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Abstract: Molecular Dynamics (MD) Simulations is increasingly used as a powerful tool to study
protein structure-related questions. Starting from the early simulation study on the photoisomeriza-
tion in rhodopsin in 1976, MD Simulations has been used to study protein function, protein stability,
protein–protein interaction, enzymatic reactions and drug–protein interactions, and membrane pro-
teins. In this review, we provide a brief review for the history of MD Simulations application and the
current status of MD Simulations applications in protein studies.

Keywords: molecular dynamics simulations; enhanced sampling techniques; membrane dynamics;
GPCRs; lipid-protein interactions; ACE-2 membrane receptor

1. Introduction

The essence of Molecular Simulations (MS) is a statistical mechanics and numeri-
cal method governed by the Newtonian laws of motion [1] for molecular properties, i.e.,
velocity, position, and energy, towards insights of molecular system while retaining macro-
system physio-chemical properties. Two factors have promoted the increased application
of molecular simulations over the years (Figure 1). One is the growing availability of
experimentally determined protein structures, such as membrane proteins (ion channels,
neurotransmitters and GPCRs etc.) [2,3], the other is the wide availability of graphics
processing units (GPUs), which allows running simulations locally. MS typically analyses
protein structure at a minimum of nano to micro-second time scale to reveal the dynamic
nature of protein molecules covering a wide variety of biomolecular processes, such as con-
formational change, ligand binding and protein folding. Among the numerous approaches
to MS, the Monte Carlo (MC) Simulation sampling method and the MD Simulation method
are the two common methods. The basic concept of MCS is to generate an ensemble of
conformation under specific thermodynamics conditions through stochastic approach;
whereas the concept of MD Simulation is to iterate a time-dependent Newtonian equation
of motions for hard sphere particles in a system [4,5], which can provide an ensemble of
thermodynamic properties.

Membranes 2022, 12, 844. https://doi.org/10.3390/membranes12090844 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes12090844
https://doi.org/10.3390/membranes12090844
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0003-3868-1967
https://orcid.org/0000-0002-8119-3996
https://doi.org/10.3390/membranes12090844
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes12090844?type=check_update&version=2


Membranes 2022, 12, 844 2 of 17
Membranes 2022, 12, x FOR PEER REVIEW 2 of 18 
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2. A Brief History of Molecular Simulations

MS was first introduced in 1949 by Metropolis et al. to study particle interaction [6].
Metropolis proposed a probabilistic approach to approximate the “properties” of a set of
particles [6]. Instead of treating particles as individuals, simulation was applied to measure
the interactions of all particles until they reach equilibrium by the governing laws. Its
success inspired the development of MS by Alder and Wainwright in 1959 [7]. The early MS
algorithm used a rudimentary electronic computer to iterate atom collision. Each atom was
assigned an initial velocity and position. Based on the elastic collision, the MS algorithm
was applied to simulate attraction and repulsion of particles. In 1964, Rahman et al. pub-
lished the first study in using MS to analyze liquid Argon [8]. The work demonstrated that
MS was indeed possible to analyze Lennard Jones potential for interactions between Argon
atoms. In 1971, Rahman and Stilinger reported their MS study on modelling liquid water, a
system composed of molecules not just atoms [9]. Their work demonstrated that differing
from its solid phases structure, liquid water consists of a random network of hydrogen
bonds. In 1976, Warshel and Levitt expanded MS by integrating quantum mechanics and
molecular mechanics (QM/MM) to study lysozyme reaction by proposing the exchange
of the classical charge of atom i and j with quantum mechanics calculations [10]. In 1977,
Karplus and collaborators first used MS to study protein by using constraint method to
freeze out fast-degree freedom to reach longer simulation time [11,12]. Their study led
to the Noble Prize in Chemistry awarded to Warshel, Levitt and Karplus in 2013 for the
development of multiscale models for complex chemical systems [10]. Anderson et al.
in 1980 used MS to sample the isoenthalpic (constant pressure) ensemble. Anderson’s
solution to achieve constant pressure in MD Simulation sampling was to extend dynamic
variable by including volume [13]. Parrinello and Rahman showed that the scheme can
be generalized to include shape and volume fluctuations by using Lagrangian mechanics.
This made it possible to study the issues such as crystallization and solid–solid phase
transition [14]. Their idea of extending the system dynamic variables was to assume that
the system exchanges energy with a fictitious pressure or temperature reservoir. Their
method took into consideration the dielectric effect caused by the atomic polarizability
and increased the accuracy of the binding site. In 1985, Car and Parrinello pioneered a
scheme of combining MS with direct calculation of electronic structure by means of Density
Function Theory (DFT). This work was important as it indicated the possibility of combin-
ing finite temperature into simulation for electronic structure calculations, which was not
possible before [15]. During 1980s and 1990s, MS approach witnessed a rise in studies of
condensed matter with growing access of enhanced computing power; further leading to
the challenges of phase equilibria. Moreover, to address these challenges Panagiotopolus
revised the MC algorithm, known as Gibbs ensemble Monte Carlo, to distinguish the phase
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equilibria approach that only require to simulate the involved phases but by-pass the
interface [16]. Novel algorithms such as blue moon ensemble [17] hyper-MD [18] as well
as advanced theoretical methods such as Nudged-Elastic Band [19] and String [20] were
devised to address the challenges of time-scales (long-time dynamics of protein folding)
and rare events. Further, the advancement in quantum programs outside chemistry field
and the Noble prize in Chemistry 1998 being divided equally between Walter Kohn “for
his development of density-function theory” and John A. Pople “for his development of
computational methods in quantum chemistry” led to form a unified approach for molec-
ular dynamics and density-function theory. Over the following years, time-dependent
density-function theory (TDDFT) further enhanced the accuracy of large-scale simulations
of excited state dynamics [21–23]. TDDFT-MD coupled simulations to simulate excited
state dynamics of biomolecules and other nanostructures achieves high accuracy through
utilizing small number of basic function thereby significantly reduced the memory re-
quirements and computation time compared to plane-wave and real-space grid bases [24].
Furthermore, utilizing multiple computer processors in parallel for MD force calculations
substantially enhanced with IBM’s Blue Matter code for its Blue Gene/L general-purpose
supercomputer [25], resulting in improved parallel performances for the widely used MD
platforms NAMD [26] GROMACS [27] AMBER [28]. Increasing innovation and with advent
of GPU (Graphics processing units) and special-purpose processors such as Anton (parallel
supercomputer to enable fast MD simulations) having computing power to perform up to
20 µs/day [29] further accelerated the simulation study in different biochemical processes.
However, long-timescale simulations requires stringent force field (discussed in follow-
ing section) compared with short-timescale simulations. To conclude this brief history
of MS, it would be appropriate to remark that MS has clearly established itself as a key
scientific instrument driven by enhanced computing power, fast and efficient algorithms
and force fields (FF) are demonstrated by growing number of publications utilizing both
experiments and simulation tools. Major breakthroughs over the years in MS studies are
shown in Figure 2.
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Simulation studies.

3. Basic Concept of Force Field

Currently, it is a routine to simulate proteins with hundreds of amino acid residues
at 10–100 ns surrounded by water and salt [30–32]. User-friendly platforms are widely
available, i.e., GROMACS [33], AMBER [28], vCHARMM [34], DL_POLY [35], NAMD [26],
LAMMPS [36] have been developed for MD Simulations analysis. The output of the
platforms can be visualized and analyzed by external software, i.e., VMD [37], Chimera [38].
However, robust simulation requires appropriate parameters for studying a physical system.
Force field, a set of mathematical expressions and parameters to describe the inter- and
intra- molecular forces, are also essential to describe a physical system.
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Three major molecular models have been developed: all-atom [39,40], coarse grained
(CG) [41,42] and all-atom/coarse-grain mixed models [43–45] (Table 1). The all-atom force
field for MD Simulation of lipid bilayers includes CHARMM, AMBER and OPLS-AA.
GROMOS is an atomistic force field with an exception such as CHn modelled as united-
atoms [46]. CHARMM (Chemistry at HARvard Macromolecular Mechanics) forcefield
for lipids is widely used for simulating lipid bilayer and membrane proteins [47,48].
CHARMM force field is continuously updating and improving with the most recent ver-
sion of CHARMM36m [49]. CHARMM36 lipid forcefield is parameterized for lipids [39],
CHARMM36 DNA and CHARMM36 RNA are parameterized for DNA and RNA [50,51],
CHARMM36m is parameterized for protein, and CHARMM General Force Field (CGenFF)
is parameterized for drugs and general usage [52]. AMBER (Assisted Model Building with
Energy Refinement) forcefield was developed in parallel. It treats all hydrogen atoms ex-
plicitly as CHARMM [53]. AMBER was designed and parameterized for specific biological
systems: AMBER lipids 21 was parameterized for lipids [54]; AMBERff19SB was parame-
terized for proteins [55]; AMBER OL15 and AMBER OL3 were parameterized for DNA and
RNA [56,57]; General AMBER forcefield (GAFF) was parameterized for drugs and general
usage [58]; OPLS-AA (Optimized Parameters for Liquid Simulations All Atom) [59] was
initially designed for simulating thermo-dynamical properties of short-chain hydrocarbons
alkanes and later expanded to include lipids through a parameter set called OPLS/L [60],
although the availability of lipids in the OPLS/L forcefield has not been as diverse as that of
CHARMM and AMBER-compatible force fields. The latest improvement of OPLS-AA/M
was its modification for peptides and protein torsional energetics [61]. The GROningen
Molecular Simulation (GROMOS) forcefield utilizes a different approach for simulating
analysis by fitting the parameters against experimental thermo-dynamic data. Its force-
field was generalized into a single package. The latest version is GROMOS 54A8 package
updated in 2012 [62].

Compared to all-atom models, coarse-grained models significantly reduce the com-
puting time by decreasing the number of particles explicitly during simulations. Over the
last decade, coarse-grained model has also been widely used in protein [63] and nucleic
acid studies [64,65]. Different coarse-grained models have been developed to extend the
timescale of the simulation, since the first model used the concept of coarse grain in 1975 by
Levitt and Warshal [66]. One of the most popular models is the MARTINI for membrane
proteins [42], in which several atoms in protein and lipid are approximated as a single bead
and four water molecules are treated as a single particle (known as one bead 4:1 mapping)
although the beads can differ by their polarity or hydrophilicity. For particular cases,
smaller beads can also be used, such as 3:1 and 2:1 mapping [67]. In MARTINI version
2.2, beads classified into 18 types are categorized into four groups: Q (charged), P (polar),
N (intermediate) and C (apolar). In the latest version MARTINI 3, 29 beads have been
sorted into seven groups with additional groups of halo-compounds (X), divalent ions (D)
and water (W) [68]. MARTINI ELNEDIN model modified by utilizing an elastic network,
with the peptide backbone beads position on the Cα atoms and heavier bead mass, im-
proves the conformation transition in simulation [68]. MARTINI-Dry version provides an
implicated solvation model [69]. The Born model is another model where the effects of the
solvent and membrane are included implicitly in the simulation [70,71]. Implicit solvent
forcefield is less used as it can cause significant errors due to it smoothen energy landscapes,
which causes protein structure to deviate from the experimental crystal structure [72,73].
Coarse-grained protein models have been mainly used for analyzing protein folding mech-
anism and protein structure prediction [74,75]. Every alternate year, the CASP (Critical
Assessment of Protein Structure Prediction) experiments provide an excellent platform to
test the performance of coarse-grained models for predicting structures [76]. Several coarse-
grained protein models apart from MARTINI are as follows: UNRES (united residue) [77],
AWSEM (associated memory, water mediated, structure and energy model) [78], OPEP
(optimized potential for efficient protein structure prediction) [79], SURPASS (Single United
Residue per Pre-Averaged Secondary Structure fragment) [80] and CABS (C-alpha, c-beta,
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side chain) [81] models have been increasingly utilized for protein folding, structure pre-
diction and interactions. PRIMO [82] and Scorpion [83] (solvated coarse-grained protein
interaction) models are increasingly used in peptide and small protein structure prediction
and protein–protein solvated complexes. The Rosetta centroid mode (CEN) model devel-
oped by Rohl et al. is also one of the widely used coarse-grained protein models in CASP
protein structure prediction, de novo blind predictions, protein–protein and protein–ligand
docking and modelling of protein-DNA interaction [84]. Coarse-grained models have
been further utilized in nucleic acid molecular dynamics to analyze the three dimensional
(3D) structural models of RNA [85–87]. Ding et al. introduced the discrete molecular
dynamics (DMD) utilizing coarse-grained model to rapidly explore the conformational
folding of RNA molecules [88]. Recently, Jonikas et al. have developed a fully automated
coarse-grained model NAST (the nucleic acid simulation tool) using statistical potential
capable enough to ensemble over 10,000 RNA plausible (3D) structures [89].

Table 1. Atomistic and coarse-grained forcefield in MD Simulations.

No. Forcefield Drugs Lipid DNA & RNA Protein

1 GROMOS GROMOS 43A1, GROMOS 45A3/4, GROMOS53A5/6, GROMOS54A7, GROMOS54B7, GROMOS54A8

2 OPLS OPLS-AA OPLS-AA OPLS-AA/M OPLS-AA, OPLS-AA/L

3 CHARMM
CHARMM

general force field
(CGenFF)

CHARMM27 lipids,
CHARMM36 lipids

CHARMM27 DNA,
CHARMM27 RNA/DNA,

CHARMM 36 RNA,
CHARMM 36 DNA

CHARMM22/CMAP,
CHARM27, CHARMM36,

CHARMM36m

4 AMBER General AMBER
force field (GAFF) LIPID14, LIPID21

AMBER99 OL3,
AMBER99bsc,
AMBER OL15

AMBER94, AMBER96,
AMBER99, AMBER99sb,
AMBER03, AMBER14sb,

AMBER15ipq, AMBER19sb

5 MARTINI

MARTINI 2,
MARTINI22,

MARTINI22p,
MARTINI 3,

MARTINI dry,
MARTINI

ELNEDYN22,
MARTINI

ELNEDYNP22

MARTINI 2,
MARTINI22,

MARTINI22p,
MARTINI 3,

MARTINI-Dry,
MARTINI

ELNEDYN22,
MARTINI

ELNEDYNP22

MARTINI 2015

MARTINI 2, MARTINI22,
MARTINI22p, MARTINI 3,
MARTINI dry, MARTINI
ELNEDYN22, MARTINI

ELNEDYNP22

6
Coarse-grained

forcefield models
(additional)

-

Electrostatics-based
model (ELBA) [90]
protein-lipid CG

model [91]

PRIMONA, DMD, NAST,
ENMs, oxRNA,
SimRNA, SPQR

Rosetta centroid (CEN),
UNRES, CABS, PRIMO,

AWSEM, SURPASS,
Scorpion, OPEP

4. Molecular Simulations in Protein Study

The importance of MS arises from the fact that biomolecules such as proteins are under
a dynamic state of motion, which is essential for the function of biomolecules. Although
multiple experimental techniques can reveal the structural features of biomolecules, they are
often incapable to show the dynamic features. MS provides a means to model the flexibility
and conformational changes in the biomolecule at atomistic level, which is difficult to
achieve by experimental approaches [11]. MS is more effective when combined with
experiments to validate and improve the accuracy of experimental results. A key feature of
MS is its ability to mimic both the in vitro and in vivo conditions, for example, at different
pH conditions, in the presence of water and ions, at different salt or ionic concentrations,
and in the presence of a lipid bilayer and other cellular components [92]. MS has been
used to study multiple protein-related issues, such as protein-binding, protein–protein
interaction and signaling [93]. The followings are examples.
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4.1. Applications of Molecular Simulations in Membrane Proteins

MS has been increasingly applied in membrane protein analysis [94], such as mem-
brane protein structure and organization, membrane protein permeability, lipid-protein
interaction, protein–ligand interaction, protein structure and dynamics [95,96]. MS is also
used in combination with a wide variety of experimental techniques to address protein
structure-related questions, including X-ray crystallography, cryo-electron microscopy
(cryo-EM), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR)
and Foster resonance energy transfer (FRET) [97]. For example, MS can minimize the gap
between NMR structures and X-ray crystallography structures, allowing for better analysis
of structural instability and interaction [98].

Membrane protein can be classified into three classes: integral, peripheral and lipid-
anchored [99]. Based on the interaction of membrane protein with lipid bilayer, the three
classes can be further divided into eight types: (1) type I membrane protein; (2) type II mem-
brane protein; (3) type III membrane protein; (4) type IV membrane protein; (5) multipass
transmembrane protein; (6) lipid chain-anchored membrane protein; (7) Glycosylphos-
phatidylinositol (GPI)-anchored membrane protein; and (8) peripheral membrane pro-
tein [99]. In a biological membrane, lipid molecules are arranged spontaneously to form a
lipid bilayer having hydrophobic chains in the interior and hydrophilic groups at the exte-
rior [100]. Membrane protein such as transporters, ion channels etc. plays significant roles
in transportation of ions, polypeptides and other substrates through lipid bilayers [101].
Membrane receptor proteins responsible for signal transduction is also one of the important
functions of membrane protein [102]. Compared with soluble proteins, determination of
the structure for membrane proteins using X-ray, NMR and cryo-EM is more challenging,
and the number of membrane protein structures in protein databases, i.e., PDB, JenaLib,
OPM [103–105] is also limited [106,107]. Furthermore, as membrane proteins often un-
dergo large conformational changes, a single structure is not sufficient to understand the
mechanism of their biological function. Therefore, increasing attention has been paid in
applying simulations to study membrane proteins. The structures of many membrane
proteins have been experimentally determined, e.g., many ion channels, neurotransmit-
ters, transporters and G protein-coupled receptors (GPCRs) etc., the information facilitate
simulation study. Furthermore, the increased power and accessibility of MD Simulation
by computer hardware, particularly GPU (graphical processing unit), allows simulations
to be run locally at modest cost [108–110]. Nowadays, simulation is often applied in the
timescale of microseconds, thus making it possible to trace biological events from the early
studies, which primarily focused on phospholipid bilayers such as DPPC (dipalmitoylphos-
phatidylcholine) or DMPC (dimyristoylphosphatidylcholine) [40,111,112]. To simulate
various biological phenomena such as aggregation, large conformational changes and
membrane protein folding, Hensman and Okamoto first applied the enhanced conforma-
tional sampling method [113–117]. They compared the accuracy and efficiency of different
molecular models in glycoprotein A (GpA), phospholamban (PLN), amyloid precursor
protein (APP) and mixed lipid bilayers [118], and observed that the predicted GpA, PLN
and APP structures using the replica-exchange MD (REMD) and replica-exchange umbrella
sampling (REUS) approaches are comparable with the data from experiments, suggesting
that the model and simulation approaches are sufficiently accurate.

4.2. Simulations of Integral Membrane Protein (GPCRs)

G protein-coupled receptors (GPCRs) are internal membrane proteins (IMPs) con-
sisting of 7-transmembrane helix. They are the largest membrane receptors. There are
about 800 GPCRs identified in the human genome [119], over a quarter of drugs target
GPCRs [120–122]. In 2020, 24 new drugs targeting 16 GPCRs have been clinically ap-
proved, and 44 new drugs targeting GPCRs were under 100 clinical trials [123]. Simulation
studies have drastically helped improve understanding of GPCRs structures and func-
tions [124,125]. Dahl and Weinstein (1990) pioneered the MD Simulations studies of GPCR
on dopamine, serotonin and opioid receptors [126]. With the X-ray determined crystal
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β2AR structures [127], microsecond-long MD Simulation of β2AR reveal multiple choles-
terol (lipid bilayer) interactions distributed unequally between the extracellular (EC) and
intracellular (IC) sides with variable binding strength [128]. There are three key areas where
MD Simulations provide unique insights into dynamic properties of GPCRs: the change in
conformations that occur between different GPCR active and inactive states, interaction
of GPCRs with ligand/inhibitors and effects of lipids on the conformational dynamics
of GPCRs.

Dror and colleagues utilized long time-scale MD Simulations to identify key connector
region that connects GPCR canonical binding sites to G-protein binding site [129], More-
over, the conformations of the G-protein were key determinant as the inactive G-protein
binding site restricts the connector region (GPCRs) to its inactive conformation [129]. The
study performed a total of 92 simulations for ~656 µs time period to analyze the mecha-
nism for GPCRs transition from inactive to active state. Further, using similar protocol
and Anton (a supercomputer designed for accelerating MD Simulations) [130], Schneider
and colleagues performed MD Simulations to analyze the differences between full ago-
nists (Morphine) and biased agonists (TRV-130) in mutual information networks for the
µ opioid receptor active state (PDB: 5C1M) [131]. The results clearly indicated that biased
inhibitors interact with smaller set of residues, thereby make it easy to analyze the binding
pattern experimentally.

GPCRs represent a broad spectrum of drug targets as they have pivotal roles in many
physiological functions (neurotransmitters, environmental stimulus, chemokines etc.) and
in disease development including cancer and cancer metastasis [132]. GPCRs are particu-
larly useful for drug discovery due to their ability to modulate a variety of intracellular
signaling pathways, including the activation of G proteins and β-arrestins [133]. Identifi-
cation of novel molecules targeting GPCRs face several challenges as these proteins exist
in different conformations rather than a single inactive and activated state [125]. Recent
studies have used long unbiased MD Simulations for ~ 50 µs to predict the binding poses of
TRV-130 to the µ-opioid receptor (MOR) [131], the allosteric ligands to the M2 muscarinic
receptor (M2) [134], and ML056 to the sphingosine-1-phosphate receptor 1 (S1P1R) [135].
Further, Marino et al. applied meta-dynamics to study the ligand binding to GPCRs to
predict the binding pose of a PAM, BMS-986187 to the δ-opioid receptor (DOR) as well
as to MOR (G protein agonist) [136]. Further, the need to develop new protocols to de-
crease the computational time and increase the performance of the algorithms, resulted in
Supervised MD (SuMD) capable of reducing the total simulation time from microsecond
to nanosecond timescale [137]. The SuMD protocol was applied to binding analysis of
numerous ligands to the A2A adenosine receptor, resulting in significantly reducing the
simulation time, for example the analysis of ZM241385 (PDB: 3EML), T4G (PDB: 3UZA),
T4E (PDB: 3UZC) reproduced the crystallographic pose in approx. 60ns, 65ns and 110ns,
respectively [137]. MD Simulations can reveal specific GPCR residues and ligand–receptor
interactions responsible for the allosteric transmission, based on dynamical information
derived from the simulations.

Lipids (cholesterol, etc.) also play a role in the function of GPCRs in addition to ligands
and ions [138,139]. Early studies utilizing classical MD Simulation of A2A adenosine-
bound receptor (PDB: 2YDO) resulted in identification of potential cholesterol sites in
GPCRs [140] with three binding sites. The third binding site, especially, demonstrated
the same binding pattern in alignment with X-ray crystallographic structure of same
receptor (PDB: 4EIY) [141]. MD Simulations was also utilized to analyze the mechanism of
other lipids (simple/mixed zwitterionic bilayers) modulating A2A receptor structure [142].
Simulations for 0.25 ms revealed that the lipid bilayers had different effects on the stability of
the active state of native receptor. Moreover, simulation studies revealed that phospholipids
can compete with G-protein binding site, suggesting that lipid binding at intracellular end
can hinder G-protein binding, leading to modulation of GPCRs by phospholipids [143].
Further, a GPCR database has been developed, with reference data and tools for both
analysis and visualization [144,145].
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4.3. Simulations of Interaction between SARS-CoV-2 Spike and Membrane ACE2 Receptor

The outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) is an example of showing how MD Simulations can be used to understand
the relationship between SARS-CoV-2 and the human host. SARS-CoV-2 infects human
cells through its spike (S) protein binding to the angiotensin-converting enzyme-2 (ACE-2)
receptor in the human cell membrane. SARS-CoV-2 constantly mutated its spike to increase
its infection to the host. New mutants including alpha, beta, gamma, delta and omicron
strains have been generated [146] carrying L452R, T478K, E484K, E484Q, and N501Y
mutations. A typical example is the delta mutant, which contains 10 mutations of T19R,
G142D, 156del, 157del, R158G, L452R, T478K, D614G, P681R, D950N in its S protein, and
the double mutation L452R/T478K is located in RBD [147] (Figure 3).
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MD Simulations provides a powerful tool to reveal the structural and conforma-
tional basis of the new mutants to ACE2 [148]. Massive-scale MD Simulations using
state of art supercomputer machines have been used to gain insights into the biology of
SARS-CoV-2 [149]. Amaro et al. used ~250,000 processing cores and ~4000 processor nodes
in their MD Simulations study [150]; their results showed that glycans play a significant role
in S-protein binding [151]. Taiji et al. used a drug discovery supercomputer MD GRAPE-4A
to analyze the structural dynamics of Mpro of SARS-CoV-2 [152]. Acharya et al. used a
supercomputer “Summit” to perform MD Simulations on 8000 compounds to screen for
potent inhibitors to S-protein and identified 77 small-molecule drug compounds [153]. Re-
markably, the folding@home computing project involving over a million-citizen scientists
performed an unprecedented 0.1 second MD Simulations to simulate SARS-CoV-2 [154],
revealed how the S-protein uses conformational change to escape host immunity, and
subsequently identified the hidden cryptic pockets that were extremely difficult to capture
by experimental approaches.

We also applied MD Simulations to study the effects of SARS-CoV-2 mutations on
RBD domain binding affinity with ACE2. We studied the mechanism of the increased
transmissibility of SARS-CoV-2 variants with double RBD mutations [149] by investigating
the changes in binding pattern and structural conformation between the ACE2 receptor
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and four SARS-CoV-2 variants containing three RBD double mutations of L452R/T478K
(delta) [155], L452R/E484Q (kappa) [156] and E484K/N501Y (beta, gamma) [157,158]. We
used a combinational approach in the study, including 3D-protein structure, protein–protein
interaction, molecular dynamics simulation, superimposed protein structure, affinity bind-
ing, and antibody binding mapping. We observed that the N501Y caused mild structural
change and increased the binding affinity of the S protein to ACE2 [159]. We also ob-
served that the binding energy of N501Y variants increased to –48.92 kcal mol−1, consistent
with the observations by other in vitro studies showing the binding of Y501 increased
10-fold gain of binding affinity and in vivo studies showing N501Y imparted cross-species
transmission [160–162]. E484 has a positive (opposed) binding affinity with the ACE2,
but the variant K484 has significantly increased its binding affinity with the ACE2 [163].
This indirectly changed RBD structure configuration and strengthen other key binding
residues (i.e., Y505, F486) in the RBM during the spike protein approaching the ACE2,
leading to the increased binding affinity [164,165]. The substitution of K, Q, or P residues
at the E484 position was identified and these variants assisted the virus to escape host
immune defenses [166]. E484K mutation caused a 50% loss of neutralizing activities by
antibodies, and a 3 to 6-fold reduction in neutralization by sera of the individuals who
received mRNA-vaccine. Simulation with 26 common antibodies found in humans showed
that up to 85% showed weaker binding affinities to the E484K mutated strain [167]. Double-
mutation in the beta and gamma strains increased the binding strength of RBD as they
changed the energy landscape of the RBD by ~25%. The combination of E484K immune
escape capabilities and N501Y increased the binding affinity, causing ~50% higher transmis-
sibility [168]. Our study showed that the three double mutated RBD all alter the wildtype
RBD structure in the ways much different from those caused by the RBD single mutations,
enhanced the binding of the mutated RBD to ACE2 receptor, changed antibody binding,
leading to the increased infection of SARS-CoV-2 to the host cells (Figure 4).
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5. Challenges and Future Opportunities

Increments and leaps of improvements are continuously produced by many research
groups and developing new solutions for various persistent challenges remain the focus of
research. At present, managing enormous information generated by simulations with every
molecule represented in atomistic detail is a big challenge. Currently, it is impractical to
share the primary data as there is no MD Simulations database [169–172]. Possible solutions
include reducing the data size by using snapshots at different time points of simulation
and removing insignificant parts of the system such as solvent, and maintaining the full



Membranes 2022, 12, 844 10 of 17

dataset but allowing remote analysis so that only the results instead of the actual dataset
need to be transmitted [173].

The connection between experiments and simulations is an important step comple-
mentary to each other [173,174]. This can be further enhanced through improving the FF or
the method of simulations. For example, simulation accuracy can be significantly improved
by integrating quantum mechanics on-the-fly simulation. However, many theoretical chal-
lenges and long computational time may prohibit the merging of quantum mechanics with
molecular mechanics. The progress in this area remains stagnated since the 2000s mainly
due to the number of electrons (i.e., number of basis sets to represent electronic wave func-
tion) involved in a system, integration of time, and calculation of the system beyond ground
state [175]. To circumvent such problem, polarizable FF were developed to approximate
dielectric effects in MD Simulations. However, there is a need to develop a polarizable FF
for better accuracy than current versions of FF (AMBER99SB-ILDN, CHARMM22-CMA,
GROMOS, OPLS-AA) in order to study protein in multi-scale environments [174].

Another key area of research gaining momentum is the integration of machine learning
(ML) and deep learning (DL) techniques into MD Simulations. The incorporation brought
various significant new research directions to analyze protein trajectories and protein
structures. ML and DL can analyze non-linear complex systems by recognizing regular
and similar patterns in the data. In particular, substantial expansion has been made that
ML and DL utilize to create an adaptive force field on-the-fly [176–178], increasing the
simulation timescale [179], and protein–protein/protein–ligand interactions [180,181]. ML
and DL are becoming new potential tools for analyzing large amounts of data produced by
MD Simulations.

Currently, it remains a challenge for researchers without high-end computing back-
grounds to use MS to study the system of their interest. A user-friendly interface such
as automation in MD Simulations need to develop. One such remarkable example was
made by P. Arantes et al. (2021). They presented a user-friendly front-end running MD
Simulations system using openMM toolkit on the Google colab framework [182] and cloud-
computing scheme for performing MD Simualtions on microsecond time scale. Regardless
the challenges, MD analysis is becoming a mainstream tool in basic and applied biology.
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