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Abstract: This work illustrates the potential of using atomistic molecular dynamics (MD) and grand-
canonical Monte Carlo (GCMC) simulations prior to experiments in order to pre-screen candidate
membrane structures for gas separation, under harsh conditions of temperature and pressure. It
compares at 300 ◦C and 400 ◦C the CO2/CH4 and CO2/N2 sieving properties of a series of hybrid
networks based on inorganic silsesquioxanes hyper-cross-linked with small organic PMDA or 6FDA
imides. The inorganic precursors are the octa(aminopropyl)silsesquioxane (POSS), which degrades
above 300 ◦C, and the octa(aminophenyl)silsesquioxane (OAPS), which has three possible meta, para or
ortho isomers and is expected to resist well above 400 ◦C. As such, the polyPOSS-imide networks were
tested at 300 ◦C only, while the polyOAPS-imide networks were tested at both 300 ◦C and 400 ◦C. The
feed gas pressure was set to 60 bar in all the simulations. The morphologies and densities of the pure
model networks at 300 ◦C and 400 ◦C are strongly dependent on their precursors, with the amount
of significant free volume ranging from ~2% to ~20%. Since measurements at high temperatures
and pressures are difficult to carry out in a laboratory, six isomer-specific polyOAPS-imides and two
polyPOSS-imides were simulated in order to assess their N2, CH4 and CO2 permselectivities under
such harsh conditions. The models were first analyzed under single-gas conditions, but to be closer
to the real processes, the networks that maintained CO2/CH4 and CO2/N2 ideal permselectivities
above 2 were also tested with binary-gas 90%/10% CH4/CO2 and N2/CO2 feeds. At very high
temperatures, the single-gas solubility coefficients vary in the same order as their critical temperatures,
but the differences between the penetrants are attenuated and the plasticizing effect of CO2 is strongly
reduced. The single-gas diffusion coefficients correlate well with the amount of available free
volume in the matrices. Some OAPS-based networks exhibit a nanoporous behavior, while the others
are less permeable and show higher ideal permselectivities. Four of the networks were further
tested under mixed-gas conditions. The solubility coefficient improved for CO2, while the diffusion
selectivity remained similar for the CO2/CH4 pair and disappeared for the CO2/N2 pair. The real
separation factor is, thus, mostly governed by the solubility. Two polyOAPS-imide networks, i.e., the
polyorthoOAPS-PMDA and the polymetaOAPS-6FDA, seem to be able to maintain their CO2/CH4 and
CO2/N2 sieving abilities above 2 at 400 ◦C. These are outstanding performances for polymer-based
membranes, and consequently, it is important to be able to produce isomer-specific polyOAPS-imides
for use as gas separation membranes under harsh conditions.

Keywords: hybrid organic–inorganic membranes; polyOAPS/POSS-imides; gas separation; high
temperatures and pressures; molecular dynamics (MD) simulations; grand-canonical Monte Carlo
(GCMC) sorption; single-gas and mixed-gas feeds; ideal and real permselectivities
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1. Introduction

Separation processes are an essential part of the chemical industry [1]. The energy
costs associated with the traditional separation techniques based on phase changes are very
high and the use of more efficient methods is strongly advocated for both economical and
environmental reasons [1,2]. Non-porous polymer membranes have emerged as one of
the possible alternatives, since they are able to separate small gases and vapors of similar
sizes based on their differences in permeabilities [3,4]. Gas separation properties have been
studied for a large number of polymers [5], and several membranes, including polyimides,
polysulfones, polycarbonates, polyphenylene oxide, cellulose acetate and silicone rubbers,
have made it to the commercial stage [6,7].

The use of polymer membranes for the separation of small penetrants is generally
restricted to fairly moderate temperatures (typically 25–50 ◦C) and pressures (typically a
few bar), since they tend to lose their structural integrities under harsher conditions. On the
other hand, the sieving of hot gases and/or high-pressure feeds require macromolecules
that are able to exhibit restricted dynamics at high temperatures [8,9] and/or resistance to
penetrant-induced dilation [10]. Therefore, the membranes have to be tested under the same
harsh conditions as the processes before the production can be scaled up [11–13]. While
organic polymers can be cross-linked to improve resistance and limit plasticization [14],
inorganic materials usually have much better thermomechanical properties. As such,
organic–inorganic hybrids have gained attention for potentially combining the efficient gas
separation abilities of the organic moieties, along with the resistance and cost-efficiency of
the inorganic moieties [15]. These include both the blends, in which the inorganic phases
are physically dispersed in the organic phase [16], and the branched or network structures,
in which the inorganic and organic parts are linked through covalent bonding [17].

Cubic polyhedral oligomeric silsesquioxanes (POSS) contain rigid inorganic Si8O12
cages with organic arms R attached to the silicon atoms [18–20]. Their dendrite-like
protuding R are modifiable by conventional chemistry and allow for the POSS to be
either blended or cross-linked to other structures [21], among which the gas-sieving poly-
imides [22–25]. Due to their versatility, silsesquioxanes can be used in the fields of nanocom-
posites, electrolytes, liquid crystals, functional coatings or membranes [26]. The latter
includes the recently-developed polyPOSS-imides based on amino-functionalized POSS
hyper-cross-linked with small dianhydride precursors [27–30]. These ultrathin default-free
membranes are prepared by interfacial polycondensation followed by thermal imidization
(Figure S1). They exhibit good gas separation properties because of their organic imide
moieties being similar to those in polyimides [31,32], and their hybrid nature allows them
to perform under tougher operating temperatures (up to 300 ◦C) than traditional poly-
mers [27–29,33]. In addition, their synthesis can be directly carried out on ceramic disks or
hollow fibre supports [34], which give them the potential of being scaled up to membrane
modules [33].

The initial polyPOSS-imide membranes were based on the easily-available octa(aminopropyl)
silsesquioxane, i.e., a siloxane cubic cage functionalized with eight -(CH2)3-NH2 arms [27–30]. It
will be referred to hereafter simply as POSS (Figure 1a). The main organic precursors were the
pyromellitic dianhydride (PMDA) and the 4,4′-(hexafluoroisopropylidene) diphthalic dianhydride
(6FDA) (Figure 1b). However, the flexible aliphatic -(CH2)3- arms of the POSS were identified as “weak
links” in the structures, as they were prone to thermal degradation just above ~300 ◦C [30,35–37].
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Figure 1. The (a) four inorganic and (b) two organic precursors used for the polyPOSS-imides and
polyOAPS-imides networks under study.

This work investigates the replacement of POSS with a more thermoresistant precursor,
functionalized by amino-substituted phenyl rings, i.e., octa(aminophenyl)silsesquioxane or
OAPS (Figure 1a) [19,38]. Indeed, unlike POSS, OAPS-based composites have been shown
to resist well above over 400 ◦C [39,40]. However, this brings out additional difficulties.
The first one is that the -NH2 group, which is a reactive site for the polycondensation,
can be attached in a meta, para or ortho position on the phenyl ring. The second one is
that two different routes have been reported for the synthesis of OAPS. The most used
scheme involves the nitration of octa(phenyl)silsesquioxane, followed by a reduction and
leads to the co-existence of the three isomers. Unfortunately, the respective meta:ortho:para
proportions are still ill-defined, since they have been reported by different authors as
being 50%:0%:50% [38,41–43], 70%:25%:5% [44], 60%:30%:10% [45,46] or 80%:5%:15% [47].
An alternative scheme is the direct synthesis from specific silane precursors [48]. To our
knowledge, this route has only been explored once for OAPS, using separately the meta
and para isomers of aminophenyltrialkoxysilanes [49]. It does lead to isomer-specific OAPS,
but the cage sizes are not as well controlled as in the nitration/reduction route [38,44,49,50].
The OAPS under study in this paper are based on the silane precursor route, i.e., each of
the three isomers is considered separately in its pure form (Figure 1a) in order to clearly
assess the effects of the substitution position.

When new materials are being developed, atomistic simulations, such as molecular
dynamics (MD) and Monte Carlo (MC) calculations, can be used prior to experiments in
order to pre-screen candidate structures under various operating conditions [51–54]. This
is even more critical for high temperatures and pressures, since these are often difficult to
implement in a laboratory and potentially hazardous [12,53,55]. In addition, mixed-gas
measurements are much more complicated and time-consuming than pure-gas condi-
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tions [13,56–58]. Within this context, molecular modelling is not aimed at replacing the
experiments, but at selecting the most promising structures and avoiding losing time on
less interesting ones. It also provides a detailed molecular understanding of the materials
and the sorption/diffusion processes, which is difficult to obtain by real experimental
analyses. This work illustrates this approach by investigating whether all or some of
the polyOAPS-imides membranes are potentially able to maintain their gas separations
properties under very harsh conditions and whether more experimental efforts should be
devoted to try to better control both aforementioned OAPS synthesis routes.

Figure 2 shows the general chemical formula of polyOAPS-imides based on either
PMDA or 6FDA. This is the fourth stage in the MD characterization of gas transport
in these networks. The first stage involved modelling polyPOSS-PMDA and polyPOSS-
6FDA in the pure state and in the presence of CO2 and CH4 [35–37]. The second stage
was a high-temperature screening of twenty-two model polyPOSS-imides and polyOAPS-
imides networks [59]. The third stage focused on the CH4 and CO2 sorption isotherms
(0–60 bar) at room temperature for eight of the following systems: a polymetaOAPS-PMDA,
a polyparaOAPS-PMDA, a polyorthoOAPS-PMDA, a polymetaOAPS-6FDA, a polyparaOAPS-
6FDA, a polyorthoOAPS-6FDA along with a polyPOSS-PMDA and a polyPOSS-6FDA gener-
ated exactly in the same way [60]. Although the optimal precursors in terms of structural
and mechanical properties were clearly identified as being orthoOAPS and PMDA, respec-
tively, the CO2/CH4 ideal sorption selectivities at room temperature were found to be quite
insensitive to the set of precursors tested [59,60].
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In view of their intended applications [11], the same eight systems are here fully tested
for their N2, CH4 and CO2 permselectivities under much higher temperatures, i.e., at 300 ◦C
for all of them and at 400 ◦C for the more thermoresistant polyOAPS-imides. The feed gas
pressure is systematically set to 60 bar, both for testing harsh conditions and for statistical
reasons, since the number of sorbed gas molecules is expected to decrease significantly at
such high temperatures. On the other hand, diffusion will be enhanced, so it is difficult to
predict how the gas permeabilities and selectivities will vary. We note that the transport of
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CH4 and CO2 at very high pressures and temperatures has already been investigated by
MD simulations in amorphous polyethylene [61], but our hybrid networks are expected
to behave differently from such a highly-flexible melt-state matrix. All eight models are
first studied under single-gas feed conditions. In addition, to be closer to the real operating
processes [57,62–66], the networks that maintained a sufficient ideal permselectivity at
300 ◦C and 400 ◦C are also tested with feeds corresponding to 90%/10% CH4/CO2 and
N2/CO2 binary-gas mixtures. This amounted to a total of 54 network+gas simulations,
each of which included a sorption phase and a production phase.

The details of the simulations and the methodologies related to the gas solubilities,
diffusivities, permeabilities and selectivities are briefly described in Section 2. Section 3
summarizes the structural characteristics of the eight network matrices. Section 4 addresses
their N2, CH4 and CO2 transport parameters under single-gas conditions, while those for
the binary 90%/10% CH4/CO2 and N2/CO2 mixtures are reported in Section 5. All the
results presented are at 300 ◦C and 400 ◦C and for a pressure of 60 bar. To avoid confusion,
please note that when the term “polyOAPS/POSS-imide” is used hereafter, it means both
polyOAPS-imides and polyPOSS-imides. Each model contains only one type of inorganic
precursor (either one of the three OAPS isomers or POSS) and only one type of organic
precursor (either PMDA or 6FDA).

2. Models and Methodologies

As mentioned in the Introduction, the molecular models of polyOAPS/POSS-imides have
been optimized before, both in the pure state and in the presence of different gases [35–37,59,60]. We
briefly summarize their main features and outline the specificities associated with the present work.

2.1. MD Simulation Parameters

All simulations were carried out using the gmq parallel package [67]. The force-field
was described by the total potential energy Upot, which is the sum of three bonded potentials,
i.e., the angle-bending, torsional and out-of-plane interactions, along with two non-bonded
potentials, i.e., the van der Waals and electrostatic interactions in the following equation
(Equation (1)):

Upot = ∑
θ

Ubend(θ) + ∑
τ

Utors(τ) + ∑
i−planar

Uoop(i) + ∑
(i,j)nb

Uvdw(r) + ∑
(i,j)nb

Ucoul(r) (1)

The atom-types, details of the various terms and force-field parameters to be entered
in Equation (1) are provided for the OAPS-based structures in the Supporting Information
(Tables S1–S3 and Figure S2) [59], while those for the POSS-based structures have been
reported earlier [35,36]. The gas molecules were represented by optimized all-atom models
for N2 [68], CH4 [69] and CO2 [70]. The time step was set to ∆t = 10−15 s in the MD
integration algorithm [71], and all the high-frequency modes, i.e., the bond stretches, the
hydrogen vibrations and the O=C=O bends for CO2 were kept rigid using constraints to
ensure equipartition of the kinetic energy [72,73]. For the latter point, we note that there
are two major problems for classical simulations of molecules containing high-frequency
low-amplitude motions, which are as follows: (a) a much shorter time step would be
required to correctly integrate the equations of motion, thus, rendering the calculations
considerably more expensive; (b) there is little coupling between such motions and the
lower frequency ones, which can lead to severe problems of equipartition of kinetic energy
and to cases where the time taken to obtain equipartition is much longer than the duration
of the simulations.

The temperature T and pressure tensor P were maintained by loose-coupling close
to their required values [74,75]. The MD simulations were run under either constant-
volume NVT or controlled-pressure-tensor NPT conditions, which allow for the systems
to relax towards their equilibrium sizes and shapes. The average thermodynamic data
and configurations were stored every 1 ps and 5 ps, respectively, for post-analyses. The
molecular structures were visualized with the VMD software [76].
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2.2. Generation of the Hyper-Cross-Linked Networks

The networks were built using a fully-atomistic bond-forming/relaxation procedure
adapted to cross-linked materials [77–87], in which mixtures of the precursors (Figure 1)
are progressively cross-linked using a heuristic distance criterion [86]. The protocol is
adapted to be as close as possible to the experimental conditions. In the present case
(Figure S1) [27–30], solutions of both precursors in non-miscible solvents are contacted at
room temperature. Polycondensation involving the primary amines on the OAPS (or POSS)
arms and the organic anhydrides occurs at the interface between both solvents, and results
in a homogeneous polyOAPS(or POSS)-(amic acid) thin film. It is then converted into its
polyOAPS(or POSS)-imide final form via thermal imidization at 300 ◦C, with a loss of one
water molecule per imidization reaction.

The generation procedure for the polyOAPS/POSS-imide models has been described
before [35,36,59]. Initially [35,36], the intermediate polyPOSS-(amic acid) step was ex-
plicitly modelled, but it introduced a lot of complexity and it was later shown [59] that
the direct transformations of the model mixtures into the final imide forms resulted in
similar networks. The optimized procedure is as follows [59]: 3:1 dianhydride:OAPS and
dianhydride:POSS mixtures are first prepared at room temperature. The Cket . . . N radial
distribution functions between the organic Cket ketone carbons and the inorganic N amine
nitrogens are then analyzed. All dianhydrides with the sum of the shortest Cket . . . N
distances at either end being less than a Rmin criterion of 7 Å are selected (Figure S3 in the
Supporting Information), and their bonds between Cket and their Oanhy anhydride oxygen
are broken. Two new covalent Cket-N bonds are created between each of these dianhy-
drides and the closest inorganic arms, while both Oanhy and the four amine hydrogens are
removed. The newly created OAPS(or POSS)-diimide links are energy-minimized towards
their equilibrium bond lengths, and the model is thermalized and relaxed up to 10 ps with
MD under NVT conditions. Following this first cross-linking/relaxation cycle, Rmin is
re-calculated for all the unreacted dianhydrides, and those within the Rmin ≤ 7 Å criterion
are selected to form more bonds. The process continues in an iterative manner until there
are no more possible reactions. At this point, the remaining unreacted dianhydrides are
removed from the system. Depending on the precursors, the cross-linking procedures were
completed within typical MD simulation times of 1000–5000 ps [59].

The final network sizes were ~30,000–40,000 atoms, i.e., they were large enough to be
statistically significant [82,84] and over 99% of their atoms were part of a single continuous
network (with the few exceptions being either unreacted inorganic cages or small cage-
dianhydride-cage blocks). The siloxane Si-O cages represented ~10% of the total number of
atoms. Once cross-linked, the six polyOAPS-imides and the two polyPOSS-imides were
further relaxed for 20,000 ps under NPT conditions (with the on-diagonal components of
the required pressure tensor P being set to 1 bar and its off-diagonal components being
set to 0) at the experimental imidization temperature of 300 ◦C. The six polyOAPS-imides
were further heated to 400 ◦C and relaxed for 5000 ps. These relaxation times allowed for
the proper stabilization of the thermodynamic properties [59]. Analyses were carried out
over the last 5000 ps at 300 ◦C and over the last 1000 ps at 400 ◦C. The polyPOSS-imides
were not simulated at 400 ◦C, as their experimental onset of decomposition is known
to be ~350 ◦C [30].

2.3. Modelling Single-Gas and Mixed-Gas Sorption in the Networks

A recent review summarizes the three main molecular modelling approaches for pre-
dicting gas sorption in polymer bulk models [88]. All three have also been compared in a
large-scale 6FDA-6FpDA polyimide model in contact with either single-gas, binary-gas or
ternary-gas reservoirs [52]. The most frequently used is the efficient grand-canonical Monte
Carlo (GCMC) method [89], which predicts gas sorption in static pre-prepared configura-
tions. Since it does not take into account the effects of the gas loading on the matrix, it is
only applicable to low-plasticizing penetrants or at low uptakes if plasticizing penetrants are
being considered [51,88,90–94]. In terms of simulation times, GCMC can be further improved
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when coupled to the excluded-volume map sampling (EVMS) scheme [95–97], which screens
out matrix regions of very low insertion probabilities [52]. The second approach is the “it-
erative pressure TPI-MD” [98,99]. It combines the test particle insertion (TPI) formalism for
the insertion of gas molecules [100,101], which can also be associated to EVMS [99,102], with
controlled-pressure MD, which naturally allows for the matrix to relax upon penetrant sorption.
TPI-MD iteratively estimates the pressure of the external gas reservoir in equilibrium with a
fixed number of penetrant gas molecules inserted into the matrix and allows for the prediction
of sorption curves over an extended pressure range. However, its main drawback is that it is
difficult to apply to mixed-gas cases [52,102]. The third approach combines GCMC for the gas
sorption with controlled-pressure MD for the matrix relaxation [51,88,91,93,103–109]. Several
alternating cycles of sorption and relaxation are usually required to adjust the sorbed num-
ber of molecules corresponding to the newly relaxed volume; hence, this sorption-relaxation
approach can be referred to as the “iterative GCMC-MD” method [52]. As for TPI-MD, it is
much more computationally expensive than GCMC on its own. While N2 or CH4 sorption
usually converges within less than five GCMC-MD cycles, the number of iterations at room
temperature can increase up to 30–40 for highly-plasticizing gases such as CO2. Its advantages
over TPI-MD are that the exact feed pressures can be specified and that it is much simpler to
extend to mixed-gas feeds [52]. Although TPI-MD and GCMC-MD give identical results [52],
the latter will, thus, be used in this work. As pointed out by Anstine et al. [88], the number of
studies with such relaxation-allowing techniques is still low when compared with those with
fixed frameworks, but they strongly improve the predictive insights in uptake regimes where
swelling and plasticization are relevant.

In the present work, iterative GCMC-MD calculations were carried out for the hybrid
networks at temperatures T of either 300 ◦C or 400 ◦C and at a pressure p of 60 bar for the
following five different feeds: single-gas N2, single-gas CH4, single-gas CO2, binary-gas
90%/10% CH4/CO2 and binary-gas 90%/10% N2/CO2. A detailed description of the
procedure is provided in Ref. [52]. Briefly, the first step is to obtain for each feed at T
and p under study its gas concentrations Cfeed(p) and its gas solubilities Sfeed(p) in the
pure gas phase (Supporting Information, Tables S3 and S4). The equilibrium number of
sorbed gas molecules in the matrix in contact with a specific feed is then obtained when the
chemical potential for the gas in the matrix phase, µmatrix, is equal to its chemical potential
in the feed gas phase, µfeed [98,99]. In GCMC [110,111], gas molecules are being exchanged
between a virtual gas feed of pressure p and a static matrix of fixed volume V using Monte
Carlo moves to establish this equilibrium between both phases. The probabilities of a gas
molecule being moved from one phase to the other are related to the Boltzmann factors
for the potential energy changes upon insertion into the target phase [100,101]. We point
out that only trial insertion and deletion moves are attempted here. Indeed, rotation and
translation moves are equivalent to a deletion and re-insertion and are, thus, redundant.
The moves are accepted or refused depending on these probabilities and this process is
repeated until detailed balance is obtained, i.e., the flux of gas molecules in both directions
is the same. This can be carried out irrespective of the nature of the gas molecules in the
feed; hence, it is easily applicable to gas mixtures. For rigid gas molecules, convergence
at pressure p is obtained when Cfeed(p) and Sfeed(p) for each type of penetrant in the feed
gas phase are related to its concentration Cmatrix(p) and its solubility Smatrix(p) in the matrix
phase through the following equation [37,52,99,102,112]:

Cmatrix(p)
Cfeed(p)

=
Smatrix(p)
Sfeed(p)

(2)

As noted above, the efficiency of GCMC can be significantly improved by using the
EVMS formalism, which avoids trial insertions in unfavorable parts of the matrix [52].
GCMC should also be averaged over several configurations, since the gas solubilities can
significantly vary from one configuration to another. An optimal configuration is then
chosen at the end of the GCMC cycle and if necessary, its sorbed number of penetrants is
adjusted to the average from all the configurations tested. Each GCMC cycle is followed
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by a controlled-pressure MD phase, which allows for the volume to change following
the gas loading predicted by GCMC [91,103–105]. Unfortunately, the relaxation of the
matrix usually perturbs the equality of the concentration and solubility ratios (Equation (2)
and GCMC has to be used again in order to re-adapt the number of sorbed molecules to
the newly-relaxed system. A second relaxation run by MD follows and so on. Iterative
GCMC-MD cycles have to be repeated until Equation (2) is obeyed both after the GCMC
and the MD phases.

In the polyOAPS/POSS-imides under study, the GCMC-MD simulations at 300 ◦C and
400 ◦C were initiated from the network configurations already relaxed at both temperatures
(Section 2.2). For each network, an initial GCMC phase at 60 bar was carried out over the
last 20 configurations. While GCMC trial moves are typically 5–20 million per configuration
at room temperature (depending on the type of penetrant) [52], the average number of
penetrants rises much more rapidly to a plateau value at 300 ◦C and 400 ◦C. As such,
GCMC simulations of just 2 million trial moves were sufficient to determine the loadings
corresponding to 60 bar. This is illustrated for CO2 in polyparaOAPS-PMDA at 300 ◦C in
the Supporting Information (Figure S4). The subsequent MD phase was carried out at the
same isotropic pressure of 60 bar. The first MD simulation was run on each network+gas
system for 200 ps under NVT conditions, followed by 1800 ps under NPT conditions. Its
final 20 configurations were then used for the second GCMC phase. A second MD phase
followed, but as the number of penetrants changes much less than at the first iteration, it
was shortened to 1000 ps. Since solubility is quite low at 300 ◦C and 400 ◦C, convergence
was attained in most network + gas models within three to five GCMC-MD iterations,
which is considerably less than what is necessary at room temperature [52,60]. Despite the
lower solubilities at the higher temperatures, the gas uptakes at 60 bar were still significant
enough for the transport parameters to be statistically reliable. The gas solubility coefficients
Sgas were simply obtained from the equilibrium gas concentrations in the matrix at p =
60 bar using the following equation:

Sgas =
Cmatrix(p)

p
(3)

In the case of mixed-gas systems, p is replaced in Equation (3) by the partial pressure
of the component concerned.

2.4. Modelling Gas Diffusion, Permeability and Permselectivity in the Networks

All the MD network simulations that contained each their converged number of
penetrants at 60 bar and at either 300 ◦C or 400 ◦C were extended to longer times under NPT
conditions. The gas mean square displacements (MSD), averaged over all gas molecules
of type i and over all possible time origins t0, were monitored during the runs. The gas
diffusion coefficients Dgas were estimated from the limiting plateau values of the MSD vs
6t curves using Einstein’s equation, which is as follows:

Dgas = lim
t→∞

1
6t

<( ri(t + t0)− ri(t0))
2 > (4)

In both single-gas and mixed-gas cases, Dgas implicitly takes into account the presence
of all other gas molecules in the bulk system through the variations in the MSD. However,
Equation (4) is only valid within the framework of a long-time Fickian diffusive limit,
i.e., when the gas MSD are proportional to t [100]. While this is generally difficult to
achieve within the MD timescale for glassy matrices at room temperature [113], there
are specific techniques, such as the trajectory-extending kinetic Monte Carlo (TEKMC),
which can extend the penetrant trajectories based on the actual existing MD runs [114].
This was not necessary here, as diffusion is faster at 300 ◦C and 400 ◦C, and indeed, the
proportionality between the gas MSD and t was obtained for all the cases within MD
simulations of 5000–30,000 ps. It should be noted that, in principle, it is possible to apply
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corrections due to the presence of concentration gradients and net fluxes [115–117], but
these are small with respect to the errors in establishing the plateau values of MSD/6t.
Taking this into consideration and the fact that there are no net fluxes nor concentration
gradients in these simulations, Dgas is a reasonable estimation of the intrinsic tendency of
the penetrant molecules to diffuse in the dense periodic medium.

The permeability coefficients Pgas of the penetrants in each network were then evalu-
ated from the product of the diffusion coefficient and the solubility coefficient, using the
following equation:

Pgas = Sgas × Dgas (5)

The ideal separation factor of gas A over gas B by each network, also called the ideal
permselectivity αA/B, was calculated from the ratio of the permeabilities of both gases
under single-gas conditions, using the following equation:

αA/B =
Pgas−A

Pgas−B
=

(
Sgas−A

Sgas−B

)
×
(

Dgas−A

Dgas−B

)
= αS

A/B × αD
A/B (6)

with αS
A/B and αD

A/B being the ideal solubility and the ideal diffusion selectivities, respec-
tively. The ideal permselectivity is reported in most experimental and model studies of gas
separation because of the convenience of working with pure gases [52]. However, if actual
mixed-gas data are available, Equation (6) can also be used to estimate the real separation
factor α*

A/B, the real solubility selectivity αS*
A/B and the real diffusion selectivity αD*

A/B.
Since the ideal and real transport parameters can differ [13,56,62,63,118–121], the latter
should be closer to the operating process if realistic compositions are being tested. In
practice, even if real mixtures are usually very complex [1,52,57], tests on binary mixtures
will assess the capacity of the material to separate the key target species. In this work,
all the networks were first studied under N2, CH4 and CO2 single-gas conditions, which
amounted to a total of 42 simulations. Only the ones that maintained a sufficient ideal
permselectivity at 300 ◦C and 400 ◦C were tested with the binary mixtures, which amounted
to 12 additional simulations.

3. The PolyOAPS/POSS-Imide Hyper-Cross-Linked Networks

The structural features of the pure networks have been examined previously [59,60],
so we will only outline here their main characteristics. In all the results presented hereafter,
the standard errors were calculated using a blocking method from the root mean square
(rms) deviations combined with the estimated statistical inefficiency, which stems from the
degree of correlation in the MD data [110]. To better distinguish the organic precursors,
PMDA-based networks will be indicated in blue and 6FDA-based networks in red in
the Figures.

3.1. Molecular Connectivities

The eight-arm nature of the inorganic OAPS and POSS cages gives rise to intricate
molecular connectivities when associated to imides (Figures 1 and 2). Three main types of
organic–inorganic links have been identified, which are as follows by decreasing order of
occurrence [35,36,59,60]: (i) the intercage single-links, in which imides are linked to two
different cages, (ii) the intracage links, in which imides are attached to two arms of the same
cage and (iii) the intercage double-links, in which two imides are linked to two different
arms of the same two cages. Schematic representations of such links are provided in the
Supporting Information (Figure S5). The probability density distributions of the number of
arms linked per cage are Gaussian-like and extend over the full range of possible values
(0 to 8 arms linked) (Figure S6), while the corresponding averages vary between 4.5 and
5.4 (Table 1). Experimentally, it has been shown using X-ray photoelectron spectroscopy
(XPS) that there can be up to 4.9 links per POSS cage for polyPOSS-6FDA upon completion
of the polycondensation [29]. This is exactly what we find for the corresponding model
network. However, the number of links per inorganic cage is not fully representative of
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the cross-linking densities (i.e., the number of different cages linked to a cage), since some
cages have either intracage links, which do not count, or double intercage links, which only
count as one for the cross-linking density. As shown by the last line in Table 1, the actual
cross-linking densities are ~4.0 for the PMDA and ~3.6 for the 6FDA networks. Energies
show no indications of unrelaxed molecular strains [59]. A snapshot of the polyorthoOAPS-
PMDA system at 400 ◦C is provided in Figure 3 to better visualize the complexity of such
hybrid networks.

Table 1. Connectivities of the polyOAPS/POSS-imide network models. More details are provided
in Refs [59,60].

Connectivities meta OAPS
+ PMDA

para OAPS
+ PMDA

ortho OAPS
+ PMDA

POSS
+ PMDA

meta OAPS
+ 6FDA

para OAPS
+ 6FDA

ortho OAPS
+ 6FDA

POSS
+ 6FDA

Total no. of
atoms 33,672 33,828 33,492 31,644 43,183 43,245 41,974 41,362

<No. of links
per cage> 5.3 5.4 5.2 5.1 4.9 4.9 4.5 4.9

<No. of
intercage links

per cage>
4.6 5.1 3.3 4.3 3.7 3.7 3.9 4.1

<No. of
intracage links

per cage>
0.7 0.3 1.9 0.8 1.2 1.2 0.6 0.8

<No. of
different cages

linked to a
cage>

(=cross-linking
density)

4.2 4.7 3.0 4.0 3.4 3.5 3.6 3.7
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A higher cross-linking density is an asset in terms of resistance, and consequently
the PMDA networks are expected to have better mechanical properties than the 6FDA
networks. This is indeed the case, with the notable exception of the networks based on
orthoOAPS [59,60]. When associated to the short and rigid PMDA linker, the average
intercage Si . . . Si distance is much smaller for the ortho (~11.1 Å) than for the meta (~15.5 Å)
and the para (~16.9 Å) isomers. This tends to favor the occurrence of intracage links, and as
such, it leads to a low cross-linking density for polyorthoOAPS-PMDA. When associated to
the more flexible 6FDA linker, the average intercage Si . . . Si distances are closer (~13.7 Å for
orthoOAPS, ~15.1 Å for metaOAPS and ~15.8 Å for paraOAPS), but there are now significant
differences in the angles between the imide N nitrogens and the 6FDA central carbon
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C. Indeed, the average N . . . C . . . N angle is ~107◦ in orthoOAPS, whereas it is ~98◦ in
metaOAPS and ~94◦ in paraOAPS. The 6FDA linker adapts to the constrained geometry of
the orthoOAPS isomer by stretching, which favors intercage links, and in turns, leads to a
larger cross-linking density for polyorthoOAPS-6FDA than for its PMDA counterpart. This
results in the comparative properties of the orthoOAPS networks being sometimes in the
inverse order than for the other isomers [59,60].

3.2. Densities

The relaxed average densities at 300 ◦C and 400 ◦C, ρnetwork, are displayed in Figure 4.
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the pure polyOAPS/POSS-imide networks based on the organic (a) PMDA and (b) 6FDA imides.
The pressure is 1 bar and the maximum standard error is 0.002 g cm−3.

The density is dependent on both types of precursors with the same trends than at
35 ◦C [60]. Their cross-linked nature allows for the networks to maintain a rather high
cohesion, i.e., ρnetwork of >1 g cm−3 (except for polyparaOAPS-PMDA) at both 300 ◦C
and 400 ◦C. Indeed, the ρnetwork at 300 ◦C/400 ◦C only decrease with respect to 35 ◦C
by ~2.8%/4.5% and ~4.4%/6.2% for the PMDA and 6FDA networks, respectively. This
suggests that some of these membranes might be able to conserve gas sieving properties at
such high temperatures.

The ρnetwork for the inorganic precursors vary as paraOAPS < metaOAPS < orthoOAPS,
which is inversely proportional to their molecular dimensions in the pure state [60]. For
the organic precursors, they generally vary as PMDA < 6FDA. This is not unexpected,
since the flexible 6FDA organic precursor has a good ability to pack and, as such, leads to
dense systems. On the other hand, the rigid PMDA precursor cannot adapt as well to the
steric constraints introduced by cross-linking and there is more free volume trapped in its
networks [30,59,60]. As mentioned above, the exceptions are the orthoOAPS systems, with
polyorthoOAPS-PMDA being denser than polyorthoOAPS-6FDA because of the short size
and rigidity of both its inorganic and organic precursors.

The model linear thermal expansion coefficients (CTE) [36] lie within the 52–74 10−6/◦C
range, which is in good agreement with the experimental CTE measured in cross-linked
polyimide-siloxane films [122,123]. Only the low-density polyparaOAPS-PMDA has a
higher CTE of 90 10−6/◦C.

3.3. Free Volume Available for Gas Insertion

There are several ways to characterize the free volume in molecular simulations of
dense matrices [32,93,113,124]. The simplest ones are the geometric approaches, such
as the phantom-sphere method, which is based on repeated random trial insertions of
a virtual spherical probe of predefined radius [125]. The percentage of probe-accessible
volume (%PAV) then provides the fraction of the space that can accommodate such a probe.
However, purely geometric analyses usually do not take into account the forms of the
holes, nor any energetic considerations [60]. The approaches based on geometric and
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energetic assessments analyze the free volume in a more realistic way [36,37,60,113,126].
This can be achieved by using again the TPI formalism, which randomly inserts specific gas
molecules into the matrices and calculates the change in potential energy associated with
each insertion, ∆Φ [100,101]. The corresponding probability density distributions ρ(∆Φ),
weighted by their Boltzmann factor ρw(∆Φ), are Gaussian [127,128] and provide the range
of site energies for penetrant sorption. Examples of ρw(∆Φ) for the polyOAPS/POSS-imides
can be found in Ref. [60]. Furthermore, based on the unweighted ρ(∆Φ) and weighted
ρw(∆Φ) distributions, the TPI method can estimate the fraction of significant volume (FSV),
which is associated with the solubility of the target penetrant in the matrix [67]. The integral
over ρw(∆Φ) quickly reaches a plateau as the insertion energy increases, and as such, a
critical upper limit that accounts for 99.9% of the solubility, ∆Φc, can be defined. The
FSV is then obtained by the integral of the normalized ρ(∆Φ) up to ∆Φc as shown by the
following equation:

FSV =
∫ ∆Φc

−∞
ρ(∆Φ)d∆Φ (7)

In simpler words, the FSV is the fraction of insertions associated to energies that
contribute to 99.9% of the solubility. When analyzed on the pure matrices, the <%FSV>
assesses the average percent of the free volume which is available to the specific penetrants
under infinite-dilution conditions. They are provided in Table 2 for N2, CH4 and CO2 in
the pure polyOAPS/POSS-imides matrices at both 300 ◦C and 400 ◦C.

Table 2. Average percentages of significant volume <%FSV> in the pure polyOAPS/POSS-imides
matrices available for the insertion of N2, CH4 and CO2.

<%FSV> meta OAPS
+ PMDA

para OAPS
+ PMDA

ortho OAPS
+ PMDA

POSS
+ PMDA

meta OAPS
+ 6FDA

para OAPS
+ 6FDA

ortho OAPS
+ 6FDA

POSS
+ 6FDA

N2 at 300 ◦C 10.5 19.9 5.2 3.2 6.4 8.9 8.9 2.9

N2 at 400 ◦C 11.6 22.0 5.8 - 7.3 10.2 9.6 -

CH4 at 300 ◦C 8.8 17.8 4.2 2.4 5.1 7.4 7.6 2.1

CH4 at 400 ◦C 9.8 19.8 4.7 - 5.9 8.5 8.2 -

CO2 at 300 ◦C 7.8 16.4 3.6 2.0 4.4 6.5 6.9 1.8

CO2 at 400 ◦C 8.8 18.5 4.2 - 5.1 7.6 7.5 -

As expected, the various <%FSV> at 400 ◦C are larger than at 300 ◦C (Table 2), and they
correlate negatively with the densities (Figure 4). This confirm that all three OAPS isomers
lead to more open networks than the aliphatic-arm POSS, and that there is more free volume
available for gas insertion in the PMDA networks. The low-density polyparaOAPS-PMDA
has the maximum <%FSV>, due to both its para-arms and its PMDA linker being linear.
The <%FSV> decreases for both other OAPS isomers in agreement with their increasing
densities. Similar trends are found in the 6FDA networks with lower <%FSV>. Once
again, the orthoOAPS systems are in reverse order because of their cross-linking specificities
(Table 1).

With respect to 35 ◦C [60], the <%FSV> increase by factors of ~1–2 for CH4, and ~2–3
for CO2, respectively. This leads to the values for different penetrants in the same matrix
being fairly similar at high temperatures. At lower temperatures [60], the <%FSV> is
usually larger for penetrants with low-to-medium solubilities (such as N2 and CH4), which
are mostly governed by the available void-space in the matrix. On the other hand, there
is a significant contribution of the interaction energy for more soluble penetrants such as
CO2. In these cases, the contribution to the <%FSV> is mainly restricted to the volume
associated to the specific sites providing favorable interactions. When the temperature is
higher, the matrices dilate and there are fewer such sites. The <%FSV> still varies in the
order N2 > CH4 > CO2 for a given matrix, but the actual values are much closer to each
other than at lower temperatures.
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4. Ideal CO2/CH4 and CO2/N2 Permselectivities at 300 ◦C and 400 ◦C from Single-Gas
N2, CH4 and CO2 Uptakes
4.1. Single-Gas Solubilities and Diffusivities

Following the iterative GCMC-MD procedure for single-gas sorption, the converged
numbers of penetrants at high temperatures and at 60 bar are provided in Table 3 for each
network under study. There are clearly enough sorbed penetrants for the results to be
statistically significant.

Table 3. Converged numbers of N2, CH4 and CO2 molecules sorbed by the polyOAPS/POSS-imides
networks at both 300 ◦C and 400 ◦C and at a single-gas feed pressure of 60 bar. The standard errors
on the mean number of penetrants predicted are, in all cases, no more than ±1 molecule (Figure S4,
Supporting Information).

No. of
Molecules

meta OAPS
+ PMDA

para OAPS
+ PMDA

ortho OAPS
+ PMDA

POSS
+ PMDA

meta OAPS
+ 6FDA

para OAPS
+ 6FDA

ortho OAPS
+ 6FDA

POSS
+ 6FDA

N2 at 300 ◦C 255 399 106 73 221 264 187 95

N2 at 400 ◦C 182 287 73 - 147 191 131 -

CH4 at 300 ◦C 346 524 140 97 306 370 246 122

CH4 at 400 ◦C 230 355 93 - 186 243 158 -

CO2 at 300 ◦C 704 943 287 234 610 727 442 281

CO2 at 400 ◦C 411 562 153 - 356 433 259 -

The single-gas solubility coefficients Sgas (Equation (3) at high temperatures and at
60 bar are provided in cm3(STP) cm−3 bar−1 in Figure 5a,b for N2, Figure 5c,d for CH4 and
Figure 5e,f for CO2.

As expected, the Sgas vary in the same order as the critical temperatures of the pene-
trants [129], i.e., SN2 < SCH4 < SCO2 . Since solubility decreases with temperature, the Sgas at
400 ◦C (white bars) are lower than those at 300 ◦C (colored bars), but the trends as a func-
tion of the precursors remain similar to those at 35 ◦C [60]. In the three polyOAPS-imide
networks, the solubilities vary in the order of the available free volume in the pure matrices
(Table 2), i.e., Sgas in paraOAPS > metaOAPS > orthoOAPS for the inorganic precursor and
Sgas in PMDA > 6FDA for the organic precursor, except when the latter is associated to the
orthoOAPS isomer. The initial polyPOSS-imide networks have the lowest available free
volumes and as such, the lowest Sgas. Interestingly, they show similar Sgas, regardless of
whether POSS is associated with PMDA or to 6FDA and in spite of the latter sorbing more
gas molecules (Table 3). This has been shown to be due to a compensation by the difference
in volumes [37].

Table 4 reports the percentage of volume swelling upon sorption as a function of the
penetrant for each of the model systems.
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 para 

OAPS 

+ 6FDA 

ortho 

OAPS 

+ 6FDA 

POSS 

+ 6FDA 

N2 at 300 °C 255 399 106 73 221 264 187 95 
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Figure 5. Single-gas solubility coefficients Sgas at 300 ◦C and 400 ◦C in the PMDA and 6FDA
polyOAPS/POSS-imides for (a,b) N2, (c,d) CH4 and (e,f) CO2 feeds at 60 bar. The maximum
standard error is 0.002 cm3(STP) cm−3 bar−1.

Table 4. Average percent of volume swelling upon sorption of N2, CH4 and CO2 penetrants in the
polyOAPS/POSS-imides networks at both 300 ◦C and 400 ◦C and at 60 bar. The maximum standard
error is 0.3%.

% Volume
Swelling

meta OAPS
+ PMDA

para OAPS
+ PMDA

ortho OAPS
+ PMDA

POSS
+ PMDA

meta OAPS
+ 6FDA

para OAPS
+ 6FDA

ortho OAPS
+ 6FDA

POSS
+ 6FDA

N2 at 300 ◦C 0 1.4 0.4 0.1 0.3 0.2 0.7 −0.2

N2 at 400 ◦C 1.3 1.2 0.1 - −0.1 1.0 0.2 -

CH4 at 300 ◦C 0.7 2.6 0.5 0.4 1.1 1.4 0.6 0.3

CH4 at 400 ◦C 2.2 1.6 0.5 - 0 1.4 0.2 -

CO2 at 300 ◦C 2.3 3.8 0.9 1.5 1.7 2.6 1.2 1.7

CO2 at 400 ◦C 2.5 2.3 0.3 - 1.3 3.0 0.8 -

The changes in volumes are small at both 300 ◦C and 400 ◦C and would have been
difficult to measure in experimental samples [130–133]. At low temperatures and high-
pressures, non-plasticizing or mildly-plasticizing penetrants, such as N2 and CH4, usually
lead to maximum dilations of 2–3% in glassy matrices [102], while highly-plasticizing
penetrants, such as CO2, can lead to dilations of up to 10–20% [52,134]. At higher temper-
atures, the volume swelling remains in the same order, i.e., CO2 > CH4 > N2 [52,60], but
the plasticizing effect is clearly strongly reduced because of the decrease in the densities.
There are local variations between the various polyOAPS/POSS-imides, which generally
correlate with the number of sorbed penetrants (Table 3), e.g., the paraOAPS and metaOAPS
isomers tend to swell more than the denser systems. However, these differences remain
limited considering the standard errors (maximum 0.3%). In all cases, the reduced amount
of swelling is an asset, since it limits the potential decrease in selectivities [119,135].



Membranes 2022, 12, 526 15 of 30

The single-gas diffusion coefficients Dgas (Equation (4)) at high temperatures and at
60 bar are provided in Å2 ps−1 in Figure 6a,b for N2, Figure 6c,d for CH4 and Figure 6e,f
for CO2.
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Figure 6. Single-gas diffusion coefficients Dgas at 300 ◦C and 400 ◦C in the PMDA and 6FDA
polyOAPS/POSS-imides for (a,b) N2, (c,d) CH4 and (e,f) CO2 feeds at 60 bar. The maximum
standard error is 0.1 Å2 ps−1.

The differences between the Dgas at 300 ◦C (colored bars) and at 400 ◦C (white bars)
confirm that diffusion is significantly enhanced by temperature. The behavior as a func-
tion of the gas kinetic diameter [136] observed at lower temperatures in dense glassy
polymers [137–140], i.e., DCO2 > DN2 > DCH4 , is only maintained at high temperatures in
the systems with the lower available free volumes, i.e., both polyPOSS-imides and the
polyorthoOAPS-PMDA. The three polyOAPS-6FDA networks have medium amounts of
free volume and display similar Dgas for all three types of penetrants. In the systems with
the largest free volumes, i.e., the polyparaOAPS-PMDA and polymetaOAPS-PMDA, the
Dgas follow the order of the Lennard–Jones collision diameters [140] with DCH4 ≈ DN2

> DCO2 . The diffusive behavior is, thus, directly linked to the amounts of available free
volume in the pure matrices (Table 2). For the same organic precursor, the Dgas tend to vary
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in the same direction as Sgas, i.e., a higher solubility leads to a faster diffusion (Figure 5). For
the inorganic precursor, diffusion is always faster in the very open paraOAPS systems and
follows the inverse order of the network densities (DPMDA > D6FDA). This is also the case
for the metaOAPS and orthoOAPS systems, although in the latter, polyorthoOAPS-PMDA
is more dense and consequently DPMDA < D6FDA. Diffusion is always slower in the POSS
networks, where there is significantly less free volume available.

4.2. Single-Gas Permeabilities and Permselectivities

The single-gas permeability coefficients Pgas (Equation (5) at high temperatures and at
60 bar are provided in Barrer in Figure 7a,b for N2, Figure 7c,d for CH4 and Figure 7e,f for CO2.

Membranes 2022, 12, x FOR PEER REVIEW 16 of 32 
 

 

 

Figure 6. Single-gas diffusion coefficients Dgas at 300 °C and 400 °C in the PMDA and 6FDA poly-

OAPS/POSS-imides for (a,b) N2, (c,d) CH4 and (e,f) CO2 feeds at 60 bar. The maximum standard 

error is 0.1 Å 2 ps−1. 

The differences between the Dgas at 300 °C (colored bars) and at 400 °C (white bars) 

confirm that diffusion is significantly enhanced by temperature. The behavior as a func-

tion of the gas kinetic diameter [136] observed at lower temperatures in dense glassy pol-

ymers [137–140], i.e., DCO2 > DN2 > DCH4, is only maintained at high temperatures in the 

systems with the lower available free volumes, i.e., both polyPOSS-imides and the poly-

orthoOAPS-PMDA. The three polyOAPS-6FDA networks have medium amounts of free 

volume and display similar Dgas for all three types of penetrants. In the systems with the 

largest free volumes, i.e., the polyparaOAPS-PMDA and polymetaOAPS-PMDA, the Dgas 

follow the order of the Lennard–Jones collision diameters [140] with DCH4 ≈ DN2 > DCO2. 

The diffusive behavior is, thus, directly linked to the amounts of available free volume in 

the pure matrices (Table 2). For the same organic precursor, the Dgas tend to vary in the 

same direction as Sgas, i.e., a higher solubility leads to a faster diffusion (Figure 5). For the 

inorganic precursor, diffusion is always faster in the very open paraOAPS systems and 

follows the inverse order of the network densities (DPMDA > D6FDA). This is also the case for 

the metaOAPS and orthoOAPS systems, although in the latter, polyorthoOAPS-PMDA is 

more dense and consequently DPMDA < D6FDA. Diffusion is always slower in the POSS net-

works, where there is significantly less free volume available. 

4.2. Single-Gas Permeabilities and Permselectivities 

The single-gas permeability coefficients Pgas (Equation (5) at high temperatures and 

at 60 bar are provided in Barrer in Figure 7a,b for N2, Figure 7c,d for CH4 and Figure 7e,f 

for CO2. 

 

Membranes 2022, 12, x FOR PEER REVIEW 17 of 32 
 

 

 

 

Figure 7. Single-gas permeability coefficients Pgas at 300 °C and 400 °C in the PMDA and 6FDA 

polyOAPS/POSS-imides for (a,b) N2, (c,d) CH4 and (e,f) CO2 feeds at 60 bar. The maximum standard 

error is 470 Barrer for the PMDA networks and 180 Barrer for the 6FDA networks. For POSS, PN2 

and PCH4 are of the order of 80–100 Barrer at 300 °C, and as such, are difficult to observe on the scale 

of Figure 7. 

Figure 7 combines for each penetrant under study the thermodynamic effect of its 

solubility (Figure 5), along with the dynamic effect of its diffusion (Figure 6) in the model 

polyOAPS/POSS-imides. The higher solubility of CO2 seems to offset its slower diffusion 

and as such, it is more permeable than both other penetrants. The networks can be sepa-

rated in the following two categories: (1) the high-diffusion and high-solubility poly-

paraOAPS-PMDA, polymetaOAPS-PMDA and polyparaOAPS-6FDA, which exhibit a na-

noporous behavior and (2) the denser systems, with Pgas being always higher in the or-

thoOAPS than in the POSS networks and polymetaOAPS-6FDA showing an intermediate 

behavior between both. 

While it is known that mixed-gas effects vary both with the pressure and the gas 

composition [63], two classical binary gas mixtures [1,141], i.e., CH4/CO2 and N2/CO2 with 

a ratio of 90%/10%, were examined as test cases. In the selectivities, the more permeable 

CO2 is systematically “gas A”, while CH4 or N2 are “gas B”. The ideal solubility αSA/B and 

diffusion αDA/B selectivities (Equation 6) at high temperatures and at 60 bar are provided 

in Table 5. The ideal permselectivities αA/B are displayed in Figure 8. A yellow line corre-

sponding to an ideal permselectivity of 1 is added as a guide to the eye. 

Table 5. Ideal solubility and diffusion selectivities for the CO2/CH4 and CO2/N2 gas pairs in the 

polyOAPS/POSS-imides at both 300 °C and 400 °C and at 60 bar. The maximum standard error is 

less than 0.1 for all the selectivities. 

Figure 7. Single-gas permeability coefficients Pgas at 300 ◦C and 400 ◦C in the PMDA and 6FDA
polyOAPS/POSS-imides for (a,b) N2, (c,d) CH4 and (e,f) CO2 feeds at 60 bar. The maximum standard
error is 470 Barrer for the PMDA networks and 180 Barrer for the 6FDA networks. For POSS, PN2

and PCH4 are of the order of 80–100 Barrer at 300 ◦C, and as such, are difficult to observe on the
scale of Figure 7.
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Figure 7 combines for each penetrant under study the thermodynamic effect of its
solubility (Figure 5), along with the dynamic effect of its diffusion (Figure 6) in the model
polyOAPS/POSS-imides. The higher solubility of CO2 seems to offset its slower diffusion
and as such, it is more permeable than both other penetrants. The networks can be separated
in the following two categories: (1) the high-diffusion and high-solubility polyparaOAPS-
PMDA, polymetaOAPS-PMDA and polyparaOAPS-6FDA, which exhibit a nanoporous
behavior and (2) the denser systems, with Pgas being always higher in the orthoOAPS
than in the POSS networks and polymetaOAPS-6FDA showing an intermediate behavior
between both.

While it is known that mixed-gas effects vary both with the pressure and the gas
composition [63], two classical binary gas mixtures [1,141], i.e., CH4/CO2 and N2/CO2
with a ratio of 90%/10%, were examined as test cases. In the selectivities, the more
permeable CO2 is systematically “gas A”, while CH4 or N2 are “gas B”. The ideal solubility
αS

A/B and diffusion αD
A/B selectivities (Equation (6)) at high temperatures and at 60 bar are

provided in Table 5. The ideal permselectivities αA/B are displayed in Figure 8. A yellow
line corresponding to an ideal permselectivity of 1 is added as a guide to the eye.

Table 5. Ideal solubility and diffusion selectivities for the CO2/CH4 and CO2/N2 gas pairs in the
polyOAPS/POSS-imides at both 300 ◦C and 400 ◦C and at 60 bar. The maximum standard error is
less than 0.1 for all the selectivities.

αS
A/B and
αD

A/B

meta OAPS
+ PMDA

para OAPS
+ PMDA

ortho OAPS
+ PMDA

POSS
+ PMDA

meta OAPS
+ 6FDA

para OAPS
+ 6FDA

ortho OAPS
+ 6FDA

POSS
+ 6FDA

αS
CO2/CH4 at
300 ◦C

2 1.8 2 2.4 2 1.9 1.8 2.3

αS
CO2/CH4 at
400 ◦C

1.8 1.6 1.6 - 1.9 1.8 1.6 -

αD
CO2/CH4 at
300 ◦C

0.8 0.6 1.5 2 1.2 1 0.9 2.2

αD
CO2/CH4 at
400 ◦C

0.9 0.7 1.6 - 1.1 0.9 0.9 -

αS
CO2/N2 at
300 ◦C

2.7 2.3 2.7 3.2 2.7 2.7 2.4 2.9

αS
CO2/N2 at
400 ◦C

2.2 1.9 2.1 - 2.4 2.2 2 -

αD
CO2/N2 at
300 ◦C

0.8 0.6 1 1.2 0.9 0.9 0.8 1.5

αD
CO2/N2 at
400 ◦C

0.7 0.7 1.1 - 1 0.8 0.9 -

As shown by Table 5, the ideal solubility selectivities αS
A/B at 300 ◦C and 400 ◦C

are always in favor of CO2, with the effect being enhanced in the case of N2. This is not
the case for the ideal diffusion selectivities αD

A/B, which reflect the three free-volume-
dependent behaviors observed in Dgas (Figure 6). At such elevated temperatures, the
ideal αD

A/B in the networks are lower than the ideal αS
A/B, contrary to what happens

for most glassy polymers at low temperatures [13]. Indeed, plasticization effects at lower
temperature increase the diffusivity of the most soluble penetrants and tend to improve
the ideal diffusion selectivity. However, when plasticization is strongly reduced by the
temperature, this trend is not followed anymore.
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Figure 8. Ideal permselectivities for (a,b) CO2/CH4 and (c,d) CO2/N2 at 300 ◦C and 400 ◦C in the
PMDA and 6FDA polyOAPS/POSS-imides calculated from pure feeds at 60 bar. The maximum
standard error is 0.2. The yellow lines indicate a αA/B of 1.

The ideal CO2/CH4 and CO2/N2 permselectivities (Figure 8) clearly show that the
denser polyPOSS-imides have better sieving properties than the more open polyOAPS-
imides [59,60]. However, as explained before, the polyPOSS-imides start degrading above
300 ◦C [30,35–37], while the polyOAPS-imides are expected to resist well over 400 ◦C [39,40].
Within this context, the most interesting model OAPS-based networks, i.e., those that appear
to be able to maintain ideal permselectivities above 2 at 400 ◦C (white bars in Figure 8), will
be further examined for their real separation factor α*

A/B under mixed-gas conditions. The
following four systems were selected from Figure 8: the polyorthoOAPS-PMDA and the
polymetaOAPS-6FDA networks for assessment at both 300 ◦C and 400 ◦C. In addition, due
to their high ideal permselectivities, the polyPOSS-imides were also tested under mixed-gas
conditions, but only at 300 ◦C.

5. Mixed-Gas Separation Factors for Binary 90%/10% CH4/CO2 and N2/CO2 Mixtures
at 300 ◦C and 400 ◦C
5.1. Mixed-Gas Solubilities and Diffusivities

Table 6 reports the converged numbers of each penetrant for the four selected networks
at 300 ◦C and 400 ◦C, following the iterative GCMC-MD procedure for the binary-gas
sorption [52] of 90%/10% CH4/CO2 and N2/CO2 mixtures at 60 bar. Compared to the
pure CH4 and N2 feeds (Table 3), the uptakes of CH4 and N2 decrease on average by ~12%,
but the total number of penetrants slightly increases because of CO2. For the first mixture,
the sorbed CH4/CO2 ratio is ~77%/23% at 300 ◦C and ~82%/18% at 400 ◦C. For the second
mixture, the sorbed N2/CO2 ratio is ~70%/30% at 300 ◦C and ~78%/22% at 400 ◦C. While
CO2 does sorb more than its actual percentage in the gas phase, its competitive effect
is again very attenuated with respect to lower temperatures. For example, 4% CO2 in a
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ternary 16:8:1 CH4/N2/CO2 gas mixture at 60 bar was found to make up ~40% of the
sorbed molecules in a model 6FDA-6FpDA polyimide at 35 ◦C [52]. Significant sorbed
concentrations of CO2 have also been reported in other experimental and modelling studies
of glassy polymers, even if it was only present at low % in the feed mixtures [62,65,120].
The attenuated effect is confirmed by the differences between 300 ◦C and 400 ◦C, with the
sorbed ratios at higher temperatures getting closer to the initial 90%/10% composition of
the gas mixtures.

Table 6. Converged numbers of N2, CH4 and CO2 molecules sorbed by the polyOAPS/POSS-imides
networks at 300◦C and 400◦C upon contact with binary 90%/10% mixtures of either CH4/CO2 or
N2/CO2 at 60 bar.

No. of Molecules ortho OAPS
+ PMDA

POSS
+ PMDA

meta OAPS
+ 6FDA

POSS
+ 6FDA

CH4/CO2 at 300 ◦C 125/35 91/27 259/78 105/32

CH4/CO2 at 400 ◦C 77/16 - 166/38 -

N2/CO2 at 300 ◦C 93/36 68/30 193/85 82/34

N2/CO2 at 400 ◦C 63/17 - 128/40 -

Figure 9 provides close-ups of the CH4/CO2 and the N2/CO2 mixtures sorbed in the
polyorthoOAPS-PMDA and the polymetaOAPS-6FDA matrices.
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a mixed-gas pressure of 60 bar. Same color code as Figure 3 for the matrices. For the gases, methane:
C = pink, H = white; carbon dioxide: C = yellow, O = red; nitrogen: N = blue.

The mixed-gas solubility coefficients Sgas-mix are provided in Figure 10 on the same
scale as Figure 5. In the following Figures, the results will be presented in the order of both
PMDA-based networks, i.e., (1) the orthoOAPS at 300 ◦C and 400 ◦C and (2) the POSS at
300 ◦C, followed by both 6FDA-based networks, i.e., (3) the metaOAPS at 300 ◦C and 400 ◦C
and (4) the POSS at 300 ◦C.
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Figure 10. Mixed-gas solubility coefficients Sgas-mix at 300 ◦C (purple bars) and 400 ◦C (white bars) in
the selected polyOAPS/POSS-imides for (a,b) CH4 and CO2 from the 90%/10% CH4/CO2 mixture
and (c,d) N2 and CO2 from the 90%/10% N2/CO2 mixture at 60 bar. The maximum standard error is
0.001 cm3(STP) cm−3 bar−1.

When compared to Figure 5, the Sgas-mix remain close to their single-gas Sgas values for
the major components, i.e., N2 and CH4. On the other hand, for the minor component, the
SCO2-mix increase by ~25% at 300 ◦C and by ~10% at 400 ◦C compared to the pure CO2 feed.
This is mostly a consequence of the non-linear behavior of the solubility coefficient with
pressure. Due to the concave shape of sorption isotherms, the SCO2 of pure CO2 at 6 bar is
expected to be higher than at 60 bar, which is the limiting lower value over the 0–60 bar
range. Under mixed-gas conditions, the uptake of CO2 at a partial pressure of 6 bar will
be lower than that of pure CO2 at 6 bar because of the presence of the less-soluble CH4 or
N2. However, there is less competition compared to pure CO2 and consequently, SCO2-mix
in a mixture at 60 bar will remain higher than SCO2 at 60 bar. These effects decrease with
the solubility as the temperature increases. The percentages of volume swelling (Table 7)
are also fairly similar to those found for CH4 and N2 on their own (Table 4). There is no
plasticizing effect with 10% CO2 at such high temperatures.

Table 7. Average percent of volume swelling upon sorption of 90%/10% CH4/CO2 and N2/CO2

mixtures at 60 bar in the four selected polyOAPS/POSS-imides at both 300 ◦C and 400 ◦C. The
maximum standard error is 0.2%.

% Volume Swelling ortho OAPS
+ PMDA

POSS
+ PMDA

meta OAPS
+ 6FDA

POSS
+ 6FDA

CH4/CO2 at 300 ◦C 0.6 0.2 0.6 0.1

CH4/CO2 at 400 ◦C 0.2 - 0.5 -

N2/CO2 at 300 ◦C 0.3 0.2 1.2 −0.2

N2/CO2 at 400 ◦C 0 - −0.2 -
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The mixed-gas diffusion coefficients Dgas-mix are shown in Å2 ps−1 in Figure 11. The
scale is only 25% of that in Figure 6, since the four selected networks had small Dgas under
single-gas conditions.
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Figure 11. Mixed-gas diffusion coefficients Dgas-mix at 300 ◦C and 400 ◦C in the selected
polyOAPS/POSS-imides for (a,b) CH4 and CO2 from the 90%/10% CH4/CO2 mixture and (c,d) N2

and CO2 from the 90%/10% N2/CO2 mixture at 60 bar. The scale is 25% of that in Figure 6. The
maximum standard error is 0.03 Å2 ps−1.

The Dgas-mix remain again similar to the single-gas Dgas (Figure 6). For the CH4/CO2
mixture, DCH4-mix ≈ DCH4 for all the networks under study. DCO2-mix ≈ DCO2 for the OAPS
networks, while it decreases by ~25% for the POSS networks, which swell less upon sorption
of the mixture than with the pure CO2 feed (Tables 4 and 7). The kinetic measurements
in glassy matrices at lower temperatures show that the presence of CO2 enhances CH4
diffusion under mixed-gas conditions because of the plasticization effects [13,120,121]. This
is not the case at higher temperatures, where the sieving capabilities are barely modified
by plasticization. For the N2/CO2 mixture, DN2-mix decreases by ~6% and DCO2-mix by
~18%, and their respective values become very close (Figure 11c,d), i.e., there is no more
diffusion selectivity.

5.2. Mixed-Gas Permeabilities and Separation Factors

The mixed-gas permeabilities coefficients Pgas-mix are provided in Barrer in Figure 12.
As for the diffusion, the scale is only 25% of that in Figure 7, since the four selected networks
had small Pgas under single-gas conditions.
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Figure 12. Mixed-gas permeability coefficients Pgas-mix at 300 ◦C and 400 ◦C in the selected
polyOAPS/POSS-imides for (a,b) CH4 and CO2 from the 90%/10% CH4/CO2 mixture and (c,d) N2

and CO2 from the 90%/10% N2/CO2 mixture at 60 bar. The scale is 25% of that in Figure 7. The
maximum standard error is 55 Barrer for CH4 and N2 and 125 Barrer for CO2.

The Pgas-mix reflect the small variations in the solubility and the diffusion coefficients
(Figures 10 and 11). In practice, they are slightly lower than the single-gas Pgas for CH4 and
N2 (Figure 7). On the other hand, the decrease in DCO2-mix is more than compensated for by
the increase in SCO2-mix, and the PCO2-mix are on average larger than the PCO2 by ~10%. Both
POSS-based networks at 300 ◦C have a similar behavior with the lowest permeabilities.
The more open OAPS-based structures have larger permeabilities, with the polymetaOAPS-
6FDA being more permeable than the denser polyorthoOAPS-PMDA network, i.e., it varies
in the same order than the available free volume (Table 2).

Using the mixed-gas data at 60 bar and at 300 ◦C and 400 ◦C, the real solubility αS*
A/B

and diffusion αD*
A/B selectivities upon sorption of the 90%/10% mixtures are provided in

Table 8 for the four selected networks. The corresponding real separation factors α*
A/B are

displayed in Figure 13. As for Figure 8, the yellow line corresponds to a separation of 1 and
for convenience, the ideal permeselectivities αA/B have been indicated with pink lines.
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Table 8. Real solubility and diffusion selectivities for the CO2/CH4 and CO2/N2 gas pairs in the
selected polyOAPS/POSS-imides, at both 300 ◦C and 400 ◦C and at 90%/10% CH4/CO2 and N2/CO2

feed pressures of 60 bar. The maximum standard error is less than 0.2 for all the selectivities.

αS*
A/B and αD*

A/B
ortho OAPS

+ PMDA
POSS

+ PMDA
meta OAPS

+ 6FDA
POSS

+ 6FDA

αS*
CO2/CH4 at 300 ◦C 2.5 2.7 2.7 2.7

αS*
CO2/CH4 at 400 ◦C 1.9 - 2.1 -

αD*
CO2/CH4 at 300 ◦C 1.4 1.7 1.3 1.7

αD*
CO2/CH4 at 400 ◦C 1.7 - 1.2 -

αS*
CO2/N2 at 300 ◦C 3.5 4 4 3.7

αS*
CO2/N2 at 400 ◦C 2.4 - 2.8 -

αD*
CO2/N2 at 300 ◦C 0.9 1 1 1.1

αD*
CO2/N2 at 400 ◦C 1 - 0.9 -
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Compared to the single-gas feeds (Table 5), the real solubility selectivities αS*
A/B

at 300 ◦C and 400 ◦C increase in favor of CO2 in both mixtures, with the effect being
stronger when mixed with N2. On the other hand, the real diffusion selectivities αD*

A/B
tend to either remain similar (OAPS-based networks) or slightly diminish (POSS-based
networks) for the CH4/CO2 mixture. For the N2/CO2 mixture, the diffusion selectivity
completely disappears. These mixed-gas selectivities under harsh conditions, thus, seem
to be mostly governed by the solubility. At low temperatures, it has been shown that
the CO2/CH4 solubility selectivity outweighs the diffusion selectivity in glassy polymers
when mixed-gas permeation experiments are carried out, whereas it is the contrary un-
der single-gas conditions [13,119]. In the present case, it follows the same order as for
the pure gases, but the ratio between αS*

A/B and αD*
A/B does increase under mixed-gas

conditions. The real separation factors are similar to the ideal permselectivities for the
dense polyPOSS-imides, but they appear to improve in both polyOAPS-imide networks
(Figure 13). While this improvement should be treated with caution given the errors at such
high temperatures (reported in all the Tables and Figures), the important point is that both
polyOAPS-imide networks seem to be able to maintain their sieving capabilities above 2
at 400 ◦C, when contacted with 10%CO2-containing binary mixtures. Within this context,
the polyorthoOAPS-PMDA matrix performs slightly better than the polymetaOAPS-6FDA,
but these remain in both cases outstanding performances for polymer-based membranes.
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Following this molecular-level screening, it could, thus, be worth further investigating the
silane-precursor route for the synthesis of OAPS [49] in order to produce isomer-specific
polyOAPS-imides.

6. Conclusions

This work highlights the interest of using GCMC-MD and MD atomistic simulations
prior to experiments in order to pre-screen candidate membrane structures for gas sepa-
ration under harsh conditions of temperature and pressure. The sieving properties of a
series of networks based on inorganic silsesquioxane POSS or OAPS hyper-cross-linked
with small organic PMDA or 6FDA imides have been successfully compared. From an ex-
perimental point-of-view, the aliphatic linkers in POSS have been shown to degrade above
300 ◦C, while the phenyl linkers in OAPS can resist well above 400 ◦C. The latter is, thus,
expected to significantly increase the thermoresistance of the hybrid networks. However,
OAPS has three possible meta, para or ortho isomers, which depend on the position of the
-NH2 group on the phenyl ring and lead to various network connectivities.

Since measurements at high temperatures and pressures are difficult to carry out in
a laboratory, eight polyOAPS/POSS-imide model networks have been tested for their
N2, CH4 and CO2 permselectivities at 300 ◦C (for all of them) and at 400 ◦C (for the
polyOAPS-imides only). The feed gas pressure was set to 60 bar in all 54 systems. The
network+gas models were first analyzed under single-gas conditions, but to be closer
to the real processes, the four networks that maintained CO2/CH4 and CO2/N2 ideal
permselectivities above 2 at 300 ◦C and 400 ◦C were also tested with 90%/10% binary-gas
CH4/CO2 and N2/CO2 feeds.

In the pure state, the densities and structures of the networks depend on the nature
of their precursors. The more open matrices were either based on OAPS or/and PMDA,
and the proportions of available free volume covered a large range, i.e., ~2–20%. However,
all of them were able to maintain a rather high cohesion at both 300 ◦C and 400 ◦C, which
suggested that some could preserve their sieving properties. The iterative GCMC-MD
procedure was used to load the matrices with gas. Convergence was attained in fewer
iterations than at lower temperatures and, in spite of the decrease in solubilities, there
were still enough sorbed penetrants for the results to be statistically significant. Similarly,
the long-time Fickian diffusive limit could be attained within the MD timescale at such
elevated temperatures.

Under single-gas conditions, the Sgas varied as expected in the same order as the
critical temperatures, but the differences between the penetrants were attenuated because
of the decrease in the densities. Consequently, the volume swellings were small and the
plasticizing effect of CO2 was strongly reduced. The Dgas correlated to the amount of
available free volume. In terms of Pgas, the networks could be separated into the following
two categories: (i) three OAPS-based networks, which exhibited a nanoporous behavior,
and (ii) five networks, including the polyorthoOAPS-PMDA, polymetaOAPS-6FDA and
both polyPOSS-imides, which were less permeable. The four last systems showed the
highest ideal CO2/CH4 and CO2/N2 permselectivities and, as such, they were further
tested with mixed-gas feeds.

Under binary-gas 90%/10% CH4/CO2 and N2/CO2 conditions, CO2 sorbed more
than its percentage in the gas phase and its Sgas-mix slightly improved. However, this effect
decreased with increasing temperature and there were no plasticization effects. The small
variations in the Dgas-mix led to similar diffusion selectivities for the CO2/CH4 pair, but
to a loss of diffusion selectivity for the CO2/N2 pair. The Pgas-mix confirmed that such
gas separations under harsh conditions are mostly governed by the solubility. The real
CO2/CH4 and CO2/N2 separation factors were either similar or slightly improved with
respect to the ideal permselectivities. Both polyOAPS-imide networks under study seemed
to be able to maintain their sieving abilities above 2 at 400 ◦C, with the polyorthoOAPS-
PMDA matrix performing slightly better than the polymetaOAPS-6FDA. Since these are
outstanding performances for polymer-based membranes, the isomer-specific synthesis
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route for OAPS should, thus, be further investigated in order to subsequently be able to
produce isomer-specific polyOAPS-imides using the interfacial polymerization technique.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/membranes12050526/s1, Figure S1: synthesis of the polyOAPS-imides;
Figure S2: partial charges for all OAPS-based networks; Figure S3: radial distribution functions in the
mixtures; Figure S4: variations in the number of sorbed CO2 at 60 bar predicted by GCMC for successive
configurations at 300 ◦C; Figure S5: typical interOAPS-imide and intraOAPS-imide links. Figure S6:
probability density distributions for the number of arms linked per cage in the networks. Table S1:
atom-types for all OAPS-based molecules; Table S2: force-field parameters for the bonds, bending and
out-of-plane potentials; Table S3: force-field parameters for the torsional and van der Waals potentials;
Table S4: concentrations and solubilities of the gases in the pure gas phase at 300 ◦C and 400 ◦C and at a
pressure of 60 bar; Table S5: concentrations and solubilities of the binary mixtures in the mixed-gas phase
at 300 ◦C and 400 ◦C and at a pressure of 60 bar.
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