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Abstract: The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra
more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer
from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone
rapid technological developments that have enabled structure–function studies of increasingly larger
biomolecules, including membrane proteins. Current methodology includes stable isotope labeling
schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and
innovative pulse sequences that capture different types of interactions among spins. However,
computational tools for the analysis of complex ssNMR data from membrane proteins and other
challenging protein systems have lagged behind those for solution NMR. Before a structure can
be determined, thousands of signals from individual types of multidimensional ssNMR spectra of
samples, which may have differing isotopic composition, must be recognized, correlated, categorized,
and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have
developed an automated algorithm for ssNMR spectra called “ssPINE”. The ssPINE software accepts
the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers
automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe
here, is freely available through a web submission form.

Keywords: solid-state NMR; membrane proteins; assignment; automation; ssPINE; MAS-NMR

1. Introduction

NMR spectroscopy is one of the major biophysical methods, along with X-ray crystal-
lography [1,2] and cryo-electron microscopy [3], for determining structures of biomolecules.
NMR is used to study structure–function relationships of membrane proteins and large
macromolecular assemblies [4] along with their interactions with small molecules [5] as an
approach to drug discovery [6].

Both solution and solid-state NMR techniques provide important information about
the structures and dynamics of membrane proteins [7,8]. Solid-state NMR (ssNMR) with
magic angle spinning (MAS) has advantages over solution NMR for studies of large and
immobilized proteins [9,10]. Anisotropic nuclear spin interaction information from ssNMR
can be extremely useful for structure determination and dynamics [11,12]. The orientation
of regions of membrane proteins can be extracted from ssNMR spectra of mechanically-
or magnetically-aligned membranes [13]. The broad lines and low resolution of ssNMR
spectra resulting from anisotropy can be overcome in part by ultra-high MAS, cross-
polarization, refined pulse sequences [14], and non-uniform sampling (NUS). Ultra-high-
field NMR spectrometers operating at 1.1 GHz and 1.2 GHz are improving the resolution
and sensitivity of ssNMR spectra of membrane proteins and their complexes. The above-
mentioned methods are enabling the collection of improved spectral data, but manual
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analysis of the data to obtain chemical shift assignments and structural constraints is
tedious because thousands of signals need to be analyzed, correlated, and labeled.

Software technology has reduced the burden of analyzing data from solution NMR
studies of biomolecules. Available web-based resources provide automated and semi-
automated algorithms for determining different parameters of biomolecules and their
structure [15–18]. We recently developed an updated version of the assignment engine
PINE [19], I-PINE (Integrative Probabilistic Interaction Network of Evidence) [20], which
utilizes a Bayesian-based probabilistic interaction network. I-PINE supports a larger range
of NMR experiments and integrates real-time statistical analysis of the PACSY database [21].
The I-PINE web server produces higher assignment coverage and accuracy than PINE
and supports structure determinations based on chemical shift assignments. The POKY
suite includes iPick [22], for peak picking and cross-validation of peaks from different
spectra, I-PINE, and PINE-SPARKY.2 [23], a user-friendly graphical user interface (GUI) for
submitting, importing, and validating the data [24].

For ssNMR data, PISA-SPARKY [25], a plugin for the assignment program, NMRFAM-
SPARKY [26], supports the analysis of data from oriented samples [27]. PISA-SPARKY,
along with its features, are now included in the POKY suite. Recently, the Veglia group
introduced “a one-shot approach” called PHORONESIS, which generates up to ten 3D 1H-
detected ssNMR spectra [28]. They used the I-PINE webserver to analyze the spectra, and
found that the yield of sequential assignments was similar to that for solution NMR data.
The Hunter Moseley and Chad Rienstra groups developed an ssNMR version of AutoAs-
sign and demonstrated its ability to assign ssNMR data from the small protein, GB1 [29].
The software returned 84.1% correct assignments. The ssFLYA algorithm, which was intro-
duced by Schmidt and colleagues [30], and is currently available for only commercial users,
yielded 88–87% and 77–90% correctness on protein microcrystals and amyloids.

Here, we describe ssPINE (solid-state PINE), a software package that is designed to
handle the challenging features of ssNMR data from membrane proteins and other complex
protein systems. ssPINE accepts, as inputs, 2D and 3D ssNMR data and gives, as an output,
chemical shift assignments and their probabilistic correctness. We have evaluated the
performance of ssPINE with data from GB1 and with additional protein NMR data from
the BMRB database [31]. The alpha version of ssPINE is freely available through a web
server utility at https://poky.clas.ucdenver.edu/ssPINE.

2. Materials and Methods
2.1. ssPINE Algorithm

As its first step, ssPINE generates spin system matrices [32], as shown in Figure 1.
The main difference between the I-PINE and ssPINE algorithms is in their approach to
comparing peaks from different experiments. I-PINE uses Ni and Hi in root experiments
to find correlated signals (CA/CB/COi−1, CA/CB/COi) in different experiments and to
establish di-peptide arrays {CA/CB/COi−1 Ni CA/CB/COi}. Then, it establishes a vector
[CAi−1, CBi−1, COi−1, Ni, CAi, CBi, COi] and compares it to [CAi−1, CBi−1, COi−1] and
[CAi, CBi, COi] from the other di-peptide arrays. Finally, I-PINE compares [CAi−1, CBi−1,
COi−1] to [CAi, CBi, COi] in all vectors. By contrast, ssPINE uses COi−1, Ni, and CAi in
root experiments to find di-peptide signals (CXi−1, CXi). If an experiment is providing
COi−1, Ni, and CAi, but a single peak is not provided (e.g., CANCO), ssPINE combines
information from different experiments, such as NCOCACB and NCACB, to obtain these
correlations. Unlike I-PINE, ssPINE generates each spin system matrix by iterated spectral
resolution steps (tolerances) using inter-residue connectivities optimized by a probability
approach. This is a basic and important component of the ssNMR algorithm because it
helps to overcome the variable spectral resolution of ssNMR spectra. ssPINE calculates
the quality of the data at each step until it reaches the point where there is no further
improvement in the spin system matrix. If the quality of the data is above a threshold value,
as determined by the number of spin systems and correlations between spin systems is
identified compared to the numbers expected, then the process continues to the pentapep-
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tide generation step. Otherwise, the process terminates and informs the user that more
information is required. The pentapeptide generation step, which assigns signals to atoms
in sequences of five amino acid residues, finds the best marginal probabilities by using the
belief propagation algorithm [33] to evaluate relations between spin systems. This step
includes the identification of secondary structural elements, the evaluation of possible refer-
encing errors, and the continued assignment of backbone spin systems until convergence is
reached or, alternatively, until the specified number of iterations has occurred. The last step
utilizes the Bayesian network model of PINE and I-PINE to assign side chain signals [16,20].
See the Supporting Information for a detailed description of the ssPINE algorithm.
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Figure 1. Spin system matrix assembly in ssPINE. (a) Peaks from the strip of the NCOCACB
experiment containing the CA(i − 1) and CB(i − 1) resonances are inserted in the row of the table
corresponding to the ith residue (IDX). Note that the peak is selected from the CO(i − 1) and N(i), in
root information. (b) Similarly, peaks from the strip of the NCACB experiment containing the CA(i)
and CB(i) resonances are inserted in the row of the table corresponding to the ith residue. N(i) and
CA(i) in root information are used to select a peak from NCACB. (c) The process is repeated for all
residues in the peptide sequence.

2.2. Input Files

As with PINE and I-PINE, peak lists (either raw or refined) and sequence files are
used as inputs to ssPINE. The supported solid-state NMR experiments and their profiles
are shown in Table 1. The minimum set of peak lists for assignments are those from
2D-CC, 2D-NCA, 2D-NCO, 3D-NCACX, 3D-NCOCX, and CAN(CO)CX ssNMR experi-
ments. Data from additional ssNMR experiments can be added to improve the accuracy
and completeness of the results.
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Table 1. ssNMR experiments supported by ssPINE with their dimensionality and connectivity
profiles. CX(i) represents carbon A, B, D, E, G, or H atoms of the ith residue; N(i) represents the
nitrogen atom of the ith residue; and CO(i − 1) represents the carbon atom of the carboxyl group of
the preceding residue. The minimum set of experiments needed is indicated by asterisks.

Experiment Dimension Profile

CC * 2D CX/O(i)-CX/O(i)

NCA * 2D N(i)-CA(i)

NCACB 2D N(i)-CA/B(i)

NCO * 2D N(i)-CO(i − 1)

NCACO 3D N(i)-CA(i)-CO(i)

NCACB 3D N(i)-CA(i)-CA/B(i)

NCACX * 3D N(i)-CA(i)-CX(i)

NCOCX * 3D N(i)-CO(i − 1)-CX/C(i − 1)

NCOCA 3D N(i)-CO(i − 1)-CA(i − 1)

NCOCACB 3D N(i)-CO(i − 1)-CA/B(i − 1)

CANCO 3D CA(i)-N(i)-CO(i − 1)

CANCOCX * 3D CA(i)-N(i)-CX/O(i − 1)

CANCOCA 3D CA(i)-N(i)-CA/O(i − 1)

CANCOCACB 3D CA(i)-N(i)-CO/A/B(i − 1)
* Minimum experiments to run ssPINE.

2.2.1. Preparation of Peak Lists

Several peak list formats are accepted: Sparky (UCSF-/NMRFAM-SPARKY or POKY)
with the .list file extension prepared in the peak list window (two-letter-code “lt” with
the Data Heights option turned on), XEASY with the .peaks file extension [34], nmrDraw
with the .ft2 file extension, NMRView with the .xpk file extension, and I-PINE with the .txt
file extension. The file extension in the file name should match its actual format. Other
programs can generate the Sparky format, which is one of the most common file formats
in the field. For example, CARA has the WriteSparkyPeakList.lua script, and CCPNMR v2
has the Format Converter program [35,36]. The POKY suite contains multiple options for
generating peak lists; of these, one of the easiest approaches is iPick. With iPick, the user
simply selects one or more spectra from the session and clicks on the “Run iPick” button.
After peak lists have been generated for each spectrum, the “Peak List” window opens,
and by clicking on the “Save” button, the user can designate the names for the peak lists.
Peak lists can be refined by hand or by software to remove noise or other spurious peaks.

2.2.2. Protein Sequence

ssPINE accepts peptide sequences in either one- or three-letter amino acid codes as
ASCII text files. Sequences submitted in RTF (Rich Text Format; .rtf ), ODT (OpenDocument
Text; .odt), or DOCX (Office Open XML; .docx) are automatically converted to ASCII.

2.3. Output Files

The ssPINE output consists of several files: (1) The list of ssNMR experiments used.
(2) A bar graph indicating the assignment probabilities of each residue in the protein
(Figure 2). (3) Separate files with the backbone and sidechain chemical shift assignments
of each residue of the protein in NMR-STAR 2.1 and 3.1 formats. (4) Sparky format
assignment labels and frequencies. (5) Protein secondary structure prediction by PECAN
(Protein Energetic Conformational Analysis from NMR chemical shifts) [37]. (6) Chemical
shift referencing errors in each experiment, as detected by LACS (Linear Analysis of
Chemical Shifts) [38], which is used in redefining offsets during the assignment iteration.
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(It is recommended that the user use these values to correct the offset for each peak list
when a job is resubmitted. This will reduce the computational time and improve the
assignment accuracy).
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Figure 2. Bar graphs indicating the correct assignment probability (p) for each residue of GBI resulting
from ssPINE analysis. Green indicates p greater than 0.99; cyan indicates p = 0.85–0.99; yellow indicates
p = 0.5–0.84; red indicates p less than 0.5; and gray indicates no assignment (not seen with these test
sets). (a) Unrefined GBI data as input. (b) Refined GBI data as input.

2.4. Data Used in Developing ssPINE
2.4.1. Data from GB1

In the early stages of developing ssPINE, we used unpublished ssNMR data from the
uniformly 13C/15N-labeled small (56 residue, 6.2 kDa) protein GB1 that was generously
provided by Chad Rienstra’s group. GB1, which is the streptococcal B1 immunoglobulin-
binding domain of protein G20, has been used frequently as a standard sample in the
development of NMR technology. We prepared both unrefined and refined peak lists
from raw data from the following ssNMR experiments: 2D-CC, 2D-NCA, 2D-NCACB, 2D-
NCO, 3D-NCACB, 3D-NCACX, 3D-NCACO, 3D-CANCO, 3D-CANCOCX, 3D-NCOCA,
3D-NCOCACB, and 3D-NCOCX. We prepared unrefined peak lists automatically with the
iPick peak picking tool of POKY (two-letter-code iP). Subsequently, we created refined peak
lists by using the cross-validation tool of iPick to weed out noise and non-sequential signals.

2.4.2. Other Protein NMR Data

Additional data from the PACSY database [21] were used in refining and optimiz-
ing the ssPINE algorithm. PACSY is a relational database that contains post-processed
information from BMRB [39] and PDB [40]. Data from 82 proteins, including both large
(181 residues) and small (26 residues) proteins, were included (SI Table S1). Most datasets
were from solution NMR, because few ssNMR entries in the BMRB contain complete as-
signments. We created synthetic peak lists for 2D-CC, 2D-NCA, 2D-NCACB, 2D-NCO,
3D-NCACB, 3D-NCACX, 3D-NCACO, 3D-CANCO, 3D-CANCOCX, 3D-NCOCA, 3D-
NCOCACB, and 3D-NCOCX ssNMR spectra of these proteins. For a more controlled
evaluation, we only regarded sequential cross-peaks.
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2.5. ssPINE Web Server

We utilized multiple technologies in implementing the ssPINE algorithm as a web
server. Programs written in Perl, Python, and shell scripting handle various parts of the
task. A web-facing server hosts a form that the user can fill out with their information:
the amino acid sequence file and the peak lists from specified 2D and 3D solid-state NMR
experiments. By clicking the “Submit” button, this information is validated and sent to a
processing server. After the automated backbone and sidechain assignments are completed,
the result is sent back to the user’s email address. From there, the user can download
all the result files. The actual running time is determined by the size of the protein and
the complexity of the problem, including peak list quality provided by the user, but jobs
usually require less than one hour. The ssPINE web server is hosted at the University of
Colorado, Denver and is accessible at: https://poky.clas.ucdenver.edu/ssPINE. No login
or signup is required, and the server is open to all researchers at no cost and processes
submissions in the order in which they are received.

3. Results

We evaluated the results with GB1 in terms of their completeness and correctness.
“Completeness” is the number of automatically-assigned chemical shifts by ssPINE divided
by the number of assignments for GB1 derived from our manual assignment of the ssNMR
data. “Correctness” is the number of correct assignments made by ssPINE divided by
the number of manual assignments. Given that ssPINE provides multiple assignment
candidates with associated probabilities, only the assignment candidate with the highest
probability is used in the evaluation of completeness and correctness.

With the unrefined peak lists of GB1 as inputs, ssPINE yielded 100% (219/219) com-
pleteness and an average of 97.26% (213/219) correctness for the backbone chemical shift
assignments (Figure 2a). With the refined peak lists of GB1, ssPINE yielded 100% (219/219)
completeness and 100% (219/219) accuracy (Figure 2b).

We also tested ssPINE algorithm with synthetic peak lists from other proteins whose
assigned chemical shifts had been deposited in BMRB (see Section 2.4.2). These BMRB
assignments are assumed to be correct and were used in evaluating the correctness of the
ssPINE results. The numbers of BMRB and ssPINE assignments were used, respectively,
as the denominator and numerator in the completeness calculation. The number of valid
ssPINE assignments (“given” assignments) at the different probability cutoffs were used as
the denominator in the correctness calculation.

The total number of assignment candidates returned by ssPINE are plotted as a
function of their probability scores in Figure 3a. They are shown as “correct”, “incorrect”,
“given” (sum of correct and incorrect), and “all”. The “all” category includes “given” plus
invalid assignments, namely those with scores below the probability cutoff.

The correctness and completeness parameters for all assignment candidates with
the highest probability for each protein are plotted with respect to their probability in
Figure 3b. The correctness decreased moderately as a function of lower probability. The fact
that it remained above 85% means that more than 85% of the given chemical shift values
were assigned correctly. Overall, the completeness ranged between 85% and 97%. The
completeness increased abruptly between 1.0 and 0.9 probability, and then more gradually
to 0.0 probability. Plots of percentages of completeness versus correctness for each BMRB
entry at each probability are given in SI Figure S2.

The unrefined GB1 peak lists led to a few incorrect 13Cα assignments (Figure 2a)
because false signals picked by automated peak picking algorithm were close to the BMRB
average chemical shift value. Manual refinement of the peak lists alleviated this problem
by removing false-positive peaks, adding unpicked peaks, and resolving overlaps.

Of the 82 synthetic sets of peak lists analyzed by ssPINE, only three yielded assign-
ment correctness below 70% with a probability cutoff of 0.5. These are denoted by red
circles in SI Figure S2 and by red text in SI Table S1. One of the poorest scoring datasets
(completeness = 84.5% (474/561); correctness = 66.9% (317/474)) corresponded to BMRB en-
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try 15,716 (the AlgE6R1 subunit from the Azotobacter vinelandii Mannuronan C5-epimerase),
a 153 amino acid protein containing 27 glycine residues with many overlapping peaks in
the carbon alpha region (~45 ppm).
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Figure 3. Results from ssPINE analysis of synthetic ssNMR data as averages for the 82 proteins
studied. (a) Chemical shift assignment probabilities returned by ssPINE for all assignment candidates
(x-axis) versus assignment type (y-axis). All (dashed black), given (dashed blue), and correct (solid
green) assignments are represented by the numbers on the left side, whereas the incorrect assignments
(solid red) are represented by the numbers on the right side. (b) Data from the assignment candidate
for each protein with the highest assignment probability. Completeness (solid blue) and correctness
(solid green) are plotted as a function of that assignment probability.

4. Discussion

In this report, we have introduced the ssPINE algorithm for the automated analysis
and assignment of solid-state

NMR data from membrane proteins and other difficult protein systems. ssPINE
builds on the technology of our I-PINE web server for solution NMR data, which serves
several thousand jobs annually. We have adapted the I-PINE algorithm to account for
the challenging features of ssNMR data from these systems. These include broader lines,
extensive inter-residue dipolar interactions, and 2/3D ssNMR experiments that yield a
variety of connectivities. As with I-PINE, ssPINE accepts the amino acid sequence of the
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protein and raw or refined peak lists as an input from a variety of NMR experiments
(Table 1). The output of ssPINE includes peak assignments and their probabilities. We
have tested and refined the implementation of the ssPINE algorithm with the excellent
set of ssNMR data from the small protein, GB1. We also used ssPINE as an input for a set
of synthetic peak lists that simulated ssNMR data from 82 other proteins of various sizes
that were generated from solution NMR data deposited in BMRB. As shown above, the
choice of probability cutoff is an important factor in maximizing correct assignments. In
solution NMR, the recommended probability cutoff for I-PINE is 0.5 because it leads to a
higher probability of correct assignments [20]. With ssNMR data, a cutoff of 0.6 appears to
provide optimal completeness and assignment correctness. Glycine residues are harder to
assign because they lack the CB signals that ssPINE uses to evaluate connectivities. Proteins
that contain a high glycine content (e.g., BMRB entry 15,716) are particularly problematic
because ssPINE has difficulty distinguishing among the several glycine candidates.

Currently, the user can use the ssPINE extension in POKY (two-letter-code EP) to
generate and submit peak lists from the web browser to the ssPINE webserver. The user can
use the Convert (ss)I-PINE outputs to POKY plugin in POKY (two-letter-code ip) to convert
the assigned chemical shift table file from ssPINE to the POKY resonance list file with the
chosen probability cutoff. Finally, the POKY Notepad (two-letter-code Pn) can be used
to propagate assigned peaks onto ssNMR spectra: this is enabled by the script, Simulate
SSNMR peaks with assignments labels (predict-and-confirm).

The analysis of ssNMR data from membrane proteins is highly challenging. ssPINE
offers a promising approach for resolving the chemical, structural, and dynamic infor-
mation contained in these spectra. Information of this kind is crucial for understanding
the mechanisms underlying membrane transport, energy transfers, and signaling. We
encourage feedback from users of ssPINE, particularly those analyzing ssNMR spectra
of membrane proteins, as a means for guiding its further development. Our immediate
goals with ssPINE are to incorporate information from strategies commonly used in NMR
spectroscopy of membrane proteins, including mutational analysis, 19F labeling, and/or
selective isotopic labeling.

Longer-term plans are to develop and release a program (ssPINE-POKY) that will
include a graphical user interface analogous to that in PINE-SPARKY.2 for solution NMR.
In addition, we envision an “integrative” version of ssPINE that will increase assignment
correctness and completeness by implementing adaptive probability density functions that
incorporate machine learning (ML)-based chemical shift and structure prediction methods,
and will provide a comprehensive visualization of structural and dynamic information
from ssNMR data, which is analogous to that afforded by I-PINE for solution NMR data.

5. Web Server Availability

The usage of the webserver is described in Section 2.5. The web server for ssPINE is
freely accessible at https://poky.clas.ucdenver.edu/ssPINE.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes12090834/s1. Figure S1: Flowchart of the ssPINE algorithm; Figure S2: Scatter
plots of percentages of completeness verses correctness of each BMRB entry at different probabilities.
Red circle indicates the three poorly performing entries: 15716, 15797 and 19755. These are indicated
by red text in SI Table S1; Table S1: List of BMRB entries used for the ssPINE performance benchmark.
Poorly performing entries (15716, 15797 and 19755) are shown in red.
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