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Abstract: Vacuum-enhanced direct contact membrane distillation (VEDCMD) has been proven
experimentally to improve the permeate flux, compared with direct contact membrane distillation
(DCMD). However, the theoretical mechanism for its transmembrane transfer process has not been
revealed sufficiently. In this paper, with full consideration of the different driving forces of diffusion
and Poiseuille flow under the vacuum enhancing condition, a theoretical transmembrane model for
mass and heat transfer in VEDCMD is proposed. The CFD model and experimental platform are
established to verify the theoretical model. The simulated results agree with the experimental data
well, and nearly 200% improvement of the permeate flux is obtained when the permeate pressure
drops to 30 kPa. The flow fields of the flow along the membrane surface are obtained and analyzed,
with good consistency in the variation of the permeate flux. Since all the parameters of the proposed
model are independent of the operating condition, the model is much easier for use and has better
adaptability to fluctuating operating conditions.

Keywords: desalination; VEDCMD; transmembrane mass and heat transfer

1. Introduction

Membrane distillation (MD) is a membrane-based separation technology [1], including
direct contact membrane distillation (DCMD), vacuum membrane distillation (VMD),
swept gas membrane distillation (SGMD), and air gap membrane distillation (AGMD) [2].
Compared with other MD processes, DCMD is applied much more widely due to its
advantages, such as simple installation and operation and no requirement for an external
condenser [3]. However, the high energy consumption of DCMD is not only conflicting
with the fossil fuel shortage but also detrimental to the environment. Thus, DCMD driven
by clean or low-grade heat sources such as solar energy, geothermal energy, and recovery
of waste heat has attracted widespread attention. Bamasag et al. [4] proposed a DCMD
system that used solar thermal energy for desalination. Enhanced by the solar radiation, the
permeate flux of DCMD was improved about 17%. Lokare et al. [5] utilized the waste heat
from natural gas compressor stations as the heat source of DCMD, effectively concentrating
the high salinity water, regardless of the initial salinity.

Whether the clean or low-grade heat is utilized effectively in the DCMD can be as-
sessed by the freshwater production rate per unit of heat input. Given the same conditions
of heat input, membranes, and the fluid flow, the permeate flux is a widely accepted,
effective, and available index to evaluate heat utilization efficiency. The higher the per-
meate flux, the more efficient and effective the water treatment, and the greater the heat
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utilization efficiency. Thus, plenty of research has been carried out to improve the permeate
flux of DCMD, including improving membrane materials [6–14], upgrading membrane
modules [15–18], optimizing operating conditions (e.g., increasing the feed-side temper-
ature [19–21], and decreasing the permeate-side pressure [22–25], etc.). Enhancing the
vacuum degree of the permeate side has been proven experimentally to improve the perme-
ate flux, especially when there is a limitation for the feed temperature and the membrane
material and modules are determined. Cath et al. [22] found in their experiments that the
flux of vacuum-enhanced direct contact membrane distillation (VEDCMD) with permeate
pressure of 550 mbar was increased by 84% compared to the DCMD with permeate pres-
sure of 1080 mbar under the same operating temperatures. In the experiments of Plattner
et al. [25], the feed and permeate side temperature of VEDCMD were 55 ◦C and 25 ◦C,
respectively. When the permeate pressure decreased from 1000 mbar to 300 mbar, the
permeate flux was enhanced by 42%.

As mentioned above, the flux enhancement of VEDCMD has been verified experimen-
tally, but the research on the transmembrane transfer model of VEDCMD is still inadequate.
Schofield et al. [26] introduced a dimensionless coefficient α into the classical mass transfer
model of DCMD to fit the measured fluxes of VEDCMD. Although the classical transfer
patterns like diffusion and the Poiseuille flow were both included in the model, all the
transfer processes were assumed to be driven only by the vapor pressure difference be-
tween the two ends of the micro-pore of membrane, while the driving force caused by the
total pressure difference between the feed and permeate side was not considered. Similarly,
Naidu et al. [27] developed their mass transfer model based on the model of [26], and the
driving force of the transmembrane mass transfer only considered the pressure difference
of two membrane surfaces. Since the flux enhancement of VEDCMD compared to the
traditional DCMD is closely related to the total pressure difference between the feed and
the permeate side, the corresponding driving force should also be properly included in
building the mass transfer model after accurately analyzing all the driving forces and
their relationships with the dominant mass transfer patterns. As far as the authors know,
currently, no published articles have reported the related research results.

In this paper, on the basis of accurately analyzing the driving force for each trans-
membrane mass transfer pattern of VEDCMD, a theoretical transmembrane transfer model
is developed, based on which a computational fluid dynamics (CFD) model for a plate
type VEDCMD is established to predict the permeate flux and reveal the distributions of
important parameters along the membrane surface, which are hardly obtained through ex-
periments. Finally, to verify the proposed theoretical model and the CFD simulation results,
an experimental platform is built, and the permeate fluxes are measured and compared
with the simulation results.

2. Theoretical and CFD Model
2.1. Theoretical Model
2.1.1. Mass Transfer

For the transmembrane mass transfer of DCMD, the only driving force is the vapor
pressure difference between the feed and the permeate side. The permeate flux can be
calculated by Equation (1) [28].

JM = KM
(

pf,W − pp,W
)

(1)

where pf,W (Pa) and pp,W (Pa) are the partial pressures of water vapor on the feed side and
permeate side, respectively. KM is the mass transfer coefficient. The subscripts “f” and “p”
indicate parameters at the feed and permeate side, respectively. The subscripts “W” and
“M” indicate the parameters in the flow channel and on the membrane surface, respectively.
pf,W (Pa) can be calculated according to Equation (2), where γw is the activity coefficient of
water as shown in Equation (3) [28]. The subscripts “w” indicate the parameter of water.
XNaCl is the molar fraction of sodium chloride in feed solution as calculated by Equation (4).
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The saturation vapor pressure of pure water pS
v (T) (Pa) at different temperatures T (K) can

be obtained by the Antoine Equation (5).

pf,W = (1− XNaCl)pS
v(Tf,W)γw (2)

γw = 1− 0.5XNaCl − 10XNaCl
2 (3)

XNaCl =
WNaCl
MNaCl

/
(

WNaCl
MNaCl

+
Ww

Mw

)
(4)

pS
v(T) = 23.1964− 3816.44

T− 46.13
(5)

The dust gas model (DGM) proposed by Masson et al. [29] was widely accepted to
characterize the transmembrane mass transfer mechanism of MD. Based on the DGM
model, Schofield et al. [30] classified the transmembrane mass transfer patterns as follows:
the Knudsen diffusion, the molecular diffusion, the Knudsen-Molecular diffusion, and the
Poiseuille flow. The Knudsen number Kn can be calculated by Equation (6).

Kn =
λ

d
(6)

where λ (µm) refers to the mean molecular free path of water vapor, and d (µm) is the
mean diameter of the membrane pores. Because the air stays in the membrane pores, and
is hardly soluble in the external inflow, an air-vapor co-existence environment is formed in
the pore. Thus, the mean molecular free path of the gas in the pore can be calculated by
Equation (7) [28].

λw−a =
KBTm

π
(

βw+βa
2

)2
p
√

1 +
(

Mw
Ma

) (7)

where KB is the Boltzmann constant (1.381 × 10−23 J·mol−1·K−1) and Tm (K) is the average
temperature of both sides of the membrane. The subscript “a” indicates the parameter
of air. βa (2.641 × 10−4 µm) and βw (3.711 × 10−4 µm) are the collision diameters of air
and water molecules, respectively. p (Pa) is the absolute pressure, and Mw and Ma are the
molecular weight of water and air, respectively. According to the Knudsen number, the
transmembrane mass transfer caused by diffusion can be classified into four patterns.

(1) Molecular diffusion
When the mean molecular free path is smaller than the membrane pore size, leading

to Kn > 1, the collision between molecules becomes the main form of diffusion, and the
mass transfer coefficient is calculated by Equations (8) and (9) [30]:

KM = KMD =
ptDwaεh

τδ

Mw

RTm
(8)

ptDwa = 1.895× 10−5T2.072 (9)

where εh is the surface porosity, δ (mm) is the thickness of the membrane, pt is the gas
pressure inside the membrane pore space, Dwa (m2·s−1) is the diffusion coefficient of water
in air, τ is the membrane tortuosity factor, and R (J·mol−1·k−1) is the gas constant.

(2) Knudsen diffusion
When the mean molecular free path is much larger than the diameter of the mem-

brane pore, i.e., Kn < 0.01, the pore size will primarily affect the transmembrane motion
of molecules. The collision between molecules and the wall of the membrane pore be-
comes the major obstruction. In this case, the mass transfer coefficient is calculated by
Equation (10) [30].

KM = KK =
2
3

rεh
τδ

(
8Mw

πRTm

)0.5
(10)
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where r (µm) is the membrane pore radius.
(3) Knudsen-Molecular diffusion
When 0.1 < Kn < 1, molecular diffusion and Knudsen diffusion both become the

primary forms of molecular mass transfer across the membrane. In this case, using the
Knudsen-molecular diffusion model, the mass transfer coefficient can be expressed as
Equation (11).

KM = KK−MD =

(
1

KK
+

1
KMD

)−1
(11)

(4) Poiseuille flow
When the collisional motion between molecules becomes the dominant form, if a

macroscopic total pressure gradient difference is generated on both sides of the membrane,
the gas inside the pore will diffuse in the direction of the inverse gradient difference of pres-
sure. The mass transfer coefficient associated with Poiseuille flow KPO (kg·m−2·s−1·pa−1)
can be expressed as Equation (12) [30].

KPO =
1

8µ

r2εh
τδ

Mw pf,W

RTm
(12)

where µ (pa·s) is the viscosity of pure vapor at a specific temperature, which can be
calculated by Equation (13). µ0 (pa·s) and Su (K) are the kinetic viscosity and Susland
constant of the gas at 0 ◦C, respectively.

µ = µ0
273 + Su
T + Su

(
T

273

)15
(13)

The above mass transfer model has been proven to be a fit for the flux prediction
of DCMD, but the Equation (1) is not applicable to the VEDCMD, for the influence of
the permeate pressure drop is not included in the model. Thus, some semi-empirical
formulas were developed based on the above model to fit the theoretical calculations
with the experimental results. In the model of Schofield et al. [26], the permeate flux
of VEDCMD was calculated by introducing a semi-empirical coefficient (the ratio of the
average vapor pressure at two ends of the micro-pores to the reference pressure). Based
on the research of Schofield et al., Naidu et al. [27] modified the calculation procedure
of VEDCMD permeate flux by introducing a dimensionless coefficient α (the ratio of the
average pressure of two membrane surface to the reference pressure), which was similar
to the semi-empirical coefficient proposed by Schofield et al. In their research, only the
vapor pressure difference between the two ends of the micro-pores, or between the two
surfaces of the membrane, was considered as the driving force of the transmembrane mass
transfer. However, different from the DCMD, in the VEDCMD process, the mass transfer
processes through the membrane pores are not only driven by the single driving force. For
the diffusion pattern, the driving force should be the vapor pressure difference between
the feed and permeate side, for the molecular motion is caused by the “concentration” of
the water vapor molecules. Nevertheless, for the Poiseuille flow pattern, the driving force
should be the total pressure difference of the two membrane sides, and the driving force
caused by the vapor pressure difference is relatively small and negligible. Based on the
above analyses, we propose an improved transmembrane mass transfer formula for the
VEDCMD by distinguishing the contribution of the two types of driving force as shown in
Equation (14). The first item at the right side of the equation represents the mass transfer
caused by the diffusion of water vapor molecules, and the second item the mass transfer
caused by the Poiseuille flow through the pores.

JM = KD ·
(

pf,W − pp,W
)
+ KPO ·

(
pf − pp

)
(14)
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where pf (Pa) and pp (Pa) are the total pressure of the feed channel and permeate channel.
KD is the mass transfer coefficient caused by the diffusion, and can be calculated by
Equations (8)–(11) according to the Kn number.

2.1.2. Heat Transfer

The heat transfer across the membrane consists of three steps:

(1) Heat is transferred from the main body of feed seawater flow to the membrane surface
on the feed side.

(2) A part of the heat is taken away from the feed side and passes through the membrane
by heat conduction and vaporization.

(3) The vapor condenses on the permeate side, together with the conducted heat of the
membrane, raising the temperature on the permeate side.

It is reported that the heat transfer caused by convection only accounts for 0.6% of the
total transferred heat hence, thus being negligible. Then, the heat transfer rate qM (w·m−2)
can be calculated by Equation (15) [28].

qM = qH + qC = JM∆HV +
km

δ

(
Tf,W − Tp,W

)
(15)

where qH (w·m−2) is the latent heat of vaporization through the membrane and qC (w·m−2)
is the conducted heat through the membrane, considered as heat loss. The evaporation
enthalpy of water ∆HV (kJ·kg−1) can be calculated by Equation (16). Since the membrane
is porous, there is a gap in the membrane pores, and the thermal conductivity of the
membrane km (J·m−1·k−1) can be calculated by Equation (17).

∆HV = −0.001351Tf,W
2 − 1.4461Tf,W + 2986.5 (16)

km = εhka + (1− εh)ks (17)

where ka (J·m−1·k−1) is the thermal conductivity of air, and ks (J·m−1·k−1) is the thermal
conductivity of the membrane material.

2.2. CFD Model for Permeate Flux Prediction

Grounded on the proposed transmembrane transfer model of the VEDCMD, CFD
simulations are carried out to predict the permeate flux of the VEDCMD driven by the
low-grade heat source.

2.2.1. Governing Equations

Equations (18)–(20) represent the continuity, momentum conservation, and energy
conservation equations for fluid flow both in the feed and permeate channel. Equation (21)
is the heat transport equation for the membrane. The component transport Equation (22) is
adopted to calculate the concentration distribution of NaCl in the feed solution. For the
Re number of the channel flow ranges more than 4000, the turbulence model should be
introduced to enclose the governing equations. The standard k-ε model is adopted and the
specific equations are shown as Equations (23) and (24).

∂ρ

∂t
+∇ · (ρ→v ) = Sm (18)

∂

∂t
(ρ
→
v ) +∇ · (ρ→v→v ) = −∇p +∇ ·

(
=
τ
)
+ ρ
→
g +

→
F (19)

∂

∂t
(ρE) +∇ ·

(→
v (ρE + p)

)
= ∇ ·

(
ke f f∇T −∑

j
hj
→
J j +

(
=
τe f f ·

→
v
))

+ Sh (20)

∂

∂t
(ρE) +∇ · (→v ρE) = ∇ · (km∇T) (21)
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∂

∂t
(ρYi) +∇ ·

(
ρ
→
v Yi

)
= −∇ ·

→
J

i
+ Ri + Si (22)

∂

∂t
(ρk) +

∂

∂xi

(
ρkuj

)
=

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε−YM + Sk (23)

∂

∂t
(ρε)+

∂

∂xj

(
ρεuj

)
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

vε
+C1ε

ε

k
C3εGb +Sε (24)

The mass source terms of the Equation (18) Sm (kg·m−3·s−1) is given by Equation (25),
and the heat transfer source Sh (kW·m−3) is given by Equation (26). These source terms
only exist in the flow at the first grid layer away from the membrane surface. In other flow
areas, they are equal to 0. In the feed flow, the source term Sm is negative while in the
permeate flow it is positive.

Sm = ± JM

b
(25)

Sh = Sm · ∆Hv (26)

where b (mm) is the thickness of the flux at the first grid layer from the membrane surface.
keff (W·m−1·k−1) is the thermal conductivity of fluid. hj is the enthalpy of the component

j.
=
τe f f (kg·m−1·s−1) is the stress tensor related to the viscous force. ρ

→
g and

→
F are the

gravitational and external body forces, respectively. Gk and Gb represent the generation of
turbulence kinetic energy due to the mean velocity gradients and buoyancy, respectively.
YM is the contribution of the fluctuating dilatation in the compressible turbulence to the
overall dissipation rate. C1ε and C2 are constants. σk and σε are the turbulent Prandtl
numbers for k and ε, respectively. Sk and Sε are user defined source terms.

2.2.2. Simplified Geometrical Model

A flat-plate module is adopted for the VEDCMD simulation and its configuration is
simplified to a 2D geometrical model shown in Figure 1, with the characteristic structural
parameters given in Table 1.
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Figure 1. Simplified 2D geometrical model of the flat-plate VEDCMD module.

Table 1. Characteristic parameters of the flat-plate module of VEDCMD.

VEDCMD Module Property Value

Membrane material PVDF
Porosity 0.75

Membrane nominal pore size 0.22 µm
Membrane thickness 0.12 mm

Length L 125 mm
Hot channel height H 12 mm
Cold channel height H 12 mm
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The channel of the feed (hot seawater) and permeate side (cold freshwater) are sym-
metric in structure; both are 125 mm in length, 25 mm in width, and 12 mm in height.
The liquid in each channel flows from the inlet to the outlet, with mass and heat trans-
ferred through a hydrophobic PVDF (polyvinylidene difluoride) membrane, which is fixed
between them. The features of the membrane module are also given in Table 1.

The geometrical model is meshed in ICEM, and the quadrilateral structured mesh is
adopted for better calculation accuracy. A local mesh densification scheme is applied for
the mesh near the membrane. The height of the first layer and the growth factor are 9.7 µm
and 1.01, respectively. The mesh of the feed and permeate channel flow are distributed
symmetrically. The quality of the generated mesh is checked by the aspect ratio and angle,
and the total grid number of the 2D model (50,196) is obtained after grid independence
analysis. The mesh detail of the model is shown in Figure 2.
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Figure 2. Schematic diagram of specific meshing results and boundary conditions.

2.2.3. Boundary Conditions

Necessary boundary conditions are set in the meshed fluid domain as shown in the
Figure 2. The feed and permeate inlet are both the velocity inlet with a constant value for
each simulation, and the outlets are both pressure outlets (pp,out = pf,out = 101,325 Pa,). As
turbulence is involved, turbulence intensity and hydraulic diameter need to be calculated at
the velocity inlet, and reasonable parameter values need to be set to ensure the accuracy of
the simulation results. The membrane surface of both feed and permeate side are non-slip
walls(ug = 0). The transmembrane mass and heat then spread to other fluid domain with
the flow. The upper and lower wall of the membrane module are assumed to be adiabatic.

3. Experimental Setup

Figures 3 and 4 shows the schematic and photo of the established testing platform
for the VEDCMD seawater desalination, respectively, mainly consisting of two circuits: a
feed branch and a permeate branch. In the feed branch, the feed channel is connected with
a hot seawater tank, a heater acting as a low-grade heat source, and a micro-circulation
pump. In the permeate branch, the permeate channel is enclosed by pipelines equipped
with a freshwater pressure stabilization tank with a vacuum pump, vacuum gauge, and a
micro-circulation pump. Necessary temperature sensors, liquid flow meters, and control
valves are mounted on the pipeline as well. The length and height of the feed and permeate
channel, and the membrane characteristic parameters, are the same as those of the CFD
model, and the effective membrane area is 0.136 m2. The module is made of PMMA
(polymethyl methacrylate) so that the fluid flow in the channels and the membrane state
can be observed.
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10—Vacuum gauge, 11—Vacuum pump.
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Every time before the experiment is started, the heater, flow meters, temperature
sensors, micro-circulation pumps, vacuum pump, vacuum gauge, and other auxiliary
equipment are checked to ensure the stable operation of the equipment and instruments.
All the valves are also checked to ensure the right state. The feed and permeate channel are
fulfilled with seawater and freshwater, and the air inside is drained thoroughly. Meanwhile,
the sealing of the membrane module and all the pipelines are inspected. The temperature
of the flow at the inlet of the feed and permeate channel is maintained by adjusting the
seawater volume of the seawater tank, freshwater volume of the freshwater pressure
stabilization tank, and the vacuum pump.

At the beginning of the operation, seawater is injected into the seawater tank, and
then heated through the heater to reach the required feed temperature. The freshwater
is pumped into the freshwater pressure stabilization tank, but does not fill the tank, so
that an upper air volume is formed in the tank. The vacuum pump mounted on the top
of the tank is used to create a vacuum degree of the air volume, which will be conducted
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to the permeate flow to realize the vacuum enhancement. When the flow rate and the
temperature of the both circuits become stable, the height of freshwater in the freshwater
pressure stabilization tank is recorded and the timer goes to work. After 20 min, the height
of the freshwater in the freshwater pressure stabilization tank is recorded again to calculate
the water production rate (if necessary, a volume of cold freshwater is injected into the
tank to maintain the temperature, and the induced height change will also be considered).
The same operation will repeat for three times, and the average water production rate
is obtained. When the operating parameter changes, the procedure above is repeated
to obtain the water production rate at different conditions. The membrane flux can be
calculated according to the water production rate and the membrane area, which is used
to verify the results of CFD simulation based on the proposed theoretical transmembrane
transfer model.

4. Results and Discussion
4.1. Experimental Verification of the Proposed Transmembrane Transfer Model

Figure 5 shows the comparison between the simulated membrane flux and experi-
mental values under two different inlet temperatures of the feed channel flow. The inlet
temperature of the permeate channel flow is maintained at 303 K. All above temperatures
are controlled to vary within the range of ±1 K in the experiment. At any inlet temperature
of the feed flow, the permeate flux increases remarkably with the vacuum degree of the
feed channel flow. When the absolute pressure of the permeate flux reaches 30 kPa, the
maximum permeate flux is achieved, realizing an improvement of nearly 200%, indicating
the effectiveness of the VEDCMD comparing to the DCMD. The simulation results are in
good agreement with the experimental data.
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Vf = 0.56 L (min), pf = 101,325 Pa, Vp = 0.29 L (min), Tp = 303 K, and WNaCl = 3.5%.

Meanwhile, in the model presented in the literature introducing a semi empirical
coefficient, the calculation program has to be adjusted with the operating condition, because
the coefficient is relevant to the operating pressure of the feed and permeate flow. It may
bring tedious modifications and even mistakes in the simulation, and be unsuited for
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the simulations under fluctuating pressure conditions that occur fairly often in industrial
practice. In contrast, all the parameters of the model proposed in this paper are independent
of the operating condition, and thus the model is easier for use and has better adaptability
to the fluctuating operating condition.

4.2. Flow Field along the Membrane Surface

The flow field along the membrane surface can hardly be obtained through experiment,
but can easily be obtained from the simulated results, including the temperature and
velocity of both membrane sides and the salinity of the feed side. For VEDCMD, at
different pressures of the permeate side, the permeate membrane flux varies. Thus, there
must be some differences between these parameter distributions, which will be revealed
below (taking the case with Tf equal to 318 K as an example).

Figures 6 and 7 show the simulated temperature distribution of the flow along the
two side of the membrane surface, respectively. The monitored flow region is 0.1 mm apart
from each side of the membrane surface. On the feed side, the temperature drops obviously
as the feed seawater flows along the membrane, and in contrast the temperature of the
freshwater rises all along. As the pressure on the permeate side decreases, i.e., the vacuum
degree of the permeate flow increases, the temperature variation become more significant
due to the improvement of the permeate flux. With the increase in the permeate flux, more
heat is needed for the water evaporation on the feed side and more heat will released due
to the water condensation on the permeate side. Thus, the temperature distributions are in
good agreement with the permeate flux variations, indicating a good consistency of mass
and heat transfer of the established theoretical model and the experimental results.
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Figure 7. Temperature distribution of the flow along the permeate side of the membrane surface.
Tf = 318 K.

Figures 8 and 9 show the simulated velocity distribution of the flow along the two
sides of the membrane. The monitored flow region is 0.1 mm apart from the membrane
surface. On the feed and permeate side, the velocity drops obviously as the seawater
flows along the membrane and the trend of drops is gradually slow. As the pressure on
the permeate side decreases, the velocity along the membrane surface is barely changed
although the permeate flux increase. Compared to the flow flux in the feed and permeate
channel, the permeate flux is really small, and thus the caused velocity variation can hardly
be observed.
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Figure 10 shows the simulated salinity distribution of the flow along the feed side of
the membrane surface. The monitored flow region is 0.1 mm apart from the membrane
surface. The salinity rises obviously as the feed seawater flows along the membrane, for
only freshwater vapor can pass though the pores of the membrane. As the pressure on the
permeate side decreases, i.e., the vacuum degree of the permeate flow increases, the salinity
variation become more significant due to the improvement of the permeate flux. Thus, the
salinity distributions are in good agreement with the permeate flux variations.

Membranes 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 9. Velocity distribution of flow along the permeate side of the membrane surface. Tf = 318 K. 

Figure 10 shows the simulated salinity distribution of the flow along the feed side of 
the membrane surface. The monitored flow region is 0.1 mm apart from the membrane 
surface. The salinity rises obviously as the feed seawater flows along the membrane, for 
only freshwater vapor can pass though the pores of the membrane. As the pressure on the 
permeate side decreases, i.e., the vacuum degree of the permeate flow increases, the salin-
ity variation become more significant due to the improvement of the permeate flux. Thus, 
the salinity distributions are in good agreement with the permeate flux variations. 

 
Figure 10. Salinity distribution of flow along the feed side of the membrane surface. Tf = 318 K. 

5. Conclusions 

Figure 10. Salinity distribution of flow along the feed side of the membrane surface. Tf = 318 K.

5. Conclusions

To facilitate the permeate flux prediction of the VEDCMD, a theoretical transmembrane
mass and heat transfer model is proposed with full consideration of the different driving
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forces of diffusion and Poiseuille flow under the vacuum enhancing condition, based on
which the CFD simulations are carried out using a configuration of a flat plate module.
To verity the theoretical model and the simulating results, a series of experiments are
performed. By analyzing the theoretical, CFD and experimental results, the following
conclusions are obtained.

(1) Compared with the model introducing a semi-empirical coefficient, all the parameters
of the model proposed in this paper are independent of the operating condition, and
thus the model is easier for use and has better adaptability to the fluctuating operating
conditions.

(2) The simulation results based on the proposed model have good agreement with the
experimental data. In the VEDCMD desalination, the permeate flux is significantly
enhanced by decreasing the permeate side pressure. When the absolute pressure of
the permeate side reaches 30 kPa, the permeate flux can be improved by nearly 200%.

(3) The flow fields of the flow along each side of the membrane are revealed under
different pressure of the permeate side. The permeate flux rising caused by the
vacuum enhancement leads to increasing temperature rise/drop and salinity, while it
can hardly influence the velocity distribution.

(4) The CFD simulation results are helpful for guiding the VEDCMD operation and
module structure improvement. Increasing the temperature of the feed flow and
decreasing the pressure of the permeate flow can contribute to larger permeate fluxes.
The length of the module should be controlled to avoid excessive heat conduction
between the two sides of the membrane. In addition, the turbulence of the flow near
the membrane should be enhanced for better mass transfer and smaller concentration
polarization, by inserting or mounting some small obstacles near the membrane
surface.
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Nomenclature

Symbols
J Permeation flux (kg·m−2·s−1)
K Membrane distillation coefficient (kg·m−2·s−1·pa−1)
p Pressure (Pa)
XNaCl Molar fraction of solute
T Temperature (K)
γ Activity coefficient
W Mass fraction
M Molar mass (kg·mol−1)
Kn Knudsen number
λ Average free path of water vapor (µm)
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d Diameter of membrane pore (µm)
KB Boltzmann constant (J·mol−1·K−1)
β Collision diameters(µm)
DWa Diffusion coefficient of water vapor (m2·s−1)
pt Gas pressure in the pore of the membrane
εh Surface porosity
τ Membrane tortuosity factor
δ Membrane thickness (mm)
R Gas constant (J·mol−1·k−1)
r Membrane pore radius (µm)
µ Viscosity (pa·s)
q Heat flux (w·m−2)
∆HV Enthalpy of evaporation (kJ·kg−1)
κ Thermal conductivity (J·m−1·k−1)
ρ Density (kg·m−3)
S Source term
b Thickness of the first grid layer (mm)
=
τ Stress tensor (kg·m−1·s−1)
ρ
→
g Gravitational body force
→
F External body force
k Turbulent kinetic energy
σ Turbulent Prandtl number
Gb Turbulence kinetic energy (buoyancy)
Gk Turbulence kinetic energy (the mean velocity gradients)
YM Contribution of the fluctuating dilatation
C1 constant
C2 constant
C1e constant
C3e constant
Superscript
S Saturation properties
Subscripts
m Membrane
f Feed side
p Permeate side
W Flow channel
v Vapor
w Water
MD Molecular diffusion
K Knudsen diffusion
K-MD Knudsen-molecular diffusion
PO Poiseuille flow
g Gas
D DCMD
H Latent heat
C Heat conduction
a Air
s Solid
eff Effective
j Component
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