bed biofilmmembrane distillation bioreactor (MBBMDBR) systemwere as‑
sessed and compared for purification of primary and secondary treated industrial wastew‑
ater in terms of the system permeate water flux, quality, and membrane fouling.

2. Methodology
Three experiments were carried out in this study. The first and second experiments

were devoted to evaluating the performance of a hybridmoving bedbiofilm reactor (MBBR)
combined with a UF membrane followed by a DCMD system for the treatment of primary
and secondary wastewater, respectively. In the third experiment, the performance of the
submerged MDBR system was assessed for the purification of secondary treated wastew‑
ater (Figure 1).
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Figure 1. Configurations of the hybrid wastewater treatment and membrane processes tested, and
the related experiments.

2.1. Materials
Feed water was collected at two locations from Jeddah Industrial Wastewater Treat‑

ment Plant: (a) primary treated water (F1) has undergone primary treatment of grit re‑
moval, oil and grease removal, and primary sedimentation, and (b) secondary treated wa‑
ter (F2) was collected from the secondary clarifier after activated sludge treatment. The
physicochemical and biological analysis data of the feed wastewater is presented in
Table S1 in Supplementary Materials. F1 The influent feed water has a light‑yellow tint
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to it. The major parameters analyzed were TDS (962 mg/L), pH (9.4), TSS (524 mg/L), Tur‑
bidity (40 NTU), and TOC (286 ppm). Major anions and cations were Chloride (342 ppm),
Sodium (313 ppm), Sulphate (110 ppm), Potassium (31.9 ppm), Calcium (24 ppm), and
Magnesium (7.3 ppm). Heavy metal content Aluminum (1.9 ppm), Iron (0.3 ppm), and
Zinc (0.16 ppm).

F2 influent feed water has a greenish‑yellow tint to it. Major parameters analyzed
were TDS (818 mg/L), pH (9.4), TSS (90 mg/L), Turbidity (1.6 NTU), and TOC (11.7 ppm).
Major anions and cations were Chloride (304 ppm), Sodium (286 ppm), Sulphate
(36.8 ppm), Potassium (24.3 ppm), Calcium (16.6 ppm), andMagnesium (5.5 ppm). Heavy
metal content in influent feed water‑1 was found to be very low with the highest concen‑
tration being aluminum (0.4 ppm).

Hydrophilic PVDF ultrafiltration membranes were procured from Nanjing Tech Uni‑
versity (NTU), Nanjing, China, and used to prepare experimental membrane modules
for the moving bed biofilm membrane bioreactor MBBMR configuration (Figure 2a). Hy‑
drophobic PVDF membranes (supplied by Econity, South Korea) were used for preparing
submerged (Figure 2b) and side‑stream (Figure 2c) membrane distillation modules. Spec‑
ifications of UF modules and MD modules are provided in Tables 1 and 2, respectively.
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Figure 2. Experimental membrane modules used in the study; (a) UF membrane module used in
hybrid MBBMR configuration, (b) MD membrane module used for submerged MD (Experiment 3),
and (c) MD membrane module used for side stream MD (Experiment 1 and Experiment 2).

Table 1. Properties of UF modules used in the study.

Properties Units UF Membrane

No of membranes in a module number 4
Length cm 80

Contact angle [◦] [◦] 85
Outer diameter mm 2.20
Wall thickness mm 1

Porosity % 55.6
Mean pore size nm 340–390
Maximum Load N 333
Tensile Strength N/mm2 87.7
Elongation % 25.8

Modulus (Automatic Young’s) MPa 612.5
Load at 1% N 10.4

Tensile stress at 0.2% N/mm2 87.4
Membrane area m2 0.02212



Membranes 2023, 13, 16 6 of 17

Table 2. Properties of MD modules used in the study.

Properties Side‑StreamMDModule Submerged DCMDModule

Membrane material PVDF PVDF
Mean pore size (µm) 0.2 0.2

Number of hollow fibers 15 13
Nominal inner diameter of

the fiber (mm) 0.80 0.80

Nominal outer diameter of
the fiber (mm) 1.2 1.2

Effective membrane area (m2) 0.0113 0.00139
Effective module length (m) 0.30 0.37
Effective module’s membrane

area (m2) 0.01696 0.01813

2.2. Experimental Setup Description
A bench scale integrated MBBMR‑MD experimental setup was assembled to investi‑

gate the efficiency of integration of membrane bioreactor combined with UF membrane
separation followed by membrane distillation. The experimental unit consists of stan‑
dard process components and instrumentations of research quality mounted on amovable
bench. A schematic diagram of the experimental setup as configuration‑1 used in experi‑
ments 1 and 2 is shown in Figure 3, and configuration‑2 used in experiment‑3 is shown in
Figure 4. An acrylic tank of thickness 10 mm with a removable cover (MBBMR Tank) of
capacity 23.6 L has been used as a feed tank. Two ceramic air diffusers were provided at
the bottom of the reactor to produce fine bubbles. A circular tank made of acrylic material
with a volume of 8.5 L was used as anMD feed tank in configuration 1. The same tank was
used as a membrane distillation bioreactor in configuration 2.
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Figure 3. Schematic of the hybrid MBBMR and side stream DCMD configuration used in Experi‑
ments 1 and 2. (PG00x: pressure gauge; P00x: pump; NV00x: needle valve; R001: air flow meter,
R002: water flowmeter; PIT00x: pressure transducer; TIT00x:. thermocouples; CIT001: conductivity
transmitter. DAQ: data acquisition).



Membranes 2023, 13, 16 7 of 17

Membranes 2023, 13, 16 7 of 18 
 

 

membrane inlet is provided. Thermocouples measure the temperature at the hot side of 

the membrane (both inlet and outlet) as well as for the cold side (both inlet and outlet). A 

ball valve has been provided for flow control. A conductivity transmitter (Signet 9900 

Transmitter) was provided to record the conductivity of treated water. A precision scale 

(GF-1200 precision scale from AandD Weighing) was used to measure the final treated 

water from the MD. All fittings and valves were made of stainless steel 316 L fittings. 

Finally, a data acquisition system (DAQ) was used to record the pressure, temperature, 

and mass of permeate on a timely basis. 

 

Figure 3. Schematic of the hybrid MBBMR and side stream DCMD configuration used in Experi-

ments 1 and 2. (PG00x: pressure gauge; P00x: pump; NV00x: needle valve; R001: air flow meter, 

R002: water flow meter; PIT00x: pressure transducer; TIT00x:. thermocouples; CIT001: conductivity 

transmitter. DAQ: data acquisition). 

 

Figure 4. Schematic of the hybrid submerged MDBR configuration 2 used in Experiment 3. (PG00x: 

pressure gauge; P00x: pump; NV00x: needle valve; R001: air flow meter, R002: water flow meter; 

PIT00x: pressure transducer; TIT00x:. thermocouples; CIT001: conductivity transmitter. DAQ: data 

acquisition). 

Figure 4. Schematic of the hybrid submerged MDBR configuration 2 used in Experiment 3. (PG00x:
pressure gauge; P00x: pump; NV00x: needle valve; R001: air flow meter, R002: water flow
meter; PIT00x: pressure transducer; TIT00x:. thermocouples; CIT001: conductivity transmitter.
DAQ: data acquisition).

Polyurethane (PU) tubes were used to connect all tanks. A refrigerated bath has been
used (Huber, model no MPC‑K25, Germany) for cooling the MD permeate. Diaphragm
pumps were used to transfer the influent from one tank to another. An air pump was
used to maintain sufficient dissolved oxygen (DO) levels in the reactor. The transmem‑
brane pressure of MBR was measured by using a pressure gauge. Needle valves were
used at specific points to control the flow in the model reactor. A pressure transducer for
the hot side membrane inlet is provided; similarly, a pressure transducer for the cold side
membrane inlet is provided. Thermocouples measure the temperature at the hot side of
the membrane (both inlet and outlet) as well as for the cold side (both inlet and outlet).
A ball valve has been provided for flow control. A conductivity transmitter (Signet 9900
Transmitter) was provided to record the conductivity of treated water. A precision scale
(GF‑1200 precision scale from AandDWeighing) was used to measure the final treated wa‑
ter from the MD. All fittings and valves were made of stainless steel 316 L fittings. Finally,
a data acquisition system (DAQ) was used to record the pressure, temperature, and mass
of permeate on a timely basis.

3. Results and Discussion
The daily variations of the main quality parameters of water streams in terms of tem‑

perature, pH, TDS, BOD5, and TSS for each configuration are presented in this section.
The readings of the parameters were taken at 4 locations in the setup, i.e., MBBMR tank
(pH0, TDS0, BOD5,0, TSS0), MBBMR filtrate (pHT1, TDST1, BOD5,T1, TSST1), MD feed tank
(pHT2, TDST2, BOD5,T2, TSST2), and MD permeate (pHp, TDSp, BOD5,p, TSSp). Similarly,
the MBBMR filtrate flux (F0) and MD permeate flux (Jp) were recorded throughout the
time of the tests. The operational duration of experiments is reported in the summary of
results table (Table 3) which also shows the averages of performance parameters of the
tested configurations.
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Table 3. Summary of experimental results indicating averages of performance parameters of the
proposed configurations for industrial wastewater treatment.

Duration of
Experiment
(Days)

Parameters (Pi) Feed Wastewater
(i = f)

MBBMR Tank
(i = 0)

MBBMR Filtrate
(i = 1) MD Tank (i = 2) MD Permeate

(i = p)

Experiment 1
27 TDSi (mg/L) 818.0 945.6 770.5 1947.8 1.9

pHi 9.4 7.9 8.8 8.0 6.4
TURi (NTU) 1.6 0.6 0.6 1.6 ‑
BOD₅,i (mg/L) 6.0 2.5 1.0 ‑ ‑
TSSi (mg/L) 89.8 97.5 82.9 ‑ ‑
TOCi (mg/L) 11.7 11.5 12.0 ‑ ‑

Ti, ◦C ‑ 22.1 20.2 47 19
Jf (L/m².h) ‑ 44.23 ‑ ‑ ‑
TMP (psi) ‑ −6.1 ‑ ‑ ‑
Jp (L/(m².h) ‑ ‑ ‑ ‑ 3.3

Experiment 2
16 TDSi (mg/L) 962.0 1037.4 922.7 2291.3 32.0

pHi 4.5 6.8 7.2 7.6 6.7
TURi (NTU) 40.0 1575.4 1.5 4.5 ‑
BOD₅,i (mg/L) ‑ 5.1 3.3 ‑ ‑
TSSi (mg/L) 524.1 1643.4 151.6 ‑ ‑
TOCi (mg/L) 286.3 44.8 28.5 ‑ ‑

Ti, ◦C ‑ 19.8 19.8 47 18
Jf (L/m².h) ‑ 31.6 ‑ ‑ ‑
TMP (psi) ‑ −7.0 ‑ ‑ ‑
Jp (L/(m².h) ‑ ‑ ‑ ‑ 2.6

Experiment 3
74 TDSi (mg/L) 818.0 ‑ ‑ 1729.4 75.0

pHi 9.4 ‑ ‑ 8.3 7.1
TURi (NTU) 1.6 ‑ ‑ 0.9 0.3
BOD₅,i (mg/L) 6.0 ‑ ‑ ‑ 2.0
TSSi (mg/L) 89.8 ‑ ‑ 577.5 ‑
TOCi (mg/L) 11.7 ‑ ‑ 21.7

Ti, ◦C ‑ ‑ ‑ 46 19‑
Jp (L/(m².h) ‑ ‑ ‑ ‑ 2.182

3.1. Assessment of Hybrid MBBMR and DCMD Configuration Performance for Secondary
Wastewater Treatment (Experiment 1) and Primary Wastewater Treatment (Experiment 2)
3.1.1. TDS of MBBMR and MDBR Effluents

The treatment of the feed secondary wastewater was accomplished in two successive
steps. The first step is the MBBMR treatment, and the second step is MD purification.
As shown in Table 3, the average pH of the mixed liquor‑suspended solids (MLSS) in the
MBBMR tankwas 7.9, andwas observed to vary in the range of 7.7–8.2. This level of pHval‑
ues is characteristic of industrial wastewater types. Although it was advised to maintain
the pH of the activated sludge system at about 7 for the best growth of the microorgan‑
isms [25]. In this study, no pH control was adopted since the MBBR system can tolerate
changes in temperature and pH. The pH of the MD permeate water was in the range of
6.0–6.57 range with an average value of 6.4, which is similar to the pH of the deionized
water produced in the laboratory from tap water by a pure water RO unit. TDS readings
were recorded and plotted for TDST2 and TDSP in Figure 5. For Experiment 1, the TDSf
values of the feed water ranged from 835–859 mg/L, however, an increase in TDST2 values
of the MLSS liquor of the MDBR tank in the range of 1214–3205 mg/L was observed due
to the recirculation of MD reject back to the MD feed tank, and therefore accumulation of
dissolved solids in the tank (Figure 5). The TDS values of the MD permeate were in the
range of 0–3 mg/L which gives removal efficiencies of TDS in the range of 99.75–99.96%.
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Figure 5. Variations of TDS values observed during the treatment of secondary wastewater using a
hybrid MBBMR and DCMD system (Experiment 1).

For Experiment 2, the TDST1 of the MBBMR effluent ranged from 931–1079 mg/L.
However, a gradual increase in TDST2 values in the MDBR tank was observed and ranged
from 981–3033 mg/L due to recirculation of MD reject back to the MD feed as mentioned
above, as shown in Figure 6. The TDSP were in the range of 7–64 mg/L, the removal effi‑
ciency of TDS ranged between 93.7–99.3%. The TDS values of the MBBMR tank were in
the higher range due to.
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Figure 6. Variations of TDS values observed during the treatment of primary wastewater using a
hybrid MBBMR and DCMD system (Experiment 2).

3.1.2. TSS of MBBMR and MDBR Effluents
The values of TSS0 represent the mixed liquor suspended solids (MLSS) concentra‑

tions of the MBBMR tank, while TSST1 values refer to the effluents of the MBBMR tank.
Similarly, the BOD5,0 is meant for themixed liquor of theMBBMR tank, and BOD5,T1 refers
to the effluents of the MBBMR tank. The variations of these parameters are depicted in
Figure 7 (Experiment 1) and Figure 8 (Experiment 2). During the experiment period, the
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TSS0 increased from 72 to 119.5 mg/L and the TSST1 increased from 50 to 98.5 mg/L. The
removal efficiency of MBBMR for TSS varied from around 45% at the beginning of the
testing period to negative values at the end which indicated insufficient acclimatization of
microorganisms in the tank. While under the normal and steady operation of MBBMR, it
is expected to achieve stable TSST1 values and high TSS removal efficiency [26], the TSST1
values increased with the increase in TSS0 values. This indicates that the testing period of
3 weeks is not adequate to achieve the required biodegradation rate of biomass. Arabgol
et al. [27] reported that five weeks of operation are required for full inoculation of MBBR,
followed by another three weeks for reaching steady‑state operation. In the case of BOD5,
the removal efficiency varied from 89% to 95%.
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Figure 7. Variations of BOD5 and TSS values observed during the treatment of secondarywastewater
using a hybrid MBBMR and DCMD system (Experiment 1).
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Figure 8. Variations of BOD5 and TSS values observed during the treatment of primary wastewater
using a hybrid MBBMR and DCMD system (Experiment 2).

As already reported for experiment 1, TSS and BOD5 values were measured simi‑
larly for experiment 2 (Figure 8). In this case, the TSS of the MLSS liquor ranged from
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2142–3237 mg/L and the TSS removal efficiency in experiment‑2 ranged between 61–98%,
while initial BOD5 ranged from 3.76–7.18 mg/L and BOD5 removal efficiency was around
47–98%.

3.1.3. MDBR Permeate Flux
The MDBR is a combination of membrane distillation separation and wastewater bi‑

ological treatment in one process unit operation. The temperature of the bioreactor was
maintained around 49 ◦C by recirculating the MLSS liquor in a heat exchanger placed in a
heating bath operating at 50 ◦C. In Experiment 1 and Experiment 2, the hot MLSS liquor is
recirculated through the shell side of a side‑stream direct contact MDmodule. On the cold
side of the MD module (lumen side), the temperature of the permeate water was main‑
tained at 19 ◦C by recirculating the permeate water in a heat exchanger placed in a cool‑
ing bath operating at around 15 ◦C. The permeate water flux rate is the key performance
parameter of the hybrid system and depends mainly on the temperature gradient across
the MD membrane which is the driving force of the process. The MD module inlet feed
temperature (TH,0) varied between 46.1–47.7 ◦C, and the MD module outlet temperature
(TH,1) varied between 45.8–47.1 ◦C. The inletMD condensate temperature (TC,0) varied be‑
tween 16.9–19.1 ◦C, and the outlet condensate (permeate) temperature (TC,1) varied from
20.29–22.6 ◦C.

A comparison of permeate flux (Jp) obtained during Experiment 1 and Experiment 2
has been illustrated in Figure 9. The MD permeate flux was observed to reduce linearly,
due to fouling of the membranes or pore blockage, and the TDS elevation in the MLSS
liquor. The average values of permeate flux for Experiment 1 and Experiment 2 were 3.3
and 2.6 L/(m2h), respectively, while the average TSD of MLSS liquor for Experiment 1 and
Experiment 2 were 1948 and 2291 mg/L, respectively (Table 3). Therefore, it can be calcu‑
lated that the percentage reduction in Jp (21%) is almost correlated with the percentage
increase in TDS (18%). Hence, it can be concluded that the TDS plays a crucial role in the
MD permeate flux [24]. When TDS of the permeate water was increased from 1.9 mg/L in
Experiment 1, when the TSD of MLSS liquor was 1948 mg/L, to 32 mg/L in Experiment 2,
when the TDS of MLSS liquor was 2291 mg/L (Table 3). Membrane wetting is the only
possible reason for the increase of permeate water TDS. Experiment 2 was carried out after
Experiment 1 without changing the MDmodule, hence loss of membrane hydrophobicity,
and subsequently, the occurrence of membrane wetting may be attributed to the number
of days of use as well as the increase in MLSS liquor salinity [14,24].
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Figure 9. Comparison of MD permeate flux values observed during purification of secondary
wastewater (Experiment 1) and primary wastewater (Experiment 2) using hybrid MBBMR and
DCMD system.
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3.2. Assessment of Hybrid MDBR Configuration Performance for Secondary Wastewater
Purification (Experiment 3)

In experiment 3, a hydrophobic hollowfibermembranemodulewas submerged in the
MDBR tank, where the shell side comes into direct contact with the hotMLSS liquor, while
the cold permeate is recirculated in the lumen side of the MDmodule. The hydrodynamic
regime in the outer boundary of the membranes is affected only by the movement of air
bubbles, while the permeate water velocity inside the lumen is related to the permeate
recirculation flow ratewhichwas fixed at 2 L/min. As illustrated in Figure 10, the permeate
flux, Jp, value varied in the range of 1.47–2.91 L/(m2.h). The experiment was carried out
for a period of 60 days. The flux was observed to decrease in a more rapid rate in the first
7 days of the experiment, where the normalized flux declined from 1 to 0.69, then the rate
of decrease remains moderate for the remainder of the experiment, where the normalized
flux declined from 0.69 to 0.56. As explained earlier, the reduction in flux is due to the
synergy effect of two factors i.e., the effect of membrane fouling and the effect of increased
concentration of the MLSS liquor.
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Figure 10. Permeate flux observed during treatment of primary wastewater using a hybrid DCMD
system (Experiment 3).

Figure 11 shows the variations of TDST2 and TDSP observed during the purification
of secondary wastewater using the MDBR system (Experiment 3). TDST2 values ranged
from 890–1914 mg/L, and TDSP values were in the range of 19–167 mg/L. This increase
in TDST2 is due to the rejection of the dissolved ions by the MD module which results in
the accumulation of dissolved ions in the bioreactor tank. It should be noted that at Day
17 when the TDST2 concentration reached 1705 mg/L, the MDBR tank was emptied and
refilled again with feed secondary treated wastewater. In contradiction to the observed
trend of correlation between TDST2 and TDSP (Figure 6), the TDSP trend in Experiment 3
initially increased in the first six days of operation, then decreased to an almost stable level
at Day 17 till the end of the experiment. Although this can indicate the stable hydrophobic
characteristics of membranes, it can be also related to the bubbling effect on the hydrody‑
namic regime in the outer boundary of the membranes and the fouling mitigation effect
of bubblers.
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Figure 11. Variations of TDS values observed during the treatment of secondary wastewater using a
hybrid DCMD system (Experiment 3).

3.3. Contact Angle Measurement
Contact angle (θ) is an essential parameter for evaluating a membrane’s hydrophilic‑

ity and wetting behavior [28]. The contact angle of a surface is measured by placing a
drop of liquid and measuring the angle formed between the surface and the line tangent
to the edge of the drop of liquid. A low contact angle indicates high surface energy and,
therefore, a high hydrophilic character of the membrane. Vice versa in the case of high
contact angle. Contact angle provides quantitative data about the wettability of a surface
at a molecular level [28]. The measure of the contact angle allows for assessing a material
surface’s quality before an adhesion process. The same sidestream MD membrane mod‑
ule was used for Experiment 1 and Experiment 2. After completion of Experiment 2, the
MD module was disassembled, and three fibers were cut and used for the contact angle
measurement. Themeasured values of the contact angle are shown in Table 4, where it can
be seen that the average values were ranged from 60.1◦ to 63.2◦. When compared to the
pristine fiber, the contact angle of the used fiber worsened by 44.7%, which indicates the
possibility of hydrophobicity loss. However, the rate of hydrophobicity loss with time is
low compared to other MDmembranes used for wastewater treatment [17]. Conventional
hydrophobicMDmembranes (i.e., membranes that display apparent contact angle θ* > 90◦
with high surface tension liquids such as water) suffer from membrane wetting in desali‑
nation of feedwater containing low surface energy contaminants (e.g., shale gas‑produced
water [29,30] and coal seam gas produced water [31].

Table 4. Contact angle results of membranes used in Experiment 1 and 2.

Membrane Pristine Fiber Fiber 1 (Used) Fiber 2 (Used) Fiber 3 (Used)

Location 1 109.4 64 66 58.9

Location 2 112.5 62.4 55.4 61.3

Average 111 63.2 60.7 60.1

The loss of hydrophobicity and the concomitant decrease in the contact angle of the
membrane progresses with the time of operation [32]. The accumulation of foulants on
the membrane surface, and in the membrane pores is a time‑dependent process and is
the main factor for hydrophobicity degradation [33]. The contact angle of the membrane
can be measured only if the membrane module is disassembled. Therefore, the practical
method for assessing the changes in contact angle is by observing the trend of change of
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salinity and flux rate of MD permeate i.e., TDSp and Jp values. In Experiment 1, where
a new MD membrane module was used, the TDSp values were stable around an average
value of 1.7 mg/L with no significant increase with time (Figure 5). However, in Experi‑
ment 2, where the same MD membrane module was used after cleaning with deionized
water, the TDSp values maintained approximately constant level in the nine days of op‑
eration at an average of 14 mg/L, then start to increase progressively up to 75 mg/L after
16 days of operation. The manner of Jp change with time of operation is another indicator
of contact angle change. In experiment 1, the permeate flux reduction of 20%was observed
after 14 days of operation, while in Experiment 2, the permeate flux reduction of 35% was
observed after 16 days of operation.

After the completion of Experiment 3, the contact angle of the submerged MD mem‑
brane was measured (Table 5), and the average value was found as 84.75–85.4◦.

Table 5. Contact angle results of membranes used in Experiment 3.

Membrane Pristine Fiber Fiber 1 (Used) Fiber 2 (Used) Fiber 3 (Used)

Location 1 109.4 84.4 85.2 84.9

Location 2 112.5 85.3 85.6 84.6

Average 111 84.85 85.4 84.75

By comparing the average contact angle values for the side stream module and sub‑
merged module, it can be deduced that the hydrophobicity loss of the submerged module
is lower. As noted by Morrow et al. [34] in sidestream configuration, fouling is mitigated
with hydraulic crossflow; however, in submerged configuration, the fouling is mitigated
via air scour.

3.4. Comparison of Performance Parameters of Different System Configurations
In experiment 1, the TDSP values of theMDpermeate ranged from 1–3mg/L.Whereas

in experiment 2, the TDSP ranged from 8–64 mg/L, and in experiment 3, the TDSP ranged
from 25–167 mg/L. A higher degree of treatment was obtained in experiment 1 which had
secondary treatedwater as the feedwater. Whereas in experiment 2, when primary treated
water was used as feedwater, the worse values for TDSP and JP were obtained. Table 3 pro‑
vides a summary of experimental results indicating averages of performance parameters
of the proposed configurations for industrial wastewater treatment.

Membranes used in Experiment 1 were cleaned with distilled water for a period of
30 min before being used in Experiment 2. Since secondary treated water was used in Ex‑
periment 1, and the membrane was new, the permeate showed the best results. In Experi‑
ment 2, primary treated water was used together with the membrane used in experiment 1
and showed worse results comparatively.

The flux decreased in all three experiments, with a higher flux in Experiment 1. In
experiment 2, the TDS decreased along with the permeate flux until day 8. After this, an
increase in TDS was noticed due to the clogging of pores compared to initial conditions.
In Experiment 3, the TDS and flux increased during day 2 and then decreased; during this
time, there was no change in pressure or temperature of the influent on the system.

3.5. Comparison of the Quality of the Water Produced by the Three Different Configurations with
the Quality of the Water Produced by Jeddah Industrial Wastewater Treatment Plant

To compare the treatment efficiency achieved with the proposed configurations in
this study, water quality analysis data reports were collected from Jeddah Industrial City
Wastewater Treatment Plant, operated by Modon (JICWTP). In this plant, around 40% of
the secondary effluents are purified by the advanced treatment process consisting of a sand
filter, UF, and RO. The comparison points were chosen at the UF product outlet and the RO
product outlet. The daily water analysis reports of the advanced treatment process were
collected for fifteen days, and the average values of TDS of the RO product water, and TSS
of the UF product water were calculated for comparison.
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The TDS values for the RO effluent at the JICWTP and MD permeate for all three
experiments are shown in Figure 12a. As expected, the average TDS value of theMD prod‑
uct for the Exp1 configuration in which secondary treated wastewater was used as a feed
for the MBBMR step was less than 2 mg/L. However, the average TDS of the advanced
RO treatment product was 106 mg/L. When primary wastewater was used as feed for the
MBBMR step, the TDS of the MD product increased to around 24 mg/L probably due to
the wetting of the MD membrane by surfactants and oil residues present in the primary
feed water. Further, the TDS of the MD permeate was worsened in the case of the Exper‑
iment 3 configuration in which the MBBMR step was excluded. Further, The TSS values
of UF effluent from the JICWTP are compared to the MBBMR setup in Experiment 1 and
Experiment 2, as shown in Figure 12b. The comparison of the TSS data showed higher per‑
formance of the advanced RO treatment at JICWTP compared to the configurations tested
in this work. The use of a sand filter prior to the UF step eliminates oil and nanoparticles
present in the secondary wastewater by absorption mechanism, resulting in a TSS value
of 1 mg/L. However, in the case of Experiment 1 and Experiment 2 configurations, the
MBBMR treatment is not efficient for the removal of these contaminants. Therefore, the
TSS values of 76 mg/L and 110 mg/L were found.
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Figure 12. Comparison of TDS and TSS values obtained during treatment of secondary treated
wastewater using hybrid MBBMR and DCMD system (Experiment 1 and Experiment 2) with re‑
spective values reported by Jeddah Industrial Wastewater Treatment Plant: (a) TDS (b) TSS.

4. Conclusions
Membrane distillation is a potential high rejection, the terminal process for onsite in‑

dustrial wastewater treatment when waste heat is available. Membrane wettability threat
is the main challenge for MD application in industrial wastewater which contains high
concentrations of dissolved organic matter and surfactants. This work compares the role
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of pretreatment steps prior to MD on the MD performance efficiency. A new integrated
membrane system configuration consisting ofMBBR integratedwithUF, followed byMBR
integrated with MD, was tested for treatment and purification of primary and secondary
wastewater treatment. This configuration was compared with a simple integrated mem‑
brane system configuration consisting of MBR integrated with MD only. The MD perfor‑
mance efficiency achieved by the first configuration was better than that achieved by the
second configuration. Additionally, the results proved that the quality of MD permeate re‑
mains stable when applying the 3‑step process. A correlation has been found between
TSS in the MD feed and the TDS of MD permeate. Hence, TSS should be maintained
low by introducing a sand filter for absorbing contaminants that are still present after the
MBBMR step.

Supplementary Materials: The following supporting information can be downloaded at: https:
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wastewater influents and effluents of the Industrial City Wastewater Treatment Plant (Modon
JICWTP, Jeddah).
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