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Abstract: •OH radicals are the main cause of chemical degradation of Nafion membranes in fuel cell
operation. Although the cerium ion (Ce3+/4+, Ce) is reported as an effective •OH radical quencher, its
membrane application has critical limitations associated with the reduction of membrane proton con-
ductivity and its leaking. In this study, the Ce-grafted graphitic carbon nitrides (g-C3N4) (CNCe) nano-
particles are synthesized and embedded in Nafion membranes to prolong the •OH radical scavenging
effect. The synthesis of CNCe nano-particles is evaluated by X-ray diffraction, energy dispersive X-ray
analysis, and transmission electron microscopy. Compared with the pristine and Ce-blended Nafion
membranes, the CNCe imbedded ones show tremendous improvement in long-term anti-oxidation
stability. While the fluoride emission rates of Nafion are 0.0062 mg·cm−2·h−1 at the anode and
0.0034 mg·cm−2·h−1 at the cathode, those of Nafion/CNCe membranes are 0.0037 mg·cm−2·h−1 at
the anode and 0.0023 mg·cm−2·h−1 at the cathode. The single cell test for Nafion/CNCe membranes
at 80 ◦C and 50% relative humidity illustrates much better durability than those for Nafion and
Nafion/Ce, indicating its superior scavenging effect on •OH radicals.

Keywords: radical scavenger; Nafion; proton conductivity; anti-oxidation stability

1. Introduction

In consideration of high power density, zero carbon emission, and relatively low
temperature operation, the polymer electrolyte membrane fuel cell (PEMFC) has earned
considerable attention in power generation [1–4]. Nafion is one of the well-known perfluo-
rosulfonic acid-based membranes for PEMFC, as it has high proton conductivity with good
chemical and mechanical stability. Because of its low price competitiveness, great efforts
have been made to develop hydrocarbon-based membranes as its substituents [5–7]. Devel-
opment of hydrocarbon-based membranes, however, is still lagging because of its limited
proton conductivity and high swelling caused by relatively poor hydrophobic–hydrophilic
phase separation compared with perfluorosulfonic acid-based ones. In addition, the long-
term chemical stability of hydrocarbon-based membranes such as SPEEK-based is not
good, and is even worse than that of Nafion membranes [8]. Almost all polymer electrolyte
membranes including both hydrocarbon and perfluoro sulfonic acid systems have suffered
from chemical degradation by the attack of •OH and •H radicals generated from the reac-
tions between transition metals and H2O2 [9]. When the chemical degradation of Nafion
occurs by those radicals, HF is usually produced from the tertiary carbon of the -C-F bond
while the –COOH, –C-S and –C-O-C– groups are de-bonded via complex mechanisms.
Chemical degradation of the hydrophilic pendant site as well as the hydrophobic polymer
backbone results in a disruption of ionic channel structure of the membranes, leading to
the deterioration of membrane properties and cell performance [10–12].

In order to prevent the degradation of PEM, incorporation of the hyperactive radical
scavengers such as manganese (Mn) and cerium (Ce) has been studied. Cerium, Ce, is a rare
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earth metal possessing regenerative activity by the presence of the multivalent oxidation
states and oxygen vacancies in its lattice site [13,14]. The exceptional reversibility between
the Ce3+ and Ce4+ states helps to scavenge the hydroxyl radicals (•OH) [15–17]. While
Ce3+ reacts with •OH to generate Ce4+ and water, Ce4+ undergoes a reduction reaction
with •OOH and H2O2 to produce Ce3+. The long-term anti-oxidant stability of PEM
can be expected from such reversible reactions. Among all scavengers, Ce is found to
be most effective, bearing almost ten times higher scavenging strength and twice higher
neutralization tendency toward •OH than Mn [18,19]. However, the simple addition of Ce
into an ionomer may cause a couple of problems during the fuel cell operations as follows:
(i) Ce ions are easily mitigated from the membrane because of its water-soluble tendency;
(ii) the positive charge in its oxidative state inhibits the activity of sulfonic acid groups of
the ionomer. Hence, recent research in the development of radical scavengers is focused on
avoiding (i) the mitigation of Ce from the membrane and (ii) the direct interaction of Ce
with the sulfonic acid groups of membranes.

Graphitic carbon nitride (g-C3N4, CN) has been widely used for energy storage
applications because of its redox catalytic activity [20,21]. Its nitride form is stable in
the harshest of environments due to its excellency in mechanical, chemical, and thermal
stability [21,22]. An abundant number of -N-H functional groups and the lone pair present
on the nitrogen atom of the tris-triazine unit provide an extended bonding site as well as
Bronsted acid and Lewis base, which helps to retain water for the interconnected channels.
Additionally, its large surface area provides an opportunity to accommodate multivalent
metal ions. The delocalized π-electrons act as a medium for the ionic interaction with
the valance sites of metal elements such that they can be rigidly fixed. For these reasons,
graphitic carbon nitride has been chosen here as a host material for Ce such that its
mitigation is prohibited to expect a long-term scavenging effect.

This study aims to improve the long-term anti-oxidation stability and cell performance
of Nafion by incorporating the hybrid g-C3N4/Ce (CNCe)-based nano-particles synthesized
by a simple calcination of CeO2 and melamine. The CNCe nano-particles improve its water
retention capability by reducing the direct interaction of Ce with the sulfonic acid groups
of Nafion. As the ionic interaction between Ce with π-electrons in g-C3N4 helps to keep Ce
ions intact, it thus avoids their leaching out of the membrane. The effect of CNCe nano-
particles on the anti-oxidation stability of the membrane was analyzed by measuring the F−

ion emission rate. In addition, its effect on the structure, properties and cell performance
of the synthesized membrane was investigated, including the morphology, water uptake,
proton conductivity, thermal, mechanical, and dimensional stability.

2. Experimental
2.1. Materials

Nafion solution (5 wt%, EW 1100) in a mixture of isopropyl alcohol and water was
purchased from Dupont (Wilmington, DE, USA). Melamine powder and cerium (III) nitrate
hexahydrate were purchased from Sigma Aldrich (St. Louis, MO, USA). Platinum (nomi-
nally 40% on carbon black, HiSPEC 4000) was purchased from Alfa Aesar (Ward Hill, MA,
USA). 2-Propanol (IPA) and hydrochloric acid (HCl) were purchased from Samchun pure
chemical company (Daejung, Korea). Sodium hydroxide pellets (NaOH) were purchased
from Sigma-Aldrich (Milwaukee, WI, USA).

2.2. Synthesis of Ce Doped g-C3N4 Hybrid Material

A predetermined amount of cerium(III) nitrate hexahydrate (0.2 g) was dissolved in
10 mL of deionized water. Melamine (1.0 g) was added to the solution for ultra-sonication
for 30 min. The reaction mixture was exposed to air at 90◦C for 30 min to evaporate
water under continuous stirring. The resultant white color solids were crusted to obtain a
fine powder and then heated in crucibles at 535 ◦C in a muffle furnace for 3 h. The final
light-yellow product was Ce-doped g-C3N4 (CNCe), as shown in Scheme 1.
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Scheme 1. The schematic illustration for the synthesis of CNCe hybrid material.

2.3. Synthesis of CNCe Incorporated Composite Membrane

CNCe (0.3 g) was subjected to sonication in DMSO for 60 min, followed by continuous
stirring at 300 rpm for 48 h. The resulting mixture was transferred to the Nafion ionomer
solution for further stirring for 24 h. After complete blending, the homogenous mixture was
cast on a clean flat petri dish to achieve a thickness of ±80µm. The cast solution was kept in a
vacuum oven at 80 ◦C for 24 h, followed by at 120 ◦C for 2 h to completely remove solvents.
The membranes were peeled off from the petri dish and then dipped into 1 M H2SO4
solution for ionization of functional groups. The finally synthesized membranes were
designated as Nafion/CNCe-x, where x represents the wt% of CNCe. The concentration
of CNCe was kept at 6 wt% with respect to the Nafion ionomer, because its concentration
beyond 6 wt% caused decrement of proton conductivity due to the destabilization of the
sulfonic acid groups.

2.4. Characterization
2.4.1. Chemical Structure Analysis

Fourier-transform infrared (FT-IR) spectra were recorded using Perkin-Elmer FT-IR
spectroscopy (Nicolet iS10, Brucker IFS 66/S, Brucker, Bremen, Germany) in the wavenum-
ber range of 4000–400 cm−1. The shape and size of CN nano-sheets and the morphology of
composite membranes were evaluated using field emission scanning electron microscopy
(FE-SEM, EM, Phillip XL30 ESEM-FCG, North Billerica, MA, USA). The crystalline structure
of both CN and CNCe was determined by X-ray diffraction spectroscopy (D8 Advance,
Bruker, Billerica, MA, USA) with CuKα radiation (λ = 1.54 Å). The energy dispersive
X-ray spectroscopy and high-resolution transmission electron microscopy (EDS/HR-TEM,
JEM-ARF 200F, Tokyo, Japan) were employed for elemental mapping and high-resolution
micro-images of composite membranes.

2.4.2. Ion Exchange Capacity (IEC)

The IEC of the membranes was calculated by the acid–base titration method. The mem-
brane samples were washed with DI water and then completely dried to measure their
weights (in gram) before immersion in 1.0 M NaCl solution for the complete exchange
of H+ into Na+ ions. The solution was then titrated with 0.1 M of NaOH solution using
phenolphthalein as an indicator. The IEC (meq. g−1) of membranes was calculated from
Equation (1):

IEC =
CNaOH × VNaOH

Dryw
(1)

where CNaOH and VNaOH are the concentration and volume of titrated NaOH solution and
Dryw is the weight of the dry membrane.

2.4.3. Proton Conductivity

Membranes were immersed in water and then cut into 3 cm (length) × 1 cm (width)
× ~80 µm (thickness) to measure proton conductivity. The sample was placed in the
4-probe cell (BEKKTECH, Loveland, CO, USA) to measure the in-plane proton conductivity
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using alternating current (AC) impedance spectroscopy (Zahner IM6e, Germany) with a
frequency range from 1 Hz to 1 MHz under 100% relative humidity. The bulk resistance of
the membrane was directly obtained from the impedance curve, and the proton conductivity
of the membrane was determined from the resistance from Equation (2):

σ =
L

R W T
(2)

Here, σ is the proton conductivity of the membrane in (S cm−1), L is the distance in
between the measurement probes in cm, R is the bulk resistance of the membrane in ohm,
W is the width of the membrane in cm, and T is the thickness of the membrane in cm.

2.4.4. Water Uptake and Swelling Ratio

Water uptake is an important property because it estimates the hydrophilicity of the
membrane. There are two types of water present inside the membrane, which are mainly in
the form of bound water and free water. Transportation of ions mostly takes place through
the bound water by a hopping mechanism. The membranes were dried at 80 ◦C for 48 h in
a heated oven to obtain its dry weight.

Water uptake was calculated from the following Equation (3)

WU(%) =
Wetw − Dryw

Dryw
(3)

where Wetw and Dryw are the weight of the wet and dry membranes, respectively.
The swelling ratio of the membrane was calculated from Equation (4):

Swelling ratio =
Ls−Ld

Ld
(4)

where Ls and Ld are the length of the wet and dry samples, respectively.
Hydration number, λ, defined by the number of water molecules associated per

sulfonic acid group in the proton exchange membrane was also calculated for the water
uptake and IEC using the following Equation (5).

λ =
10 × WU

IEC × 18.02
(5)

2.4.5. Thermal and Mechanical Stability

The stepwise weight loss of the synthesized CN, CNCe, was characterized by thermo-
gravimetric analysis (TGA, Seiko Exstar 6000, Tokyo, Japan). The sample was thermally
scanned at a ramping rate of 10 ◦C min−1 from 30 ◦C to 800 ◦C under N2 and air. The me-
chanical property of synthesized membranes was analyzed using the universal testing
machine (UTM, Model 5565, Lloyd, Fareham, UK) under a load cell of 250 N. The sample
dimension was 4 × 1 cm.

2.4.6. Oxidative Stability

Anti-oxidation stability of the synthesized membranes was investigated by measuring
the residual weight after Fenton’s test. The completely dry membranes were immersed in
Fenton’s solution (3 wt% H2O2, 4 ppm Fe2+) at 80 ◦C from 24 h. After the samples were
taken out of the solution, they were washed several times with DI water and then dried at
80 ◦C. The residual weight (RW)% was calculated from the difference between the weight
of the samples before (mb) and after treatment (ma) using Equation (6).

RW(%) =
ma

mb
× 100 (6)



Membranes 2022, 12, 521 5 of 13

The concentration of fluoride ion (F−) in the Fenton’s solution was analyzed using ion
chromatography (IC, 882 Compact IC Plus, Metrohm, Switzerland). The fluoride emission
rate (FER) was in situ measured to evaluate the chemical stability of MEAs during cell
operation. The drain water at both cathode and anode sides of the fuel cell station was
periodically collected and analyzed.

FER was calculated according to Equation (7).

FER (µgcm−2h −1) = C/(A × t) (7)

where C is the ion concentration (ppm), A is the active area of the sample (cm2), and t is
test time (h).

2.4.7. Membrane Electrode Assembly and Fuel Cell Performance

The catalyst layer was prepared by mixing 0.1 g of Pt/C (40%), 0.66 g of Nafion
ionomer (5 wt% in IPA), 1 mL of DI water, and 8.042 g of isopropanol. The mixture was
subjected to a horn-type sonicator (Sonomasher, SL Science, Seoul, Korea) for 30 min for
good dispersion. The mixture was sprayed onto a carbon paper by a hand spray pistol
to prepare the gas diffusion layer (GDL). The membrane electrodes assembly (MEA) was
prepared by pressing the catalyst-coated membrane using a heating press (Ocean Science,
Seoul, Korea) at 110 ◦C and 5 MPa for 3 min. The active area of the MEA for this process
was 6.25 cm2, and the Pt loading amount for both anode and cathode were 0.5 mg cm−2

each. The variation of voltage as a function of current and the voltage drop as a function of
time were measured using a unit cell station (SPPSN-300) provided by CNL Energy (Seoul,
Korea). During the cell test, hydrogen and oxygen gas was continuously fed to the anode
and cathode sites at the flow rate of 0.3 L min−1, respectively. The fuel cell performance
was measured at 80 ◦C under 50% relative humidity (RH).

3. Results and Discussion
3.1. Chemical and Physical Structure of CN and CNCe

The phase structure of CN and CNCe was identified by XRD analysis. In Figure 1a,
the occurrence of two dominant peaks at diffraction angles of 13.1◦ and 27.4◦ represents
the (002) interlayer stacking of conjugated aromatic layers with the hole-to-hole distance of
the nitride pores in the tris-triazine structure of CN [23]. The disappearance of those peaks
in the CNCe spectrum stems from the intercalation of Ce, which disrupts the crystalline
structure of CN during the thermal condensation process. Similar results have been
reported from the literature of Ang et al. [24], where the interaction between the TiO2
units and the tris-triazine structure caused the interruption of the crystalline structure of
melon by decreasing the hydrogen bonding effect [24]. Conversely, the dominant peak
at the diffraction angle corresponding to plane (111) represents the overlapping of the
characteristics peaks of Ce with CN. Moreover, the appearance of peaks at the Miller
indices of (111), (220), and (311) corresponding to the diffraction angles of 28.60◦, 33.05◦,
48.50◦ and 59.02◦ confirms the presence of cubic fluorite structure of Ce.

The structural information of CN and CNCe is further elucidated by FT-IR spectra in
Figure 1b. The IR spectrum of CN displays the stretching vibration bands in the region
of 800–1700 cm−1 [25]. The IR band at 808 cm−1 is from the breathing vibration of the
tris-triazine ring present in both CN and CNCe. A band at 624 cm−1 in the CNCe spectrum
confirms the presence of Ce via the vibration of Ce-O stretching [26]. The appearance of
the absorption band at 1640 cm—1 arises from the vibration of Ce-OH of CNCe, which was
absent in CN. All of the above distinguished IR bands of CNCe confirm the incorporation
of Ce into CN.

The chemical asserts were also analyzed by the full scan XPS spectra of CNCe in
Figure 1c. The reaction with the nitride led to the reduction of cerium, which is confirmed
by the presence of both Ce3+/Ce4+. Figure 1c shows two fitted peaks at 900.30 and 898 eV,
assigned to the core levels of Ce4+ 3d3/2 and Ce3+ 3d3/2, respectively. Similarly, two more
peaks at 888 and 882 eV are assigned to Ce3+ 3d5/2 and Ce4+ 3d5/2. It can be observed that
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the intensity of Ce4+ is a little stronger than that of Ce3+. The presence of the Ce3+ state
refers to the oxygen-vacant site in the crystalline form, which is the positive contribution
toward anti-oxidation stability by regeneration of the ceria-based hybrid material.

Figure 1. (a) XRD spectra of CN and CNCe, (b) FT-IR spectra of CN and CNCe, and (c) full scan XPS
spectra (Ce-3d XPS spectra).

The morphology and elemental composition of CNCe were investigated using HR-
TEM. Figure 2a illustrates a regularly stacked morphology of CNCe, which is consistent
with other reports [26]. This TEM image shows the spherical shapes of CNCe nano-
particles with a nearly uniform diameter of ~30 nm. In Figure 2b, the lattice fringe spacing
is 3.12 Å, associated with the (002) and (111) lattice planes of CN and Ce, which indicates
the intercalation of Ce into CN. Figure 2c illustrates the EDX results for the mapping of
the respective elements where C, N, and Ce are co-existing in good agreement with the
XPS results.

3.2. Chemical and Physical Structure of Composite Membrane

Figure 3a represents the full scan XPS spectra of the pristine Nafion and Nafion/CNCe
membranes. Here, the presence of Ce was assured from the peak at the binding energy of
833.34 eV in the Nafion/CNCe spectrum, which is not shown in the pristine Nafion. The
remaining peaks related with O, C and the sp2 carbon confirm the well-adhered architecture
of the pristine Nafion and Nafion/CNCe. Figure 3b shows the cross-sectional FE-SEM
images of Nafion/CNCe membranes with elemental mapping. The membrane surface is
quite smooth without any defect. When the membranes are exposed for elemental analysis,
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the uniform distribution of Ce is illustrated from Nafion/CNCe. This mapping analysis
indicates the good dispersion of CNCe in the Nafion matrix without obvious aggregation.

Figure 2. (a) HR-TEM images, (b) lattice site, and (c) EDX spectra of CNCe.

Figure 3. (a) Full scan XPS spectra of Nafion and Nafion/CNCe and (b) the cross-sectional images
with elemental analysis of Nafion/CNCe with their respective elements (C, N and Ce).
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3.3. Thermal and Mechanical Properties

To analyze the thermal stability of CN and CN/Ce, thermal gravimetric studies were
conducted in the range from 30 to 800 ◦C at a heating rate of 10 ◦C min−1. As shown in
Figure 4a, CN shows excellent thermal stability up to 300 ◦C, above which its weight slowly
decreases due to the oxidation of free nitrogen and carbon present at the peripheral areas
of CN. CNCe was thermally more stable than CN, as there was no weight loss up to 600 ◦C.
This is because the van der Walls forces between cerium and heptazine units induces higher
combustion temperature.

Figure 4. (a) TGA spectra of CN and CNCe and (b) UTM spectra of Nafion/CNCe and Nafion/Ce
composite membranes.

The effect of the CNCe on the mechanical strength of Nafion is illustrated in Figure 4b.
Three different samples with a 1 × 4 cm dimension were tested with UTM under the
hydrated state. The elongation at breakage was slightly decreased by introduction of
CNCe, as it reduced the water uptake, which has plasticizing effects on the membrane. In
the case of Nafion/Ce, the direct inactivation of the sulfonic acid group, due to physical
interaction of positive and negative charges present over cerium and the functional group
of the polymer, reduces the hydration capacity of the composite membrane, which results
in poor elasticity. Conversely, in the case of Nafion/CNCe, the intercalation of cerium
resulted in the exfoliation of stacked morphology and thus provided a free space to absorb
more water to enhance the elastic property.

3.4. Water Uptake and Swelling Ratio of Composite Membranes

The physicochemical properties including IEC, WU and hydration number (λ) of
Nafion, Nafion-Ce, and Nafion/CNCe membranes are discussed here. The IEC values
decreased from 0.86 to 0.71 meq. g−1 by addition of CNCe because of the stacked nature
of CN. Moreover, the insertion of Ce is responsible for the further decrement of the IEC
value to 0.68 meq. g−1 in the case of Nafion/Ce, due to the direct interaction of Ce with the
sulfonic acid groups of Nafion.

Similar behavior was illustrated for the hydration number. Because CNCe provides a
shielding effect on the sulfonic acid groups of Nafion, the hydration number of Nafion is
less decreased by the addition of CNCe than Ce, as shown in Table 1. The water uptake of
Nafion was 21.78% at 40 ◦C, but it was 17.39% for Nafion/CNCe and 12.14% for Nafion/Ce
as shown in Figure 5a. This decrement in water uptake is attributed to the inactivation
of the diffusion sites in the polymer backbone by the presence of Ce. The swelling ratio
followed the same trend as the water uptake, as shown in Figure 5b. The swelling ratio
was diminished by the presence of Ce and CNCe because those fillers restrict the volume
expansion via water uptake.
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Table 1. Hydration number and residual weight of different composite membranes.

Membrane Type Hydration Number
Residual Weight

24 h 48 h 72 h

Nafion 14.65 93.12 ± 0.5 86.24 ± 0.8 79.62 ± 0.7
Nafion/CNCe 8.27 95.35 ± 0.5 88.41 ± 0.6 84.39 ± 0.5

Nafion/Ce 7.41 96.66 ± 0.5 94.87 ± 0.6 82.55 ± 0.6

Figure 5. Temperature dependence of (a) water uptake and (b) swelling ratio of Nafion, Nafion/Ce,
and Nafion/CNCe membranes.

3.5. Proton Conductivity

Proton conductivity is one of the most important properties of polymer electrolyte
membranes for PEMFC application. As shown in Figure 6a, proton conductivity increases
with the temperature from 40 to 80 ◦C because of the thermally enhanced kinetic motion
of protons. The proton conductivity was 0.078 S cm−1 for Nafion, but it decreased to
0.041 and 0.032 S cm−1 for Nafion/CNCe and Nafion/Ce, respectively. The ionic bonding
between the acidic groups of Nafion and the positive charges of free amines in CN as well
as local agglomeration of the CN nano-particles led to a decreased number of hopping
sites. In the case of Nafion/Ce, the positive charges of Ce might be more dominant toward
diminishment of proton conductivity, but it was not that affected for Nafion/CNCe, because
of the following reasons. The first is the shielding effect provided by CN to the hopping
sites of Nafion, and the second is the presence of the π-electron cloud over the tris-triazine
ring, which provides a diffusion pathway for proton transport by forming an electron–ion
coupling as depicted in Figure 6b. Thus, comparable proton conductivity is achieved by
the composite membrane embedded with CNCe nano-particles.

3.6. Chemical Stability

Oxidative stability is an important property of the polymer electrolyte membrane,
because it is related with the long-term operation of PEMFC. In Table 1, the residual weight
of Nafion/CNCe after Fenton’s test for 72 h was 84.39%, which was higher than those of
Nafion/Ce and Nafion at 82.55% and 79.62%, respectively. This result shows a great affinity
of the Ce ion with CN for prolonged radical scavenging effect. To further evaluate the
CNCe effect on the chemical stability of Nafion, the in situ degradation test of membrane
electrode assembly is carried out measuring the fluorine emission rate (FER) as a function
of time.

Figure 7 represents the time-dependent FER in the OCV test for both anode and
cathode sides, as the degradation of fluoropolymer results in the emission of fluorine
species from the electrode sites. In the case of the proton exchange membrane, the emis-
sion of fluorine is expected to be higher at the anode site due to the faster kinetics
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of HER in association with the counterattack of •OH radicals. The resulting FER for
Nafion was 0.0062 mg·cm−2·h−1 at the cathode and 0.0034 mg·cm−2·h−1 at the anode,
but that of the Nafion/CNCe membranes was 0.0037 mg·cm−2·h−1 at the cathode and
0.0023 mg·cm−2·h−1 at the anode. These results clearly indicate the radical scavenging
effect of CNCe on the anti-oxidation stability of membranes. A table of comparison with
other Nafion composites has also been added to check the relative performances for the
respective membranes.

Figure 6. (a) Proton conductivity and (b) proton transport mechanism for the composite membrane.

Figure 7. (a) FER for the anode side and (b) cathode side.

Moreover, comparison of the performance of the Nafion composite membranes in
terms of proton conductivity and cell performances are also listed in Table 2 with the
previously reported research works [2,27].
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Table 2. Comparison of the proton conductivity and cell performances with different composite
membranes.

Membrane Type Proton Conductivity
(S/cm)

Fuel Cell
Performance Ref.

CRE/Ce-10 0.061 118 mW cm−2 [2]
Nafion-CeO2-DS8 0.18 280 mW cm−2 [27]

Nafion/CNCe 0.041 193 mWcm−2 This work

Figure 8 shows the polarization curves measured at the start-up and after 120 h
for the MEA fabricated with Nafion and composite membranes. The power density of
233 mW·cm−2, which is higher than those of Nafion/Ce and Nafion/CNCe, 130 and
193 mW·cm−2, respectively, was obtained for the Nafion membrane at the beginning of
the test, as shown in Figure 8a. The presence of nano-particles creates interfacial resis-
tance, decreasing the power density. As the oxidation reaction at the anode side generally
occurs faster than the reduction reaction at the cathode side, the reduction reaction is
the rate-determining step affecting the OCV drop with respect to time. While the power
density dropped to 158 mW·cm−2 for Nafion, it dropped more slowly to 180 mW·cm−2 for
Nafion/CNCe, as shown in Figure 8b, because of the radical scavenging effect of CNCe
during the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR).

Figure 8. (a) Single-cell degradation test at t = 0 and (b) after t = 72 h for different membranes.

4. Conclusions

The combined effect of the hybrid material CNCe is practically demonstrated for
chemical stability and durability of composite membranes for the proton exchange mem-
brane fuel cell application. HR-TEM images were recorded to identify the lattice sites of
the cerium inside the crystalline structure of the CN. The presence of CNCe in Nafion was
characterized by cross-sectional SEM images and EDX mapping. The oxidative stability and
chemical structure degradation for the pristine and composite membrane were evaluated
by Fenton’s test and in situ MEA degradation test. The results showed more stable chemical
stability of composite membranes than pristine Nafion. The radical scavenging property of
CNCe was further characterized by a polarization curve test for Nafion and Nafion/CNCe,
showing excellent stability of Nafion/CNCe until 72 h under strong oxidative conditions.
Overall, the combined effect of cerium into CN can be achieved, enhancing the durability
of the membrane without sacrificing the migration of Ce from Nafion.
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